Social Media as a Lens for Citizen Science: Investigating Visitor Contributions in a Forest Recreational Area
Abstract
:1. Introduction
1.1. Citizen Science for Biodiversity Conservation: A Strategy for Nature Positive
1.2. Challenges in Engaging a Diverse Public in Citizen Science
1.3. Social Media for Citizen Science: Data Collection and Recruitment
1.4. The Next Steps: Unlocking the Full Potential of Social Media Research for Citizen Science
1.5. Investigating Social Media Users on Popular Platforms: A New Source for Citizen Science?
2. Materials and Methods
3. Results
3.1. Data Collection from Google Maps Related to Ushiku Nature Sanctuary
3.2. Classifications of Subjects in Each Photo
3.2.1. Outline of the Main Subjects
3.2.2. Man-Made Subcategory
3.2.3. Bio Subcategory
3.3. Clustering for Contributors
3.4. Analysis of Changes in Recreational Use with Repeated Visits
4. Discussion
4.1. Innovative Use of Social Media Platform for Contributive Science
4.2. Recreational Uses Estimated from Small-Scale Location-Explicit Cloud Platforms
4.3. Considerations for Recruiting Contributors and Using Data from Social Media
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clark, N.E.; Lovell, R.; Wheeler, B.W.; Higgins, S.L.; Depledge, M.H.; Norris, K. Biodiversity, Cultural Pathways, and Human Health: A Framework. Trends Ecol. Evol. 2014, 29, 198–204. [Google Scholar] [CrossRef]
- Miller, J.R. Biodiversity Conservation and the Extinction of Experience. Trends Ecol. Evol. 2005, 20, 430–434. [Google Scholar] [CrossRef]
- Aerts, R.; Honnay, O.; Van Nieuwenhuyse, A. Biodiversity and Human Health: Mechanisms and Evidence of the Positive Health Effects of Diversity in Nature and Green Spaces. Br. Med. Bull. 2018, 127, 5–22. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A.; et al. Biodiversity Loss and Its Impact on Humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef]
- Gould, R.K.; Morse, J.W.; Adams, A.B. Cultural Ecosystem Services and Decision-making: How Researchers Describe the Applications of Their Work. People Nat. 2019, 1, 457–475. [Google Scholar] [CrossRef]
- Díaz, S.; Pascual, U.; Stenseke, M.; Martín-López, B.; Watson, R.T.; Molnár, Z.; Hill, R.; Chan, K.M.A.; Baste, I.A.; Brauman, K.A.; et al. Assessing Nature’s Contributions to People. Science 2018, 359, 270–272. [Google Scholar] [CrossRef]
- Kosanic, A.; Petzold, J. A Systematic Review of Cultural Ecosystem Services and Human Wellbeing. Ecosyst. Serv. 2020, 45, 101168. [Google Scholar] [CrossRef]
- Stephens, T. The Kunming–Montreal Global Biodiversity Framework. Int. Leg. Mater. 2023, 62, 868–887. [Google Scholar] [CrossRef]
- Hughes, A.C. The Post-2020 Global Biodiversity Framework: How Did We Get Here, and Where Do We Go Next? Integr. Conserv. 2023, 2, 1–9. [Google Scholar] [CrossRef]
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Brondízio, E.S., Settele, J., Diaz, S., Ngo, H.T., Eds.; Zenodo: Bonn, Germany, 2019; ISBN 9783947851201. [Google Scholar]
- United Nations. Conservation on Biological Diversity Monitoring Framework for the Kunming-Montreal Global Biodiversity Framework. In Proceedings of the Fifteenth Meeting of the Conference of the Parties to the Convention on Biological Diversity (Part Two), United Nations Convention on Biological Diversity, Montreal, QC, Canada, 7–19 December 2022; pp. 20–45. [Google Scholar]
- Watson, J.E.M.; Venegas-Li, R.; Grantham, H.; Dudley, N.; Stolton, S.; Rao, M.; Woodley, S.; Hockings, M.; Burkart, K.; Simmonds, J.S.; et al. Priorities for Protected Area Expansion so Nations Can Meet Their Kunming-Montreal Global Biodiversity Framework Commitments. Integr. Conserv. 2023, 2, 140–155. [Google Scholar] [CrossRef]
- Kindsvater, H.K.; Dulvy, N.K.; Horswill, C.; Juan-Jordá, M.-J.; Mangel, M.; Matthiopoulos, J. Overcoming the Data Crisis in Biodiversity Conservation. Trends Ecol. Evol. 2018, 33, 676–688. [Google Scholar] [CrossRef] [PubMed]
- Cohn, J.P. Citizen Science: Can Volunteers Do Real Research? Bioscience 2008, 58, 192–197. [Google Scholar] [CrossRef]
- Kobori, H.; Dickinson, J.L.; Washitani, I.; Sakurai, R.; Amano, T.; Komatsu, N.; Kitamura, W.; Takagawa, S.; Koyama, K.; Ogawara, T.; et al. Citizen Science: A New Approach to Advance Ecology, Education, and Conservation. Ecol. Res. 2016, 31, 1–19. [Google Scholar] [CrossRef]
- Amano, T.; Lamming, J.D.L.; Sutherland, W.J. Spatial Gaps in Global Biodiversity Information and the Role of Citizen Science. Bioscience 2016, 66, 393–400. [Google Scholar] [CrossRef]
- Chandler, M.; See, L.; Copas, K.; Bonde, A.M.Z.; López, B.C.; Danielsen, F.; Legind, J.K.; Masinde, S.; Miller-Rushing, A.J.; Newman, G.; et al. Contribution of Citizen Science towards International Biodiversity Monitoring. Biol. Conserv. 2017, 213, 280–294. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty Years of Ecosystem Services: How Far Have We Come and How Far Do We Still Need to Go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Schröter, M.; Kraemer, R.; Mantel, M.; Kabisch, N.; Hecker, S.; Richter, A.; Neumeier, V.; Bonn, A. Citizen Science for Assessing Ecosystem Services: Status, Challenges and Opportunities. Ecosyst. Serv. 2017, 28, 80–94. [Google Scholar] [CrossRef]
- Pocock, M.J.O.; Tweddle, J.C.; Savage, J.; Robinson, L.D.; Roy, H.E. The Diversity and Evolution of Ecological and Environmental Citizen Science. PLoS ONE 2017, 12, e0172579. [Google Scholar] [CrossRef]
- Havinga, I.; Marcos, D.; Bogaart, P.; Massimino, D.; Hein, L.; Tuia, D. Social Media and Deep Learning Reveal Specific Cultural Preferences for Biodiversity. People Nat. 2023, 5, 981–998. [Google Scholar] [CrossRef]
- Ghermandi, A.; Sinclair, M. Passive Crowdsourcing of Social Media in Environmental Research: A Systematic Map. Glob. Environ. Chang. 2019, 55, 36–47. [Google Scholar] [CrossRef]
- August, T.A.; Pescott, O.L.; Joly, A.; Bonnet, P. AI Naturalists Might Hold the Key to Unlocking Biodiversity Data in Social Media Imagery. Patterns 2020, 1, 100116. [Google Scholar] [CrossRef]
- Sullivan, B.L.; Wood, C.L.; Iliff, M.J.; Bonney, R.E.; Fink, D.; Kelling, S. eBird: A Citizen-Based Bird Observation Network in the Biological Sciences. Biol. Conserv. 2009, 142, 2282–2292. [Google Scholar] [CrossRef]
- Nugent, J. iNaturalist: Citizen Science for 21st-Century Naturalists. Sci. Scope 2018, 41, 12–15. [Google Scholar] [CrossRef]
- Garcia-Rojas, M.I.; Keatley, M.R.; Roslan, N. Citizen Science and Expert Opinion Working Together to Understand the Impacts of Climate Change. PLoS ONE 2022, 17, e0273822. [Google Scholar] [CrossRef]
- Atsumi, K.; Nishida, Y.; Ushio, M.; Nishi, H.; Genroku, T.; Fujiki, S. Boosting Biodiversity Monitoring Using Smartphone-Driven, Rapidly Accumulating Community-Sourced Data. eLife 2024, 13, RP93694. [Google Scholar] [CrossRef]
- Jacobs, C.; Zipf, A. Completeness of Citizen Science Biodiversity Data from a Volunteered Geographic Information Perspective. Geo Spat. Inf. Sci. 2017, 20, 3–13. [Google Scholar] [CrossRef]
- Morschheuser, B.; Hamari, J.; Koivisto, J.; Maedche, A. Gamified Crowdsourcing: Conceptualization, Literature Review, and Future Agenda. Int. J. Hum. Comput. Stud. 2017, 106, 26–43. [Google Scholar] [CrossRef]
- Laato, S.; Tregel, T. Into the Unown: Improving Location-Based Gamified Crowdsourcing Solutions for Geo Data Gathering. Entertain. Comput. 2023, 46, 100575. [Google Scholar] [CrossRef]
- Hausmann, A.; Toivonen, T.; Slotow, R.; Tenkanen, H.; Moilanen, A.; Heikinheimo, V.; Di Minin, E. Social Media Data Can Be Used to Understand Tourists’ Preferences for Nature-Based Experiences in Protected Areas. Conserv. Lett. 2018, 11, e12343. [Google Scholar] [CrossRef]
- Lopez, B.; Minor, E.; Crooks, A. Insights into Human-Wildlife Interactions in Cities from Bird Sightings Recorded Online. Landsc. Urban Plan. 2020, 196, 103742. [Google Scholar] [CrossRef]
- Qian, X.; Lu, X.; Han, J.; Du, B.; Li, X. On Combining Social Media and Spatial Technology for POI Cognition and Image Localization. Proc. IEEE 2017, 105, 1937–1952. [Google Scholar] [CrossRef]
- Barve, V. Discovering and Developing Primary Biodiversity Data from Social Networking Sites: A Novel Approach. Ecol. Inform. 2014, 24, 194–199. [Google Scholar] [CrossRef]
- Walter, M.; Bagozzi, B.E.; Ajibade, I.; Mondal, P. Social Media Analysis Reveals Environmental Injustices in Philadelphia Urban Parks. Sci. Rep. 2023, 13, 12571. [Google Scholar] [CrossRef] [PubMed]
- Wartmann, F.M.; Baer, M.F.; Hegetschweiler, K.T.; Fischer, C.; Hunziker, M.; Purves, R.S. Assessing the Potential of Social Media for Estimating Recreational Use of Urban and Peri-Urban Forests. Urban For. Urban Green. 2021, 64, 127261. [Google Scholar] [CrossRef]
- Havinga, I.; Bogaart, P.W.; Hein, L.; Tuia, D. Defining and Spatially Modelling Cultural Ecosystem Services Using Crowdsourced Data. Ecosyst. Serv. 2020, 43, 101091. [Google Scholar] [CrossRef]
- Huai, S.; Chen, F.; Liu, S.; Canters, F.; Van de Voorde, T. Using Social Media Photos and Computer Vision to Assess Cultural Ecosystem Services and Landscape Features in Urban Parks. Ecosyst. Serv. 2022, 57, 101475. [Google Scholar] [CrossRef]
- Richards, D.R.; Friess, D.A. A Rapid Indicator of Cultural Ecosystem Service Usage at a Fine Spatial Scale: Content Analysis of Social Media Photographs. Ecol. Indic. 2015, 53, 187–195. [Google Scholar] [CrossRef]
- Fox, N.; Graham, L.J.; Eigenbrod, F.; Bullock, J.M.; Parks, K.E. Enriching Social Media Data Allows a More Robust Representation of Cultural Ecosystem Services. Ecosyst. Serv. 2021, 50, 101328. [Google Scholar] [CrossRef]
- Teles da Mota, V.; Pickering, C. Using Social Media to Assess Nature-Based Tourism: Current Research and Future Trends. J. Outdoor Recreat. Tour. 2020, 30, 100295. [Google Scholar] [CrossRef]
- Chan, K.M.A.; Guerry, A.D.; Balvanera, P.; Klain, S.; Satterfield, T.; Basurto, X.; Bostrom, A.; Chuenpagdee, R.; Gould, R.; Halpern, B.S.; et al. Where Are Cultural and Social in Ecosystem Services? A Framework for Constructive Engagement. Bioscience 2012, 62, 744–756. [Google Scholar] [CrossRef]
- van Zanten, B.T.; Van Berkel, D.B.; Meentemeyer, R.K.; Smith, J.W.; Tieskens, K.F.; Verburg, P.H. Continental-Scale Quantification of Landscape Values Using Social Media Data. Proc. Natl. Acad. Sci. USA 2016, 113, 12974–12979. [Google Scholar] [CrossRef] [PubMed]
- Nyelele, C.; Keske, C.; Chung, M.G.; Guo, H.; Egoh, B.N. Using Social Media Data and Machine Learning to Map Recreational Ecosystem Services. Ecol. Indic. 2023, 154, 110606. [Google Scholar] [CrossRef]
- Havinga, I.; Marcos, D.; Bogaart, P.W.; Hein, L.; Tuia, D. Social Media and Deep Learning Capture the Aesthetic Quality of the Landscape. Sci. Rep. 2021, 11, 20000. [Google Scholar] [CrossRef]
- Gugulica, M.; Burghardt, D. Mapping Indicators of Cultural Ecosystem Services Use in Urban Green Spaces Based on Text Classification of Geosocial Media Data. Ecosyst. Serv. 2023, 60, 101508. [Google Scholar] [CrossRef]
- Carlen, E.J.; Estien, C.O.; Caspi, T.; Perkins, D.; Goldstein, B.R.; Kreling, S.E.S.; Hentati, Y.; Williams, T.D.; Stanton, L.A.; Des Roches, S.; et al. A Framework for Contextualizing Social-ecological Biases in Contributory Science Data. People Nat. 2024, 6, 377–390. [Google Scholar] [CrossRef]
- Mancini, F.; Coghill, G.M.; Lusseau, D. Quantifying Wildlife Watchers’ Preferences to Investigate the Overlap between Recreational and Conservation Value of Natural Areas. J. Appl. Ecol. 2019, 56, 387–397. [Google Scholar] [CrossRef]
- Cabana, D.; Ryfield, F.; Crowe, T.P.; Brannigan, J. Evaluating and Communicating Cultural Ecosystem Services. Ecosyst. Serv. 2020, 42, 101085. [Google Scholar] [CrossRef]
- Dagan, D.T.; Wilkins, E.J. What Is “Big Data” and How Should We Use It? The Role of Large Datasets, Secondary Data, and Associated Analysis Techniques in Outdoor Recreation Research. J. Outdoor Recreat. Tour. 2023, 44, 100668. [Google Scholar] [CrossRef]
- Tenerelli, P.; Demšar, U.; Luque, S. Crowdsourcing Indicators for Cultural Ecosystem Services: A Geographically Weighted Approach for Mountain Landscapes. Ecol. Indic. 2016, 64, 237–248. [Google Scholar] [CrossRef]
- Vieira, F.A.S.; Bragagnolo, C.; Correia, R.A.; Malhado, A.C.M.; Ladle, R.J. A Salience Index for Integrating Multiple User Perspectives in Cultural Ecosystem Service Assessments. Ecosyst. Serv. 2018, 32, 182–192. [Google Scholar] [CrossRef]
- Schirpke, U.; Tasser, E.; Ebner, M.; Tappeiner, U. What Can Geotagged Photographs Tell Us about Cultural Ecosystem Services of Lakes? Ecosyst. Serv. 2021, 51, 101354. [Google Scholar] [CrossRef]
- Cardoso, A.S.; Renna, F.; Moreno-Llorca, R.; Alcaraz-Segura, D.; Tabik, S.; Ladle, R.J.; Vaz, A.S. Classifying the Content of Social Media Images to Support Cultural Ecosystem Service Assessments Using Deep Learning Models. Ecosyst. Serv. 2022, 54, 101410. [Google Scholar] [CrossRef]
- Lee, H.; Seo, B.; Koellner, T.; Lautenbach, S. Mapping Cultural Ecosystem Services 2.0—Potential and Shortcomings from Unlabeled Crowd Sourced Images. Ecol. Indic. 2019, 96, 505–515. [Google Scholar] [CrossRef]
- Santos Vieira, F.A.; Vinhas Santos, D.T.; Bragagnolo, C.; Campos-Silva, J.V.; Henriques Correia, R.A.; Jepson, P.; Mendes Malhado, A.C.; Ladle, R.J. Social Media Data Reveals Multiple Cultural Services along the 8.500 Kilometers of Brazilian Coastline. Ocean Coast. Manag. 2021, 214, 105918. [Google Scholar] [CrossRef]
- Levin, N.; Lechner, A.M.; Brown, G. An Evaluation of Crowdsourced Information for Assessing the Visitation and Perceived Importance of Protected Areas. Appl. Geogr. 2017, 79, 115–126. [Google Scholar] [CrossRef]
- Sprague, D.S. Land-Use Configuration under Traditional Agriculture in the Kanto Plain, Japan: A Historical GIS Analysis. Int. J. Geogr. Inf. Sci. 2013, 27, 68–91. [Google Scholar] [CrossRef]
- National Parks Association of Japan. Case Studies in the Development of Nature Sanctuary; National Parks Association of Japan: Tokyo, Japan, 1991. (In Japanese) [Google Scholar]
- Non-Profit Organization Ushiku Satoyama No Kai. Report on the Activities of Ushiku Nature Sanctuary in Fiscal Year 2015; Non-Profit Organization Ushiku Satoyama no Kai: Ushiku, Japan, 2016. (In Japanese) [Google Scholar]
- Munawir; Koerniawan, M.D.; Dewancker, B.J. Visitor Perceptions and Effectiveness of Place Branding Strategies in Thematic Parks in Bandung City Using Text Mining Based on Google Maps User Reviews. Sustain. Sci. Pract. Policy 2019, 11, 2123. [Google Scholar] [CrossRef]
- Ushiku City, Midori-ka, Sangyo-bu. Basic Plan Report for Ushuku Nature Sanctuary; Ushiku City, Midori-ka, Sangyo-bu: Ushiku, Japan, 1987. (In Japanese) [Google Scholar]
- Ushiku City, Midori-ka, Sangyo-bu. Environmental Survey Report of Ushuku Nature Sanctuary; Ushiku City, Midori-ka, Sangyo-bu: Ushiku, Japan, 1992. (In Japanese) [Google Scholar]
- Ibaraki Prefecture. Red-Data Book of Ibaraki Prefecture (Animals); Ibaraki Prefecture: Mito, Japan, 2016. (In Japanese) [Google Scholar]
- Komossa, F.; Wartmann, F.M.; Kienast, F.; Verburg, P.H. Comparing Outdoor Recreation Preferences in Peri-Urban Landscapes Using Different Data Gathering Methods. Landsc. Urban Plan. 2020, 199, 103796. [Google Scholar] [CrossRef]
- Schirpke, U.; Meisch, C.; Marsoner, T.; Tappeiner, U. Revealing Spatial and Temporal Patterns of Outdoor Recreation in the European Alps and Their Surroundings. Ecosyst. Serv. 2018, 31, 336–350. [Google Scholar] [CrossRef]
- Ghermandi, A. Geolocated Social Media Data Counts as a Proxy for Recreational Visits in Natural Areas: A Meta-Analysis. J. Environ. Manag. 2022, 317, 115325. [Google Scholar] [CrossRef]
- Tenkanen, H.; Di Minin, E.; Heikinheimo, V.; Hausmann, A.; Herbst, M.; Kajala, L.; Toivonen, T. Instagram, Flickr, or Twitter: Assessing the Usability of Social Media Data for Visitor Monitoring in Protected Areas. Sci. Rep. 2017, 7, 17615. [Google Scholar] [CrossRef] [PubMed]
- Plunz, R.A.; Zhou, Y.; Carrasco Vintimilla, M.I.; Mckeown, K.; Yu, T.; Uguccioni, L.; Sutto, M.P. Twitter Sentiment in New York City Parks as Measure of Well-Being. Landsc. Urban Plan. 2019, 189, 235–246. [Google Scholar] [CrossRef]
- Baumeister, C.F.; Gerstenberg, T.; Plieninger, T.; Schraml, U. Exploring Cultural Ecosystem Service Hotspots: Linking Multiple Urban Forest Features with Public Participation Mapping Data. Urban For. Urban Green. 2020, 48, 126561. [Google Scholar] [CrossRef]
- Dorwart, C.E.; Moore, R.L.; Leung, Y.-F. Visitors’ Perceptions of a Trail Environment and Effects on Experiences: A Model for Nature-Based Recreation Experiences. Leis. Sci. 2009, 32, 33–54. [Google Scholar] [CrossRef]
- Cranswick, A.S.; Constantine, R.; Hendriks, H.; Carroll, E.L. Social Media and Citizen Science Records Are Important for the Management of Rarely Sighted Whales. Ocean Coast. Manag. 2022, 226, 106271. [Google Scholar] [CrossRef]
- Santos, R.A.L.; Mota-Ferreira, M.; Aguiar, L.M.S.; Ascensão, F. Predicting Wildlife Road-Crossing Probability from Roadkill Data Using Occupancy-Detection Models. Sci. Total Environ. 2018, 642, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Bauder, J.M.; Cervantes, A.M.; Avrin, A.C.; Whipple, L.S.; Farmer, M.J.; Miller, C.A.; Benson, T.J.; Stodola, K.W.; Allen, M.L. Mismatched Spatial Scales Can Limit the Utility of Citizen Science Data for Estimating Wildlife-habitat Relationships. Ecol. Res. 2021, 36, 87–96. [Google Scholar] [CrossRef]
- Schmeller, D.S.; Henry, P.-Y.; Julliard, R.; Gruber, B.; Clobert, J.; Dziock, F.; Lengyel, S.; Nowicki, P.; Déri, E.; Budrys, E.; et al. Advantages of Volunteer-Based Biodiversity Monitoring in Europe. Conserv. Biol. 2009, 23, 307–316. [Google Scholar] [CrossRef]
Classifications Based on Biology | The Place Where the Photos Were Taken | Number of Photos | Number of Species (Native) | Primary Species Name in the Classification | |
---|---|---|---|---|---|
Flora | Arbors | Outdoor | 63 | 9 (9) | Japanese oak, Japanese cedar, and cherry blossom |
Shrubs | Outdoor | 149 | 17 * (17) | Japanese spindle tree, Japanese beautyberry, and Japanese plum | |
Herbaceous plants | Outdoor | 47 | 32 * (30) | Golden orchid, Japanese kerria, and silver grass | |
Other plants | Outdoor | 4 | 2 * (2) | Bryophyte | |
Indoor plants | Indoor | 6 | 3 * (3) | Ferns and other plants for the nature aquarium | |
Fauna | Insects | Outdoor | 9 | 7 (6) | Walking stick, Chinese windmill, and red ring skirt |
Indoor | 4 | 3 (3) | Predaceous diving beetles in aquarium and hornet specimens | ||
Shellfishes | Indoor | 5 | 4 (3) | Amano shrimp, red swamp crawfish and Japanese freshwater crab | |
Amphibians | Outdoor | 4 | 3 (3) | Japanese tree frog, and Tokyo daruma pond frog | |
Indoor | 17 | 2 (2) | Japanese common toad and Japanese newt | ||
Reptiles | Indoor | 21 | 2 (2) | Reeves’ pond turtle and Japanese pond turtle | |
Fishes | Indoor | 22 | 6 (6) | Japanese eel, Amur catfish, and oriental weatherfish | |
Birds & mammals | Outdoor | 12 | 5 * (4) | Common kingfisher, owl, and free-roaming cat | |
Indoor | 2 | 2 (2) | Raccoon dog specimens |
Cluster Name | LL | LS | SL | SS |
---|---|---|---|---|
Interpretation of cluster members | Contributors who post many photos in the Ushiku Nature Sanctuary and frequently post in different locations on Google Maps. | Contributors who post many photos in the Ushiku Nature Sanctuary but rarely post on Google Maps. | Contributors who post a few photos in the Ushiku Nature Sanctuary but frequently post in different locations on Google Maps. | Contributors who post a few photos in the Ushiku Nature Sanctuary and rarely post on Google Maps. |
Number of contributors classified in the cluster | 21 | 24 | 13 | 78 |
Total number of photos in the cluster | 584 | 259 | 43 | 180 |
Number of photos posted per person | 27.8 | 10.8 | 3.31 | 2.31 |
Number of check-ins per person | 2.05 | 1.71 | 1.15 | 1.17 |
Google Maps posting performance per person | 68,963 | 3472 | 22,893 | 2105 |
Cluster Name | LL | LS | SL | SS | Total | |||||
---|---|---|---|---|---|---|---|---|---|---|
Number of check-ins | First time | Second and subsequent times | First time | Second and subsequent times | First time | Second and subsequent times | First time | Second and subsequent times | First time | Second and subsequent times |
Number of contributors | 21 | 10 | 24 | 9 | 13 | 2 | 78 | 10 | 136 | 31 |
Total number of photos | 310 | 274 | 194 | 65 | 41 | 2 | 162 | 18 | 707 | 359 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jingu, S.; Ogawa, Y.; Yamaki, K.; Miyamoto, A.; Takayama, N. Social Media as a Lens for Citizen Science: Investigating Visitor Contributions in a Forest Recreational Area. Sustainability 2024, 16, 5804. https://doi.org/10.3390/su16135804
Jingu S, Ogawa Y, Yamaki K, Miyamoto A, Takayama N. Social Media as a Lens for Citizen Science: Investigating Visitor Contributions in a Forest Recreational Area. Sustainability. 2024; 16(13):5804. https://doi.org/10.3390/su16135804
Chicago/Turabian StyleJingu, Shoma, Yui Ogawa, Kazushige Yamaki, Asako Miyamoto, and Norimasa Takayama. 2024. "Social Media as a Lens for Citizen Science: Investigating Visitor Contributions in a Forest Recreational Area" Sustainability 16, no. 13: 5804. https://doi.org/10.3390/su16135804
APA StyleJingu, S., Ogawa, Y., Yamaki, K., Miyamoto, A., & Takayama, N. (2024). Social Media as a Lens for Citizen Science: Investigating Visitor Contributions in a Forest Recreational Area. Sustainability, 16(13), 5804. https://doi.org/10.3390/su16135804