Antibiotic Residues in Struvite Fertilizers Precipitated by Different Processes in Municipal Wastewater Treatment Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Struvite Samples
2.2. Pre-Treatment and Chemical Analysis of Struvite Raw Materials and Products
2.3. Determination of Antibiotic Residues
2.3.1. Extraction Procedure
2.3.2. Quantification of Antibiotics by HPLC with Electrospray Ionization Tandem Mass Spectrometry
2.3.3. Lower Limit of Quantification (LOQ)
2.3.4. Recovery Rate of Antibiotic Residues in Struvite
3. Results
3.1. Nitrogen and Organic Carbon in Struvite Raw Materials
3.2. Contamination of Struvite by Antibiotic Residues
Tetracyclines [µg/kg DW] | Sulfonamides [µg/kg DW] | Fluoroquinolones [µg/kg DW] | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Process | OTC | CTC | DOX | TC | MC | SDZ | SMZ | SMX | CIP | DF | ENR | OF | NOR | |
Air-Prex® (n = 13) | Mean | 0.0 | 0.1 | 9.3 | 2.8 | 0.3 | 1.0 | 0.3 | 0.2 | 47.3 | 3.8 | 4.0 | 24.1 | 7.5 |
Med. | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.5 | 0.0 | 0.0 | 25.2 | 1.0 | 1.0 | 11.1 | 1.0 | |
Max. | <LOD | 1.0 | 103 | 29.9 | 1.0 | 7.9 | 3.1 | 1.0 | 251 | 16.1 | 26.2 | 131 | 59.9 | |
DF-% | 0 | 8 | 15 | 54 | 31 | 46 | 15 | 15 | 100 | 92 | 100 | 100 | 100 | |
NuRe-Sys® (n = 9) | Mean | 0.1 | 0.0 | 0.0 | 0.6 | 1.4 | 2.3 | 0.6 | 2.6 | 9.8 | 4.7 | 4.0 | 14.7 | 13.1 |
Med. | 0.1 | 0.0 | 0.0 | 0.4 | 0.0 | 1.0 | 0.0 | 1.0 | 11.9 | 1.0 | 2.8 | 11.2 | 11.4 | |
Max. | 1.0 | <LOD | <LOD | 2.3 | 7.6 | 9.0 | 3.4 | 19.0 | 16.2 | 17.2 | 11.0 | 33.7 | 35.9 | |
DF-% | 11 | 0 | 0 | 56 | 44 | 67 | 33 | 67 | 100 | 89 | 100 | 89 | 89 | |
Sea-borne (n = 4) | Mean | 0.0 | 0.0 | 1.6 | 0.8 | 0.0 | 0.3 | 0.0 | 0.0 | 41.1 | 5.3 | 2.0 | 39.4 | 23.9 |
Med. | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 42.2 | 4.1 | 1.3 | 40.9 | 20.6 | |
Max. | <LOD | <LOD | 6.3 | 1.0 | <LOD | 1.0 | <LOD | <LOD | 67.0 | 12.4 | 4.4 | 51.8 | 46.0 | |
DF-% | 0 | 0 | 25 | 75 | 0 | 25 | 0 | 0 | 100 | 100 | 100 | 100 | 100 | |
PHOS-PAQTM (n = 8) | Mean | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.8 | 0.1 | 0.0 | 2.1 | 0.4 | 0.8 | 2.0 | 0.6 |
Med. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 1.0 | 0.3 | 1.0 | 1.0 | 1.0 | |
Max. | <LOD | <LOD | <LOD | <LOD | 1.0 | 1.0 | 1.0 | <LOD | 10.4 | 1.0 | 1.0 | 10.3 | 1.0 | |
DF-% | 0 | 0 | 0 | 0 | 13 | 88 | 13 | 0 | 88 | 50 | 88 | 100 | 63 | |
DF-% in all 34 raw materials | 3 | 3 | 9 | 44 | 26 | 62 | 18 | 24 | 97 | 82 | 97 | 97 | 88 | |
Products (n = 7) | Mean Med. Max. | 0.1 | 0.1 | 0.5 | 0.4 | 0.0 | 0.1 | 0.0 | 0.0 | 8.8 | 0.6 | 2.3 | 6.2 | 0.5 |
0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13.0 | 1.0 | 1.0 | 1.0 | 0.0 | ||
1.0 | 1.0 | 3.5 | 1.0 | <LOD | 1.0 | <LOD | <LOD | 17.2 | 1.0 | 6.7 | 17.3 | 1.4 | ||
DF-% | 14 | 14 | 14 | 43 | 0 | 14 | 0 | 0 | 100 | 57 | 86 | 86 | 43 |
4. Discussion
4.1. Correlation between Antibiotic Residues and the C-Content of Struvite Raw Materials
4.2. Predicted Environmental Application of Antibiotics via Struvite
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Powers, S.M.; Chowdhury, R.B.; MacDonald, G.K.; Metson, G.S.; Beusen, A.H.W.; Bouwman, A.F.; Hampton, S.E.; Mayer, B.K.; McCrackin, M.L.; Vaccari, D.A. Global opportunities to increase agricultural independence through phosphorus recycling. Earth’s Future 2019, 7, 370–383. [Google Scholar] [CrossRef]
- Wang, Z.; Hill, R.; Williams, G.; Dwyer, G.S.; Hu, J.; Schnug, E.; Bol, R.; Sun, Y.; Coleman, D.S.; Liu, X.M.; et al. Lead isotopes and rare earth elements geochemistry of global phosphate rocks: Insights into depositional conditions and environmental tracing. Chem. Geol. 2023, 639, 121715. [Google Scholar] [CrossRef]
- Desmidt, E.; Ghyselbrecht, K.; Zhang, Y.; Pinoy, L.; Van der Bruggen, B.; Verstraete, W.; Rabaey, K.; Meesschaert, B. Global phosphorus scarcity and full-scale P-recovery techniques: A review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 336–384. [Google Scholar] [CrossRef]
- Elser, J.J. Phosphorus a limiting nutrient for humanity? Curr. Opin. Biotechnol. 2012, 23, 833–838. [Google Scholar] [CrossRef] [PubMed]
- VDI. Phosphor in Norwegen. Fund Ist Eine Gute Nachricht Für Die Welternährung. 2023. Available online: https://www.vdi.de/news/detail/fund-ist-eine-gute-nachricht-fuer-die-welternaehrung?utm_source=vdi-update&utm_medium=email&utm_campaign=VDI-Update+KW+29 (accessed on 3 June 2024).
- Plaxton, W.C.; Tran, H.T. Metabolic adaptations of phosphate-starved plants. Plant Physiol. 2011, 156, 1006–1015. [Google Scholar] [CrossRef] [PubMed]
- De Ridder, M.; De Jong, S.; Polchar, J.; Lingemann, S. Risks and Opportunities in the Global Phosphate Rock Market: Robust Strategies in Times of Uncertainty; Report; The Hague Centre for Strategic Studies (HCSS): The Hague, The Netherlands, 2012. [Google Scholar]
- European Commission. COM 1-214-297-EN F1-1 Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: On the review of the List of Critical Raw Materials for the EU and the Implementation of the Raw Materials Initiative. 2014. {SWD(2014) 171 Final}. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52014DC0297&from=CS (accessed on 3 June 2024).
- Lou, H.; Zhao, C.; Yang, S.; Shi, L.; Wang, Y.; Ren, X.; Bai, J. Quantitative evaluation of legacy phosphorus and its spatial distribution. J. Environ. Manag. 2018, 211, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Klinglmair, M.; Lemming, C.; Jensen, L.S.; Rechberger, H.; Astrup, T.F.; Scheutz, C. Phosphorus in Denmark: National and regional anthropogenic flows. Resour. Conserv. Recycl. 2015, 105, 311–324. [Google Scholar] [CrossRef]
- Möller, K.; Oberson, A.; Bünemann, E.K.; Cooper, J.; Friedel, J.K.; Glæsner, N.; Hörtenhuber, S.; Løes, A.-K.; Mäder, P.; Meyer, G.; et al. Improved Phosphorus Recycling in Organic Farming: Navigating between Constraints. Adv. Agron. 2018, 147, 159–237. [Google Scholar] [CrossRef]
- Zoboli, O.; Zessner, M.; Rechberger, H. Supporting phosphorus management in Austria: Potential, priorities and limitations. Sci. Total Environ. 2016, 565, 313–323. [Google Scholar] [CrossRef]
- Schoumans, O.F.; Bouraoui, F.; Kabbe, C.; Oenema, O.; van Dijk, K.C. Phosphorus management in Europe in a changing world. AMBIO 2015, 44 (Suppl. S2), S180–S192. [Google Scholar] [CrossRef]
- Stemann, J.; Kabbe, C.; Adam, C. Aus Wasser und Asche—Die Forschungsinitiative P-REX will die Entwicklung von effizienten technischen Lösungen des Phosphor-Recyclings aus Abwasser in Europa beschleunigen. ReSource 2014, 2, 25–31. [Google Scholar]
- Van Dijk, K.C.; Lesschen, J.P.; Oenema, O. Phosphorus flows and balances of the European Union Member States. Sci. Total Environ. 2015, 542, 1078–1093. [Google Scholar] [CrossRef] [PubMed]
- Herzel, H.; Krüger, O.; Hermann, L.; Adam, C. Sewage sludge ash-a promising secondary phosphorus source for fertilizer production. Sci. Total Environ. 2016, 542, 1136–1143. [Google Scholar] [CrossRef] [PubMed]
- Kabbe, C.; Remy, C.; Kraus, F. Review of Promising Methods for Phosphorus Recovery & Recycling from Wastewater; International Fertiliser Society: Colchester, UK, 2015. [Google Scholar]
- Le Corre, K.S.; Valsami-Jones, E.; Hobbs, P.; Parsons, S.A. Phosphorus recovery from wastewater by struvite crystallization: A review. Crit. Rev. Environ. Sci. Technol. 2009, 39, 433–477. [Google Scholar] [CrossRef]
- Shaddel, S.; Bakhtiary-Davijany, H.; Kabbe, C.; Dadgar, F.; Østerhus, S.W. Sustainable sewage sludge management: From current practices to emerging nutrient recovery technologies. Sustainability 2019, 11, 3435. [Google Scholar] [CrossRef]
- Braak, E.; Auby, S.; Piveteau, S.; Guilayn, F.; Daumer, M.L. Phosphorus recycling potential assessment by a biological test applied to wastewater sludge. Environ. Technol. 2016, 37, 1398–1407. [Google Scholar] [CrossRef]
- Guilayn, F.; Braak, E.; Piveteau, S.; Daumer, M.-L. Sequencing biological acidification of waste-activated sludge aiming to optimize phosphorus dissolution and recovery. Environ. Technol. 2016, 38, 1399–1407. [Google Scholar] [CrossRef] [PubMed]
- Römer, W. Phosphordüngewirkung neuer Phosphorrecyclingprodukte. Berichte Landwirtsch. 2013, 91, 1–24. [Google Scholar]
- Bloem, E.; Kratz, S. Organic xenobiotics. In Phosphorus in Agriculture: 100% Zero; Schnug, E., De Kok, L.J., Eds.; Springer Science and Business Media: Dordrecht, The Netherlands, 2016; pp. 267–307. [Google Scholar]
- Bloem, E.; Albihn, A.; Elving, J.; Hermann, L.; Lehmann, L.; Sarvi, M.; Schaaf, T.; Schick, J.; Turtola, E.; Ylivainio, K. Contamination of organic nutrient sources with potentially toxic elements, antibiotics and pathogen microorganisms in relation to P fertilizer potential and treatment options for the production of sustainable fertilizers: A review. Sci. Total Environ. 2017, 607, 225–242. [Google Scholar] [CrossRef]
- Kratz, S.; Panten, K.; Schnug, E.; Bloem, E. Optimizing the use of treated wastes in crop nutrition. In Achieving Sustainable Crop Nutrition; Rengel, Z., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2020. [Google Scholar] [CrossRef]
- Pinto da Costa, J.; Santos, P.S.; Duarte, A.C.; Rocha-Santos, T. (Nano) plastics in the Environment—Sources, fates and effects. Sci. Total Environ. 2016, 566, 15–26. [Google Scholar] [CrossRef]
- Berset, J.D.; Holzer, R. Organic micropollutants in Swiss agriculture: Distribution of polynuclear aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in soil, liquid manure, sewage sludge and compost samples; A comparative study. Int. J. Environ. Anal. Chem. 1995, 59, 145–165. [Google Scholar] [CrossRef]
- Petersen, S.O.; Henriksen, K.; Mortensen, G.K.; Krogh, P.H.; Brandt, K.K.; Sørensen, J.; Madsen, T.; Petersen, J.; Grøn, C. Recycling of sewage sludge and household compost to arable land: Fate and effects of organic contaminants, and impact on soil fertility. Soil Tillage Res. 2003, 72, 139–152. [Google Scholar] [CrossRef]
- Dong, Y.; Das, S.; Parson, J.R.; Praetorius, A.; de Rijke, E.; Helmus, R.; Slootweg, J.C.; Jansen, B. Simultaneous detection of pesticides and pharmaceuticals in three types of bio-based fertilizers by an improved QuEChERS method coupled with UHPLC-q-ToF-MS/MS. J. Hazard. Mater. 2023, 458, 131992. [Google Scholar] [CrossRef] [PubMed]
- Ronteltap, M.; Maurer, M.; Gujer, W. The behavior of pharmaceuticals and heavy metals during struvite precipitation in urine. Water Res. 2007, 41, 1859–1868. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.-L.; An, X.-L.; Zhu, Y.-G.; Su, J.-Q.; Gillings, M.R.; Ye, Z.-L.; Cui, L. Application of struvite alters the antibiotic resistome in soil, rhizosphere, and phyllosphere. Environ. Sci. Technol. 2017, 51, 8149–8157. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Li, B.; Huang, X.; Liu, X.; Li, R.; Ye, Z.; Wu, X.; Huang, Y.; Wang, G. A review of the migration mechanisms of antibiotics during struvite recovery from wastewater. Chem. Eng. J. 2023, 466, 142983. [Google Scholar] [CrossRef]
- Ye, Z.-L.; Deng, Y.; Lou, Y.; Ye, X.; Chen, S. Occurrence of veterinary antibiotics in struvite recovery from swine wastewater by using a fluidized bed. Front. Environ. Sci. Eng. 2018, 12, 7. [Google Scholar] [CrossRef]
- De Boer, M.; Kabbe, C.; Slootweg, J.C. Comment on “Application of struvite alters the antibiotic resistome in soil, rhizosphere, and phyllosphere”. Environ. Sci. Technol. 2018, 52, 14564–14565. [Google Scholar] [CrossRef]
- Kern, J.; Heinzmann, B.; Markus, B.; Kaufmann, A.C.; Soethe, N.; Engels, C. Recycling and Assessment of Struvite Phosphorus from Sewage Sludge. Agric. Eng. Int. CIGR J. 2008, X, CE1201. [Google Scholar]
- Uysal, A.; Yilmazel, Y.D.; Demirer, G.N. The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester. J. Hazard. Mater. 2010, 181, 248–254. [Google Scholar] [CrossRef]
- Andersson, D.I.; Hughes, D. Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol. 2014, 12, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Thiele-Bruhn, S. Pharmaceutical antibiotic compounds in soils—A review. J. Plant Nutr. Soil Sci. 2003, 166, 145–167. [Google Scholar] [CrossRef]
- Jacobsen, A.M.; Halling-Sørensen, B. Multi-component analysis of tetracyclines, sulfonamides and tylosin in swine manure by liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2006, 384, 1164–1174. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, L.; Bloem, E. Antibiotic residues in substrates and output materials from biogas plant—Implications for agriculture. Chemosphere 2021, 278, 130425. [Google Scholar] [CrossRef] [PubMed]
- Antonini, S.; Arias, M.A.; Eichert, T.; Clemens, J. Greenhouse evaluation and environmental impact assessment of different urine-derived struvite fertilizers as phosphorus sources for plants. Chemosphere 2012, 89, 1202–1210. [Google Scholar] [CrossRef]
- Bonvin, C.; Etter, B.; Udert, K.M.; Frossard, E.; Nanzer, S.; Tamburini, F.; Oberson, A. Plant uptake of phosphorus and nitrogen recycled from synthetic source-separated urine. AMBIO 2015, 44, S217–S227. [Google Scholar] [CrossRef]
- Wollmann, I.; Gauro, A.; Müller, T.; Möller, K. Phosphorus bioavailability of sewage sludge-based recycled fertilizers. J. Plant Nutr. Soil Sci. 2018, 181, 158–166. [Google Scholar] [CrossRef]
- Halling-Sørensen, B.; Jensen, J.; Tørnelund, J.; Montforts, M.H.M.M. Worstcase estimations of predicted environmental soil concentrations (PEC) of selected veterinary antibiotics and residues used in Danish agriculture. In Pharmaceuticals in the Environment; Kümmerer, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 143–157. [Google Scholar]
- Sarmah, A.K.; Meyer, M.T.; Boxall, A.B. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 2006, 65, 725–759. [Google Scholar] [CrossRef] [PubMed]
- Kümmerer, K.; Henninger, A. Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clin. Microbiol. Infect. 2003, 9, 1203–1214. [Google Scholar] [CrossRef]
- Massé, D.I.; Cata Saady, N.M.; Gilbert, Y. Potential of biological processes to eliminate antibiotics in livestock manure: An overview. Animals 2014, 4, 146–163. [Google Scholar] [CrossRef]
- Cheng, M.; Wu, L.; Huang, Y.; Luo, Y.; Christie, P. Total concentrations of heavy metals and occurrence of antibiotics in sewage sludges from cities throughout China. J. Soils Sediments 2014, 14, 1123–1135. [Google Scholar] [CrossRef]
- Li, W.; Shi, Y.; Gao, L.; Liu, J.; Cai, Y. Occurrence, distribution and potential affecting factors of antibiotics in sewage sludge of wastewater treatment plants in China. Sci. Total Environ. 2012, 445–446, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Picó, Y.; Andreu, V. Fluoroquinolones in soil—Risks and challenges. Anal. Bioanal. Chem. 2007, 387, 1287–1299. [Google Scholar] [CrossRef] [PubMed]
- Gobel, A.; Thomsen, A.; McArdell, C.S.; Joss, A.; Giger, W. Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environ. Sci. Technol. 2005, 39, 3981–3989. [Google Scholar] [CrossRef]
- Golet, E.M.; Xifra, I.; Siegrist, H.; Alder, A.C.; Giger, W. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environ. Sci. Technol. 2003, 37, 3243–3249. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Eichhorn, P.; Jensen, J.N.; Weber, A.S.; Aga, D.S. Removal of antibiotics in wastewater: Effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process. Environ. Sci. Technol. 2005, 39, 5816–5823. [Google Scholar] [CrossRef] [PubMed]
- McClellan, K.; Halden, R.U. Pharmaceuticals and personal care products in archived U.S. biosolids from the 2001 EPA national sewage sludge survey. Water Res. 2010, 44, 658–668. [Google Scholar] [CrossRef]
- Ye, Z.-L.; Deng, Y.; Lou, Y.; Ye, X.; Zhang, J.; Chen, S. Adsorption behavior of tetracyclines by struvite particles in the process of phosphorus recovery from synthetic swine wastewater. Chem. Eng. J. 2017, 313, 1633–1638. [Google Scholar] [CrossRef]
- Ryan, D.; Karpinska, A.; Forrestal, P.J.; Ashekuzzaman, S.M.; Kakouli-Duarte, T.; Dowling, D.N.; Germaine, K.J. The impact of bio-based fertilizer integration into conventional grassland fertilization programmes on soil bacterial, fungal, and nematode communities. Front. Sustain. Food Syst. 2022, 6, 832841. [Google Scholar] [CrossRef]
- Prabhu, M.; Mutnuri, S. Cow urine as potential source for struvite production. Int. J. Recycl. Org. Waste Agricult. 2014, 3, 49. [Google Scholar] [CrossRef]
- Gullberg, E.; Cao, S.; Berg, O.G.; Ilbäck, C.; Sandegren, L.; Hughes, D.; Andersson, D.I. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 2011, 7, e1002158. [Google Scholar] [CrossRef]
- Başakçilardan-Kabakci, S.; Thompson, A.; Cartmell, E.; Le Corre, K. Adsorption and precipitation of tetracycline with struvite. Water Environ. Res. 2007, 79, 2551–2556. [Google Scholar] [CrossRef] [PubMed]
Country Code | Location of the WWTP | Precipitation Technique | No of Samples | Material | Comment |
---|---|---|---|---|---|
D | Berlin | AirPrex® | 5 | Raw material | Samples from 2019 (1), 2020 (1), 2021 (3) |
D | Wolfsburg | AirPrex® | 1 | Raw material | Sample from 2021 |
D | Salzgitter | AirPrex® | 4 | Raw material | Samples from 2020 (3), 2021 (1) |
D | Mönchen-gladbach | AirPrex® | 3 | Raw material | All samples from 2021 |
D | Braunschweig | NuReSys® | 7 | Raw material | System implemented in 2019 is still under improvement; samples from 2020 (1), 2021 (5), 2022 (1), 2023 (1) |
NL | Apeldoorn | NuReSys® | 1 | Raw material | Sample collected in May 2022 |
D | Gifhorn | Modified Seaborne procedure | 4 | Raw material | Samples from 2021 (1), 2022 (3) |
D | Hünfeld | PHOSPAQ™ | 8 | Raw material | Samples from 2020 (1) 2021 (7) |
NL | Amersfoort | Crystal Green Pearl® | 2 | Product | 1st sample from 2020 and 2nd from May 2022 |
D | Hünxe | Mixture of struvite from different WWTPs | 5 | Pilot scale products | Products currently under development |
Target Antibiotic | Lower Limit of Quantification (LOQ) in Struvite [µg/kg DW] |
---|---|
Tetracycline (TC) | >1.0–2.02 |
Oxytetracycline (OTC) | 1.33–6.67 |
Chlortetracycline (CTC) | 8.91–17.86 |
Demeclocycline (DMC) | 12.51–44.65 |
Metacycline (MC) | 2.79–5.56 |
Doxycycline (DOX) | >1 |
Sulfadiazine (SDZ) | 1.28–2.98 |
Sulfamethazine (SMZ) | 0.99–1.55 |
Sulfamethoxazole (SMX) | 0.45–1.59 |
Ciprofloxacin (CIP) | >1.0 |
Enrofloxacin (ENR) | 0.27–1.24 |
Ofloxacin (OF) | 0.73–1.50 |
Difloxacin (DF) | 1.64–2.56 |
Norfloxacine (NOR) | >1.13 |
Added Antibiotic | Range of the Recovery Rate [%] | Medium Recovery Rate [%] with Standard Deviation |
---|---|---|
Chlortetracycline (CTC) | 35.7–93.1 | 53.4 ± 13.0 |
Doxycycline (DOX) | 31.7–122.4 | 54.5 ± 16.5 |
Oxytetracycline (OTC) | 32.9–96.7 | 53.6 ± 14.4 |
Tetracycline (TC) | 35.2–104.1 | 55.3 ± 14.9 |
Demeclocycline (DMC) | 29.1–98.7 | 52.9 ± 15.0 |
Metacycline (MC) | 22.2–82.2 | 46.0 ± 14.0 |
Sulfadiazine (SDZ) | 7.6–74.9 | 42.9 ± 17.5 |
Sulfamethazine (SMZ) | 6.1–66.0 | 35.7 ± 15.7 |
Sulfamethoxazole (SMX) | 12.8–66.2 | 41.4 ± 14.2 |
Ciprofloxacin (CIP) | 24.8–79.2 | 48.6 ± 13.7 |
Difloxacin (DF) | 26.4–91.9 | 46.7 ± 13.2 |
Enrofloxacin (ENR) | 22.2–106.2 | 46.4 ± 16.0 |
Ofloxacin (OF) | 29.9–91.1 | 48.7 ± 14.3 |
Norfloxacin (NOR) | 20.5–76.7 | 46.2 ± 12.6 |
Medium/Process of P Recovery | Sludge/ AirPrex® | Centrate/ NuReSys® | Sludge after Forced P-Remobilization/Modified Seaborne | Industrial Effluent/PHOSPAQTM |
---|---|---|---|---|
No of samples | 13 | 9 | 4 | 8 |
Total carbon (C) content [%] | ||||
Range | 1.54–27.28 | 0.06–1.02 | 0.21–3.63 | 0.90–7.07 |
Mean ± SD | 7.49 ± 7.74 | 0.48 ± 0.39 | 1.57 ± 1.54 | 2.32 ± 2.03 |
Total nitrogen (N) content [%] | ||||
Range | 3.49–5.31 | 4.06–5.57 | 3.53–5.58 | 3.02–6.56 |
Mean ± SD | 4.53 ± 0.54 | 5.33 ± 0.48 | 5.01 ± 0.99 | 4.73 ± 1.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bloem, E.; Albert, S.; Thiel, M.; Keßeler, P.; Clemens, J.; Kolb, A.; Dockhorn, T. Antibiotic Residues in Struvite Fertilizers Precipitated by Different Processes in Municipal Wastewater Treatment Plants. Sustainability 2024, 16, 5726. https://doi.org/10.3390/su16135726
Bloem E, Albert S, Thiel M, Keßeler P, Clemens J, Kolb A, Dockhorn T. Antibiotic Residues in Struvite Fertilizers Precipitated by Different Processes in Municipal Wastewater Treatment Plants. Sustainability. 2024; 16(13):5726. https://doi.org/10.3390/su16135726
Chicago/Turabian StyleBloem, Elke, Sophia Albert, Maria Thiel, Paul Keßeler, Joachim Clemens, Andreas Kolb, and Thomas Dockhorn. 2024. "Antibiotic Residues in Struvite Fertilizers Precipitated by Different Processes in Municipal Wastewater Treatment Plants" Sustainability 16, no. 13: 5726. https://doi.org/10.3390/su16135726
APA StyleBloem, E., Albert, S., Thiel, M., Keßeler, P., Clemens, J., Kolb, A., & Dockhorn, T. (2024). Antibiotic Residues in Struvite Fertilizers Precipitated by Different Processes in Municipal Wastewater Treatment Plants. Sustainability, 16(13), 5726. https://doi.org/10.3390/su16135726