Effect of Brassinolide on Stoichiometric Stability Characteristics of Tall Fescue under Drought Stress in Ecological Restoration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design
2.3. Test Methods
2.4. Data Analysis
3. Results
3.1. Effect of BR on Biomass of Tall Fescue under Drought Stress
3.2. Effect of BR on Proline of Tall Fescue under Drought Stress
3.3. Effect of BR on Carbon Content of Tall Fescue under Drought Stress
3.4. Effect of BR on Nitrogen Content of Tall Fescue under Drought Stress
3.5. Effect of BR on Nitrogen Content of Tall Fescue under Drought Stress
3.6. Effect of BR on Nitrogen Content of Tall Fescue under Drought Stress
3.7. Effect of BR on Internal Stability Characteristics of Tall Fescue under Drought Stress
3.8. Correlation Analysis of Tall Fescue Biomass, Proline Content, Aboveground and Underground Carbon, Nitrogen and Phosphorus Content and Their Metrology Ratios
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Faiz, H.; Ng, S.; Rahman, M. A state-of-the-art review on the advancement of sustainable vegetation concrete in slope stability. Constr. Build. Mater. 2022, 326, 126502. [Google Scholar] [CrossRef]
- Xiong, M.; Huang, Y. A review of time-dependent reliability analyses of slopes: Research progress, influencing factors, and future research directions. Transp. Geotech. 2022, 37, 100867. [Google Scholar] [CrossRef]
- Li, M.; Dong, W.; Wang, R.; Li, Q.; Xu, W.; Xia, Z.; Xiao, H.; Geng, Q. Ecological stoichiometric changes and the synergistic restoration of vegetation concrete restoration systems under different precipitation conditions. Water 2022, 14, 2558. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, B.; Yang, Y.; Xu, W.; Ding, Y.; Xia, Z. Effect of organic material type and proportion on the physical and mechanical properties of vegetation-concrete. Adv. Mater. Sci. Eng. 2018, 2018, 3608750. [Google Scholar] [CrossRef]
- Liu, B.; Yu, P.; Zhang, X.; Li, J.; Yu, Y.; Wan, Y.; Wang, Y.; Wang, X.; Liu, Z.; Pan, L.; et al. Transpiration sensitivity to drought in Quercus wutaishansea mary forests on shady and sunny slopes in the liupan mountains, Northwestern China. Forests 2022, 13, 1999. [Google Scholar] [CrossRef]
- Quinton, J.N.; Fiener, P. Tilling soils on slopes makes crop production and soils more vulnerable to drought. Nat. Food 2022, 3, 497–498. [Google Scholar] [CrossRef]
- Abdelaal, K.; AlKahtani, M.; Attia, K.; Hafez, Y.; Király, L.; Künstler, A. The role of plant growth-promoting bacteria in alleviating the adverse effects of drought on plants. Biology 2021, 10, 520. [Google Scholar] [CrossRef]
- Roldán-Cañas, J.; Moreno-Pérez, M.F. Water and irrigation management in arid and semiarid zones. Water 2021, 13, 2446. [Google Scholar] [CrossRef]
- Shu, Q.; Xia, D.; Ma, Y.; Zhang, Y.; Luo, T.; Ma, J.; Liu, F.; Yan, S.; Liu, D. Response of physiological characteristics of ecological restoration plants to substrate cement content under exogenous arbuscular mycorrhizal fungal inoculation. Front. Plant Sci. 2022, 13, 1028553. [Google Scholar] [CrossRef]
- Gong, Z.; Xiong, L.; Shi, H.; Yang, S.; Herrera-Estrella, L.R.; Xu, G.; Chao, D.-Y.; Li, J.; Wang, P.-Y.; Qin, F.; et al. Plant abiotic stress response and nutrient use efficiency. Sci. China Life Sci. 2020, 63, 635–674. [Google Scholar] [CrossRef]
- Nolan, T.M.; Vukašinović, N.; Liu, D.; Russinova, E.; Yin, Y. Brassinosteroids: Multidimensional regulators of plant growth, development, and stress responses. Plant Cell 2020, 32, 295–318. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Liu, Y.; Shi, B.; Yuan, H. Exogenous IAA improves the seedling growth of Syringa villosa via regulating the endogenous hormones and enhancing the photosynthesis. Sci. Hortic. 2023, 308, 111585. [Google Scholar] [CrossRef]
- Sheng, J.; Li, X.; Zhang, D. Gibberellins, brassinolide, and ethylene signaling were involved in flower differentiation and development in Nelumbo nucifera. Hortic. Plant J. 2022, 8, 243–250. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Z.; Yang, Y.; Li, M.; Xu, B. Abscisic acid and brassinolide combined application synergistically enhances drought tolerance and photosynthesis of tall fescue under water stress. Sci. Hortic. 2018, 228, 1–9. [Google Scholar] [CrossRef]
- Li, C.; Lu, X.; Liu, Y.; Xu, J.; Yu, W. Trehalose alleviates the inhibition of adventitious root formation caused by drought stress in cucumber through regulating ROS metabolism and activating trehalose and plant hormone biosynthesis. Plant Physiol. Biochem. 2023, 205, 108159. [Google Scholar] [CrossRef] [PubMed]
- He, R.; He, M.; Xu, H.; Zhang, K.; Zhang, M.; Ren, D.; Li, Z.; Zhou, Y.; Duan, L. A novel plant growth regulator brazide improved maize water productivity in the arid region of Northwest China. Agric. Water Manag. 2023, 287, 108441. [Google Scholar] [CrossRef]
- Niu, K.; Zhu, R.; Wang, Y.; Zhao, C.; Ma, H. 24-epibrassinolide improves cadmium tolerance and lateral root growth associated with regulating endogenous auxin and ethylene in Kentucky bluegrass. Ecotoxicol. Environ. Saf. 2023, 249, 114460. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, Y.; Chen, H.; Xiang, J.; Zhang, Y.; Wang, Z.; Zhu, D.; Zhang, Y. Brassinosteroids mediate endogenous phytohormone metabolism to alleviate high temperature injury at panicle initiation stage in rice. Rice Sci. 2023, 30, 70–86. [Google Scholar] [CrossRef]
- Ali, B. Practical applications of brassinosteroids in horticulture—Some field perspectives. Sci. Hortic. 2017, 225, 15–21. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Wang, S.; Jiang, C.; Cui, Y.; Fan, R.; Lan, Y.; Zhang, Q.; Ye, S. Tree–litter–soil system C:N:P stoichiometry and tree organ homeostasis in mixed and pure Chinese fir stands in south subtropical China. Front. For. Glob. Chang. 2024, 7, 1293439. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Wang, L.; Duan, Y.; Cao, W.; Wang, X.; Li, Y. Heterogeneity of leaf stoichiometry of different life forms along environmental transects in typical ecologically fragile areas of China. Sci. Total Environ. 2024, 910, 168495. [Google Scholar] [CrossRef]
- Song, Z.; Zuo, X.; Zhao, X.; Qiao, J.; Ya, H.; Li, X.; Yue, P.; Chen, M.; Wang, S.; Medina-Roldán, E. Plant functional traits mediate the response magnitude of plant-litter-soil microbial C: N: P stoichiometry to nitrogen addition in a desert steppe. Sci. Total Environ. 2024, 915, 169915. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, M.R.; Primeau, F.W.; Hagstrom, G.I.; Wang, W.; Martiny, A.C. Integrating Trait-based stoichiometry in a biogeochemical inverse model reveals links between phytoplankton physiology and global carbon export. Glob. Biogeochem. Cycles 2024, 38, e2023GB007986. [Google Scholar] [CrossRef]
- Gao, W.; Ma, T.; Shi, B.; Yang, Z.; Li, Y.; Zhu, J.; He, J.-S. Effects of nitrogen and phosphorus addition on the mineralization potential of soil organic carbon and the corresponding regulations in the Tibetan alpine grassland. Appl. Soil Ecol. 2024, 196, 105314. [Google Scholar] [CrossRef]
- Fetzer, J.; Moiseev, P.; Frossard, E.; Kaiser, K.; Mayer, M.; Gavazov, K.; Hagedorn, F. Plant–soil interactions alter nitrogen and phosphorus dynamics in an advancing subarctic treeline. Glob. Chang. Biol. 2024, 30, e17200. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Pu, L.; Li, B.; Xu, Y.; Kong, F. Coupling mechanism of C:N:P stoichiometry between plant and soil after long-term reclamation in the coastal area, eastern China. Reg. Stud. Mar. Sci. 2023, 68, 103178. [Google Scholar] [CrossRef]
- Jing, G.; Hu, T.; Liu, J.; Cheng, J.; Li, W. Biomass estimation, nutrient accumulation, and stoichiometric characteristics of dominant tree species in the semi-arid region on the loess plateau of China. Sustainability 2020, 12, 339. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, L.; Liu, Y.; Sun, J.; Xiao, J.; Dong, Q.; Li, L.; Zhang, W.; Wang, C.; Wu, J. Effects of drought on non-structural carbohydrates and C, N, and P stoichiometric characteristics of Pinus yunnanensis seedlings. J. For. Res. 2024, 35, 12. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, C.; Chen, S.; Zhang, Y.; Yu, T.; Xue, X.; Wu, L.; Zhou, W.; Yun, X.; Yan, R.; et al. Moderate grazing increased carbon, nitrogen and phosphorus storage in plants and soil in the Eurasian meadow steppe ecosystem. Sci. Total Environ. 2024, 914, 169864. [Google Scholar] [CrossRef]
- Qin, R.; Wei, J.; Ma, L.; Zhang, Z.; She, Y.; Su, H.; Chang, T.; Xie, B.; Li, H.; Wang, W.; et al. Effects of Pedicularis kansuensis expansion on plant community characteristics and soil nutrients in an alpine grassland. Plants 2022, 11, 1673. [Google Scholar] [CrossRef]
- Bao, S.A. Soil and Agricultural Chemistry Analysis; China Agriculture Press: Beijing, China, 2000; pp. 264–270. [Google Scholar]
- Bayram, N.E.; Kutlu, N.; Gercek, Y.C. Utilization of response surface methodology in optimization of proline extraction from Castanea sativa honey. Chem. Biodivers. 2023, 20, e202201092. [Google Scholar] [CrossRef] [PubMed]
- Harris, G. Ecological Stoichiometry: Biology of elements from molecules to the biosphere.: Sterner, R.W. and Elser, J.J. (2002) Princeton University Press, Princeton, NJ, USA. $29.95. ISSN 0-691-07491-7. J. Plankton Res. 2003, 25, 1183. [Google Scholar] [CrossRef]
- Peng, C.; Tu, J.; Yang, M.; Meng, Y.; Li, M.; Ai, W. Root stoichiometric dynamics and homeostasis of invasive species Phyllostachys edulis and native species Cunninghamia lanceolata in a subtropical forest in China. J. For. Res. 2021, 32, 2001–2010. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, D.; Zhang, Y.; Du, Y.; Wang, M.; Liu, J.; Chu, J.; Yao, X. Brassinolide alleviated drought stress faced by bulbil formation of Pinellia ternata by reducing ROS metabolism and enhancing AsA-GSH cycle. Sci. Hortic. 2024, 323, 112525. [Google Scholar] [CrossRef]
- Anjum, S.A.; Wang, L.C.; Farooq, M.; Hussain, M.; Xue, L.L.; Zou, C.M. Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J. Agron. Crop Sci. 2011, 197, 177–185. [Google Scholar] [CrossRef]
- Wang, X.; Sun, H.; Tan, C.; Wang, X.; Xia, M. Effects of film mulching on plant growth and nutrients in artificial soil: A case study on high altitude slopes. Sustainability 2021, 13, 11026. [Google Scholar] [CrossRef]
- Kebert, M.; Kostić, S.; Stojnić, S.; Čapelja, E.; Markić, A.G.; Zorić, M.; Kesić, L.; Flors, V. A fine-tuning of the plant hormones, polyamines and osmolytes by ectomycorrhizal fungi enhances drought tolerance in pedunculate oak. Int. J. Mol. Sci. 2023, 24, 7510. [Google Scholar] [CrossRef] [PubMed]
- Lone, W.A.; Majeed, N.; Yaqoob, U.; John, R. Exogenous brassinosteroid and jasmonic acid improve drought tolerance in Brassica rapa L. genotypes by modulating osmolytes, antioxidants and photosynthetic system. Plant Cell Rep. 2021, 41, 603–617. [Google Scholar] [CrossRef]
- Dey, N.; Bhattacharjee, S. Accumulation of polyphenolic compounds and osmolytes under dehydration stress and their implication in redox regulation in four indigenous aromatic rice cultivars. Rice Sci. 2020, 27, 329–344. [Google Scholar] [CrossRef]
- Mohammadi, H.; Akhondzadeh, M.; Ghorbanpour, M.; Aghaee, A. Physiological responses and secondary metabolite ingredients in sage plants induced by 24-epibrassinolide foliar application under different water deficit regimes. Sci. Hortic. 2020, 263, 109139. [Google Scholar] [CrossRef]
- Persson, J.; Fink, P.; Goto, A.; Hood, J.M.; Jonas, J.; Kato, S. To be or not to be what you eat: Regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos 2010, 119, 741–751. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, X.; Yang, H.; Lu, D. Effects of exogenous brassinolide application at the silking stage on nutrient accumulation, translocation and remobilization of waxy maize under post-silking heat stress. Agriculture 2022, 12, 572. [Google Scholar] [CrossRef]
- Silva, A.L.J.; Ferreira, V.M.; dos Santos, C.M.; dos Santos, J.V.; de Moura Barros, J.M.T.; Barbosa, W.S.d.S.; Barrozo, M.A.d.S.; Endres, L.; Justino, G.C. 24-Epibrassinolide promotes activation of physiological compensation mechanisms in response to drought stress and rehydration and improves yield in soybean. J. Agron. Crop Sci. 2022, 209, 355–370. [Google Scholar] [CrossRef]
- Yang, P.M.; Yang, R.J.; He, S.T. Improving photosynthesis and the ascorbate-glutathione cycle of own-root and grafted-root chrysanthemums by brassinolide under drought stress. Hortic. Sci. 2024, 51, 59–67. [Google Scholar] [CrossRef]
- Otie, V.; Udo, I.; Shao, Y.; Itam, M.O.; Okamoto, H.; An, P.; Eneji, E.A. Salinity effects on morpho-physiological and yield traits of soybean (Glycine max L.) as mediated by foliar spray with brassinolide. Plants 2021, 10, 541. [Google Scholar] [CrossRef] [PubMed]
- Riboldi, L.B.; Dias, R.Z.; de Camargo E Castro, P.R.; de Freitas, S.T. 2,4-Epibrassinolide mechanisms regulating water use efficiency and fruit production in tomato plants. Braz. J. Bot. 2021, 44, 617–627. [Google Scholar] [CrossRef]
- Wani, A.S.; Tahir, I.; Ahmad, S.S.; Dar, R.A.; Nisar, S. Efficacy of 24-epibrassinolide in improving the nitrogen metabolism and antioxidant system in chickpea cultivars under cadmium and/or NaCl stress. Sci. Hortic. 2017, 225, 48–55. [Google Scholar] [CrossRef]
- Yaseen, M.; Ahmad, A.; Younas, N.; Naveed, M.; Ali, M.A.; Shah, S.S.H.; Hasnain, M.; Mustafa, A. Value-added fertilizers enhanced growth, yield and nutrient use efficiency through reduced ammonia volatilization losses under maize–rice cropping cultivation. Sustainability 2023, 15, 2021. [Google Scholar] [CrossRef]
- Cheng, L.; Li, M.; Min, W.; Wang, M.; Chen, R.; Wang, W. Optimal brassinosteroid levels are required for soybean growth and mineral nutrient homeostasis. Int. J. Mol. Sci. 2021, 22, 8400. [Google Scholar] [CrossRef]
- Jiang, J.; Lu, Y.; Chen, B.; Ming, A.; Pang, L. Nutrient resorption and C:N:P stoichiometry responses of a Pinus massoniana plantation to various thinning intensities in Southern China. Forests 2022, 13, 1699. [Google Scholar] [CrossRef]
- Gong, Z.; Sheng, M.; Zheng, X.; Zhang, Y.; Wang, L. Ecological stoichiometry of C, N, P and Si of Karst Masson pine forests: Insights for the forest management in southern China. Sci. Total Environ. 2024, 912, 169490. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.-H.; Wang, Y.; Zhong, X.-P. Ecological stoichiometric characteristics of carbon, nitrogen and phosphorus of different plant functional groups in northwestern Guizhou province, China. Pak. J. Bot. 2023, 55, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fu, F.; Li, J.; Chen, W.; Ding, H.; Xiao, S. Stoichiometric characteristics of Abies georgei var. smithii plants in southeast tibet. Sustainability 2023, 15, 8458. [Google Scholar] [CrossRef]
- Viciedo, D.O.; de Mello Prado, R.; Martínez, C.A.; Habermann, E.; de Cassia Piccolo, M. Short-term warming and water stress affect Panicum maximum Jacq. stoichiometric homeostasis and biomass production. Sci. Total Environ. 2019, 681, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Wu, Y.; Fan, J.; Zhang, F.; Guo, J.; Zheng, J.; Wu, L.; Lu, J. Quantifying nutrient stoichiometry and radiation use efficiency of two maize cultivars under various water and fertilizer management practices in northwest China. Agric. Water Manag. 2022, 271, 107772. [Google Scholar] [CrossRef]
- Yu, Q.; Chen, Q.; Elser, J.J.; He, N.; Wu, H.; Zhang, G.; Wu, J.; Bai, Y.; Han, X. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecol. Lett. 2010, 13, 1390–1399. [Google Scholar] [CrossRef]
- Li, Y.; Li, Q.; Guo, D.; Liang, S.; Wang, Y. Ecological stoichiometry homeostasis of Leymus chinensis in degraded grassland in western Jilin Province, NE China. Ecol. Eng. 2016, 90, 387–391. [Google Scholar] [CrossRef]
Drought | Facter | Aboveground Biomass | Belowground Biomass | ||||
---|---|---|---|---|---|---|---|
30d | 60d | 90d | 30d | 60d | 90d | ||
WW | CK | 18.42 ± 1.87Aa | 24.96 ± 1.84Aa | 28.11 ± 0.86Ab | 15.43 ± 0.93Aa | 15.72 ± 1.23Aab | 15.72 ± 1.10Ab |
series1 | 19.69 ± 1.80Aa | 27.40 ± 1.90Aa | 30.70 ± 1.87Aab | 16.23 ± 0.67Aa | 16.60 ± 1.46Aab | 16.93 ± 1.46Aab | |
series2 | 20.22 ± 1.04Aa | 26.55 ± 1.87Aa | 31.55 ± 1.90Aa | 15.64 ± 0.54Aa | 17.49 ± 1.37Aa | 18.16 ± 0.85Aa | |
series3 | 18.26 ± 1.46Aa | 25.88 ± 1.97Aa | 28.03 ± 1.13Ab | 13.08 ± 1.70Ab | 14.26 ± 1.18Ab | 15.59 ± 0.92Ab | |
LD | CK | 12.56 ± 1.42Bb | 20.41 ± 1.65Bab | 22.90 ± 0.72Bb | 10.63 ± 1.16Ba | 10.95 ± 1.37Ba | 12.54 ± 1.32Bb |
series1 | 13.19 ± 1.69Bb | 21.95 ± 1.16Ba | 24.11 ± 1.30Bab | 10.73 ± 1.07Ba | 11.60 ± 1.31Ba | 12.75 ± 0.75Ba | |
series2 | 16.17 ± 1.55Ba | 22.54 ± 1.28Ba | 26.28 ± 1.47Ba | 11.26 ± 0.84Ba | 12.90 ± 0.58Ba | 15.05 ± 1.14Ba | |
series3 | 18.25 ± 1.21Aa | 18.78 ± 1.98Bb | 25.37 ± 1.55Bab | 11.90 ± 1.40Aa | 12.31 ± 1.06Aa | 13.79 ± 0.69Bab | |
SD | CK | 7.95 ± 0.28Ca | 12.22 ± 1.20Ca | 19.24 ± 0.48Ab | 6.09 ± 0.65Ca | 6.58 ± 0.54Cb | 7.69 ± 0.23Cb |
series1 | 8.87 ± 1.51Ca | 12.55 ± 1.25Ca | 22.24 ± 0.50Ba | 6.31 ± 0.55Ca | 7.94 ± 0.30Cab | 8.72 ± 0.62Ca | |
series2 | 9.64 ± 1.16Ca | 13.26 ± 1.62Ca | 21.71 ± 1.91Ca | 5.88 ± 0.52Ca | 8.25 ± 1.03Ba | 7.32 ± 0.33Cb | |
series3 | 9.24 ± 0.37Ba | 12.46 ± 1.06Ca | 20.01 ± 1.17Cab | 5.49 ± 0.27Ba | 7.07 ± 0.85Aa | 7.08 ± 0.71Cb |
Index | Drought Duration | Drought Degree | Brassinolide Concentration | Drought Duration*Drought Degree | Drought Duration*Brassinolide Concentration | Drought Degree*Brassinolide Concentration | Drought Duration*Drought Degree*Brassinolide Concentration | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F Value | p Value | F Value | p Value | F Value | p Value | F Value | p Value | F Value | p Value | F Value | p Value | F Value | p Value | ||
Carbon | A | 55.497 | <0.001 | 16.529 | <0.001 | 33.769 | <0.001 | 56.591 | <0.001 | 15.903 | <0.001 | 29.475 | <0.001 | 15.231 | <0.001 |
B | 98.127 | <0.001 | 81.123 | <0.001 | 15.320 | <0.001 | 80.083 | <0.001 | 5.284 | <0.001 | 13.252 | <0.001 | 22.377 | <0.001 | |
Nitrogen | A | 315.868 | <0.001 | 314.877 | <0.001 | 29.108 | <0.001 | 18.708 | <0.001 | 14.079 | <0.001 | 56.275 | <0.001 | 63.480 | <0.001 |
B | 841.029 | <0.001 | 531.641 | <0.001 | 56.475 | <0.001 | 124.314 | <0.001 | 23.464 | <0.001 | 177.944 | <0.001 | 73.259 | <0.001 | |
Phosphorus | A | 15.188 | <0.001 | 26.040 | <0.001 | 14.079 | <0.001 | 2.136 | 0.085 | 4.220 | 0.001 | 3.833 | 0.002 | 3.271 | 0.001 |
B | 1297.468 | <0.001 | 27.195 | <0.001 | 16.035 | <0.001 | 10.359 | <0.001 | 7.006 | <0.001 | 74.429 | <0.001 | 7.009 | <0.001 | |
C/N | A | 348.527 | <0.001 | 306.940 | <0.001 | 96.538 | <0.001 | 92.816 | <0.001 | 29.949 | <0.001 | 64.017 | <0.001 | 58.337 | <0.001 |
B | 121.398 | <0.001 | 46.302 | <0.001 | 6.381 | 0.001 | 58.067 | 0.001 | 15.189 | <0.001 | 55.842 | <0.001 | 41.086 | <0.001 | |
C/P | A | 15.571 | <0.001 | 39.909 | <0.001 | 31.168 | <0.001 | 16.133 | <0.001 | 10.099 | <0.001 | 3.923 | 0.002 | 8.478 | <0.001 |
B | 161.970 | <0.001 | 14.478 | <0.001 | 4.449 | 0.006 | 13.758 | 0.006 | 2.920 | 0.013 | 21.890 | <0.001 | 9.166 | <0.001 | |
N/P | A | 152.367 | <0.001 | 22.283 | <0.001 | 2.721 | 0.051 | 4.308 | 0.004 | 13.190 | <0.001 | 22.340 | <0.001 | 23.418 | <0.001 |
B | 137.177 | <0.001 | 70.053 | <0.001 | 14.384 | <0.001 | 11.768 | <0.001 | 3.666 | 0.003 | 59.099 | <0.001 | 17.008 | <0.001 | |
Biomass | A | 491.807 | <0.001 | 514.315 | <0.001 | 12.571 | <0.001 | 10.885 | <0.001 | 2.363 | 0.039 | 1.891 | 0.094 | 1.958 | 0.041 |
B | 33.400 | <0.001 | 737.660 | <0.001 | 10.124 | <0.001 | 1.747 | 0.149 | 1.168 | 0.333 | 0.333 | <0.001 | 0.779 | 0.669 | |
Proline | 3914.07 | <0.001 | 1417.11 | <0.001 | 44.715 | <0.001 | 141.056 | <0.001 | 4.968 | <0.001 | 7.803 | <0.001 | 7.766 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, R.; Li, M.; Guo, S.; Xia, D.; Liu, L.; Dong, W.; Xu, W.; Lv, Y. Effect of Brassinolide on Stoichiometric Stability Characteristics of Tall Fescue under Drought Stress in Ecological Restoration. Sustainability 2024, 16, 5942. https://doi.org/10.3390/su16145942
Kang R, Li M, Guo S, Xia D, Liu L, Dong W, Xu W, Lv Y. Effect of Brassinolide on Stoichiometric Stability Characteristics of Tall Fescue under Drought Stress in Ecological Restoration. Sustainability. 2024; 16(14):5942. https://doi.org/10.3390/su16145942
Chicago/Turabian StyleKang, Roujia, Mingyi Li, Shiwei Guo, Dong Xia, Liming Liu, Wenhao Dong, Wennian Xu, and Yucai Lv. 2024. "Effect of Brassinolide on Stoichiometric Stability Characteristics of Tall Fescue under Drought Stress in Ecological Restoration" Sustainability 16, no. 14: 5942. https://doi.org/10.3390/su16145942
APA StyleKang, R., Li, M., Guo, S., Xia, D., Liu, L., Dong, W., Xu, W., & Lv, Y. (2024). Effect of Brassinolide on Stoichiometric Stability Characteristics of Tall Fescue under Drought Stress in Ecological Restoration. Sustainability, 16(14), 5942. https://doi.org/10.3390/su16145942