Recycling Agricultural Waste to Enhance Sustainable Greenhouse Agriculture: Analyzing the Cost-Effectiveness and Agronomic Benefits of Bokashi and Biochar Byproducts as Soil Amendments in Citrus Nursery Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cost–Benefit Analysis Approach
2.2. Nitrogen, Phosphorus, and Potassium Data
2.3. Irrigation and Water Content Data
2.4. Germination and Seedling Growth Data
2.5. Total C Changes in the Potting Soil
2.6. Economic Analysis of Treatments: Costs and Benefits
3. Results
3.1. Nitrogen
3.2. Phosphorus
3.3. Potassium
3.4. Water Content and Water Irrigation Labor
3.5. Germination and Seedling Growth Data
3.6. Carbon Sequestration
3.7. Total Benefits
3.8. Difference in Net Benefits between Treatments and Control
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kazimierczuk, K.; Barrows, S.E.; Olarte, M.V.; Qafoku, N.P. Decarbonization of Agriculture: The Greenhouse Gas Impacts and Economics of Existing and Emerging Climate-Smart Practices. ACS Eng. Au 2023, 3, 426–442. [Google Scholar] [CrossRef] [PubMed]
- Greenhouse Gas Reduction in Agriculture. Available online: https://www.iaea.org/topics/greenhouse-gas-reduction (accessed on 12 March 2024).
- Chai, R.; Ye, X.; Ma, C.; Wang, Q.; Tu, R.; Zhang, L.; Gao, H. Greenhouse Gas Emissions from Synthetic Nitrogen Manufacture and Fertilization for Main Upland Crops in China. Carbon Bal. Manag. 2019, 14, 20. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Dissanayake, P.D.; Igalavithana, A.D.; Tang, R.; Cai, Y.; Chang, S.X. Converting Food Waste into Soil Amendments for Improving Soil Sustainability and Crop Productivity: A Review. Sci. Total Environ. 2023, 881, 163311. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Espinosa, T.; Navarro-Pedreño, J.; Gómez Lucas, I.; Almendro Candel, M.B.; Pérez Gimeno, A.; Zorpas, A.A. Soluble Elements Released from Organic Wastes to Increase Available Nutrients for Soil and Crops. Appl. Sci. 2023, 13, 1151. [Google Scholar] [CrossRef]
- Babcock-Jackson, L.; Konovalova, T.; Krogman, J.P.; Bird, R.; Díaz, L.L. Sustainable Fertilizers: Publication Landscape on Wastes as Nutrient Sources, Wastewater Treatment Processes for Nutrient Recovery, Biorefineries, and Green Ammonia Synthesis. J. Agric. Food Chem. 2023, 71, 8265–8296. [Google Scholar] [CrossRef] [PubMed]
- Composting. Available online: https://www.epa.gov/sustainable-management-food/composting (accessed on 12 March 2024).
- Bossolani, J.W.; Leite, M.F.; Momesso, L.; Ten Berge, H.; Bloem, J.; Kuramae, E.E. Nitrogen Input on Organic Amendments Alters the Pattern of Soil–Microbe-Plant Co-Dependence. Sci. Total Environ. 2023, 890, 164347. [Google Scholar] [CrossRef] [PubMed]
- Lazicki, P.; Geisseler, D.; Lloyd, M. Nitrogen Mineralization from Organic Amendments is Variable but Predictable. J. Environ. Qual. 2020, 49, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, M.; Sinha, N.K.; Reddy, K.S.; Chaudhary, R.S.; Rao, A.S.; Dalal, R.C.; Menzies, N.W. How Important is the Quality of Organic Amendments in Relation to Mineral N Availability in Soils? Agric. Res. 2013, 2, 99–110. [Google Scholar] [CrossRef]
- Waqas, M.; Hashim, S.; Humphries, U.W.; Ahmad, S.; Noor, R.; Shoaib, M.; Naseem, A.; Hlaing, P.T.; Lin, H.A. Composting Processes for Agricultural Waste Management: A Comprehensive Review. Processes 2023, 11, 731. [Google Scholar] [CrossRef]
- Cucina, M. Integrating Anaerobic Digestion and Composting to Boost Energy and Material Recovery from Organic Wastes in the Circular Economy Framework in Europe: A Review. Bioresour. Technol. Rep. 2023, 24, 101642. [Google Scholar] [CrossRef]
- Balasubramani, R.; Awasthi, M.K.; Varjani, S.; Karmegam, N. Aerobic and Anaerobic Digestion of Agro-Industrial and Livestock Wastes: A Green and Sustainable Way Toward the Future. Agronomy 2023, 13, 2607. [Google Scholar] [CrossRef]
- Bernal, M.P.; Alburquerque, J.A.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.P.; Kammann, C.; Hagemann, N.; Leifeld, J.; Bucheli, T.D.; Sánchez Monedero, M.A.; Cayuela, M.L. Biochar in agriculture–A systematic review of 26 global meta-analyses. GCB Bioenergy 2021, 13, 1708–1730. [Google Scholar] [CrossRef]
- Bhat, S.; Kuriqi, A.; Dar, M.; Bhat, O.; Sammen, S.; Islam, A.; Elbeltagi, A.; Shah, O.; AI-Ansari, N.; Ali, R.; et al. Application of Biochar for Improving Physical, Chemical, and Hydrological Soil Properties: A Systematic Review. Sustainability 2022, 14, 11104. [Google Scholar] [CrossRef]
- Allohverdi, T.; Mohanty, A.; Roy, P.; Misra, M. A Review on Current Status of Biochar Uses in Agriculture. Molecules 2021, 26, 5584. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, A.; Lee, S.; Rinklebe, J.; Farooq, M.; Song, H.; Sarmah, A.; Zimmerman, A.; Ahmad, M.; Shaheen, S.; Ok, Y. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma 2019. [Google Scholar] [CrossRef]
- Galinato, S.P.; Yoder, J.K.; Granatstein, D. The economic value of biochar in crop production and carbon sequestration. Energy Policy 2011, 39, 6344–6350. [Google Scholar] [CrossRef]
- Jaramillo-López, P.F.; Ramírez, M.I.; Pérez-Salicrup, D.R. Impacts of Bokashi on Survival and Growth Rates of Pinus Pseudostrobus in Community Reforestation Projects. J. Environ. Manag. 2015, 150, 48–56. [Google Scholar] [CrossRef]
- Olle, M. Bokashi Technology as a Promising Technology for Crop Production in Europe. J. Hortic. Sci. Biotechnol. 2021, 9, 145–152. [Google Scholar] [CrossRef]
- Pandit, N.R.; Schmidt, H.P.; Mulder, J.; Hale, S.E.; Husson, O.; Cornelissen, G. Nutrient Effect of Various Composting Methods with and without Biochar on Soil Fertility and Maize Growth. Arch. Agron. Soil Sci. 2019. [Google Scholar] [CrossRef]
- Maki, Y.; Soejima, H.; Kitamura, T.; Sugiyama, T.; Sato, T.; Watahiki, M.K.; Yamaguchi, J. 3-Phenyllactic Acid, a Root-Promoting Substance Isolated from Bokashi Fertilizer, Exhibits Synergistic Effects with Tryptophan. Plant Biotechnol. 2021, 38, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Abo-Sido, N.; Goss, J.W.; Griffith, A.B.; Klepac-Ceraj, V. Microbial Transformation of Traditional Fermented Fertilizer Bokashi Alters Chemical Composition and Improves Plant Growth. bioRxiv 2021. [Google Scholar] [CrossRef]
- Kakar, K.; Nitta, Y.; Asagi, N.; Komatsuzaki, M.; Shiotsu, F.; Kokubo, T.; Xuan, T.D. Morphological Analysis on Comparison of Organic and Chemical Fertilizers on Grain Quality of Rice at Different Planting Densities. Plant Prod. Sci. 2019, 22, 510–518. [Google Scholar] [CrossRef]
- Pohan, S.D.; Amrizal, E.M.; Puspitasari, W.D.; Malau, N.; Pasaribu, R.; Siregar, R. The Use of Bokashi Compost as a Soil Fertility Amendment in Increasing Vegetative Growth of Organic Tomato (Lycopersicum esculentum Mill.). In Proceedings of the 5th Annual International Seminar on Trends in Science and Science Education, AISTSSE 2018, Medan, Indonesia, 18–19 October 2018; p. 168. [Google Scholar] [CrossRef]
- Pagliaccia, D.; Bodaghi, S.; Chen, X.; Stevenson, D.; Deyett, E.; De Francesco, A.; Borneman, J.; Ruegger, P.; Peacock, B.; Ellstrand, N.; et al. Two Food Waste By-Products Selectively Stimulate Beneficial Resident Citrus Host-Associated Microbes in a Zero-Runoff Indoor Plant Production System. Front. Sustain. Food Syst. 2020, 4, 593568. [Google Scholar] [CrossRef]
- Quiroz, M.; Céspedes, C. Bokashi as an amendment and source of nitrogen in sustainable agricultural systems: A review. J. Soil Sci. Plant Nutr. 2019, 19, 237–248. [Google Scholar] [CrossRef]
- Chaniag, R. Effect of Chicken Manure Bokashi Dirt Against Growth Plant Kale (Ipomea Reptans). AGRIUM Jurnal Ilmu Pertan. 2016, 20. [Google Scholar] [CrossRef]
- Kambire, F.C.; Ouedraogo, R.A.; Sangare, S.A.K.S.B.; Ganame, N. Valorizing Degraded Lands Using Innovative Biofertilisers for Tomato Cropping: Response to Bokashi, Efficient Microorganisms and Compost in the Sudanese Zone of Burkina Faso (Bobo-Dioulasso). Int. J. Adv. Res. 2023, 11, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Pagliaccia, D.; Ortiz, M.; Rodriguez, M.V.; Abbott, S.; De Francesco, A.; Amador, M.; Lavagi, V.; Maki, B.; Hopkins, F.; Kaplan, J.; et al. Enhancing Soil Health and Nutrient Availability for Carrizo Citrange (X Citroncirus sp.) through Bokashi and Biochar Amendments: An Exploration into Indoor Sustainable Soil Ecosystem Management. Sci. Hortic. 2024, 326, 112661. [Google Scholar] [CrossRef]
- Hsu, E. Cost-Benefit Analysis for Recycling of Agricultural Wastes in Taiwan. Waste Manag. 2021, 120, 424–432. [Google Scholar] [CrossRef]
- Askarany, D.; Franklin-Smith, A.W. Cost Benefit Analyses of Organic Waste Composting Systems through the Lens of Time Driven Activity-Based Costing. J. Appl. Manag. Account. Res. 2014, 12, 59–73. [Google Scholar]
- Coppola, G.; Costantini, M.; Orsi, L.; Facchinetti, D.; Santoro, F.; Pessina, D.; Bacenetti, J. A Comparative Cost-Benefit Analysis of Conventional and Organic Hazelnuts Production Systems in Central Italy. Agriculture 2020, 10, 409. [Google Scholar] [CrossRef]
- Hadas, E.; Mingelgrin, U.; Fine, P. Economic Cost-Benefit Analysis for the Agricultural Use of Sewage Sludge Treated with Lime and Fly Ash. Int. J. Coal Sci. Technol. 2021, 8, 1099–1107. [Google Scholar] [CrossRef]
- Pitton, B.J.L.; Hall, C.R.; Haver, D.L.; White, S.A.; Oki, L.R. A Cost Analysis for Using Recycled Irrigation Runoff Water in Container Nursery Production: A Southern California Nursery Case Study. Irrig. Sci. 2018, 36, 217–226. [Google Scholar] [CrossRef]
- Bailey, D.; Bilderback, T.; Bir, D. Water Considerations for Container Production of Plants. In Horticulture Information Leaflet 557; NC State University Department of Horticultural Science: Raleigh, NC, USA, 1999; No. 1. [Google Scholar]
- White, S.A.; Owen, J.S.; Majsztrik, J.C.; Oki, L.R.; Fisher, P.R.; Hall, C.R.; Lea-Cox, J.D.; Fernandez, R.T. Greenhouse and Nursery Water Management Characterization and Research Priorities in the USA. Water 2019, 11, 2338. [Google Scholar] [CrossRef]
- The World Bank. State and Trends of Carbon Pricing Dashboard. Available online: https://carbonpricingdashboard.worldbank.org/compliance/price (accessed on 26 April 2024).
- Rastogi, M.; Verma, S.; Kumar, S.; Bharti, S.; Kumar, G.; Azam, K.; Singh, V. Soil Health and Sustainability in the Age of Organic Amendments: A Review. Int. J. Environ. Clim. Change 2023, 13, 2088–2102. [Google Scholar] [CrossRef]
- Ganesh, K.S.; Sundaramoorthy, P.; Nagarajan, M.; Xavier, R.L. Role of Organic Amendments in Sustainable Agriculture. In Sustainable Agriculture towards Food Security; Dhanarajan, A., Ed.; Springer: Singapore, 2017; pp. 111–124. [Google Scholar] [CrossRef]
- Rakshit, A.; Sarkar, B.; Abhilash, P. (Eds.) Soil Amendments for Sustainability: Challenges and Perspectives; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Kammann, C.; Glaser, B.; Schmidt, H.P. Combining Biochar and Organic Amendments. In Biochar in European Soils and Agriculture; Routledge: London, UK, 2016; pp. 136–164. [Google Scholar] [CrossRef]
- Luo, G.; Li, L.; Friman, V.-P.; Guo, J.; Guo, S.; Shen, Q.; Ling, N. Organic Amendments Increase Crop Yields by Improving Microbe-Mediated Soil Functioning of Agroecosystems: A Meta-Analysis. Soil Biol. Biochem. 2018, 124, 105–115. [Google Scholar] [CrossRef]
- Singh, N.K.; Sachan, K.; Manoj, B.P.; Panotra, N.; Katiyar, D. Building Soil Health and Fertility through Organic Amendments and Practices: A Review. Asian J. Soil Sci. Plant Nutr. 2024, 10, 175–197. [Google Scholar] [CrossRef]
- Qian, S.; Zhou, X.; Fu, Y.; Song, B.; Yan, H.; Chen, Z.; Sun, Q.; Ye, H.; Qin, L.; Lai, C. Biochar-compost as a new option for soil improvement: Application in various problem soils. Sci. Total Environ. 2023, 870, 162024. [Google Scholar] [CrossRef]
- Enaime, E.; Ghizlane, G.; Lübken, M. Agricultural Waste-Based Biochar for Agronomic Applications. Appl. Sci. 2021, 11, 8914. [Google Scholar] [CrossRef]
- D’Hose, T.; Debode, J.; De Tender, C.; Ruysschaert, G.; Vandecasteele, B. Has compost with biochar applied during the process added value over biochar or compost for increasing soil quality in an arable cropping system? Appl. Soil Ecol. 2020, 156, 103706. [Google Scholar] [CrossRef]
- Antonangelo, J.A.; Sun, X.; Zhang, H. The roles of co-composted biochar (COMBI) in improving soil quality, crop productivity, and toxic metal amelioration. J. Environ. Manag. 2021, 277, 111443. [Google Scholar] [CrossRef] [PubMed]
- Roberts, K.G.; Gloy, B.A.; Joseph, S.; Scott, N.R.; Lehmann, J. Life cycle assessment of biochar systems: Estimating the energetic, economic, and climate change potential. Environ. Sci. Technol. 2010, 44, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, D.; Balduccio, L.; Buysse, J.; Ronsse, F.; Van Huylenbroeck, G.; Prins, W. Cost-benefit analysis of using biochar to improve cereals agriculture. GCB Bioenergy 2015, 7, 850–864. [Google Scholar] [CrossRef]
- Czyzyk, K.A.; Bement, S.T.; Dawson, W.F.; Mehta, K. Quantifying water savings with greenhouse farming. In Proceedings of the IEEE Global Humanitarian Technology Conference (GHTC 2014), Trivandrum, India, 26–27 September 2014; pp. 325–332. [Google Scholar]
- Kallsen, C.E.; Douhan, G.W.; Jetter, K.; Stewart, D.; Sumner, D.A. Sample Costs to Establish an Orchard and Produce Oranges: Navels, San Joaquin Valley—South; The University of Califoria Cooperative Extension, The Regents of the University of California: Davis, CA, USA, 2021. [Google Scholar]
Parameter | Value | Source |
---|---|---|
Water Cost per 1000 Gallons (Southern California) | USD 2.59 | [36] |
Number of Gallons of Water Used per Day | 22,000 | [37] |
Number of Gallons of Water Used per Hour | 917 | |
Average Hourly Wage for Irrigation Worker | USD 19.80 | [38] |
Treatment | Cost/Day | ||
---|---|---|---|
Small | Medium | Large | |
CK700 | USD 103.49 | USD 224.95 | USD 423.96 |
CK1400 | USD 106.31 | USD 231.99 | USD 433.83 |
Bok700 | USD 121.17 | USD 298.24 | USD 486.56 |
Bok1400 | USD 122.58 | USD 301.77 | USD 491.49 |
BC700 | USD 104.09 | USD 255.53 | USD 426.77 |
BC1400 | USD 106.91 | USD 262.58 | USD 436.63 |
Bok_BC700 | USD 121.78 | USD 300.45 | USD 489.36 |
Bok_BC1400 | USD 123.19 | USD 303.97 | USD 494.30 |
Treatment | Percentage Change in C Content | Average Revenues/Ton | ||
---|---|---|---|---|
Small | Medium | Large | ||
Bok700 | 2.43% | USD 0.53 | USD 1.32 | USD 1.84 |
Bok1400 | −1.13% | USD −0.46 | USD −1.15 | USD −1.61 |
BC700 | 31.45% | USD 8.58 | USD 21.45 | USD 30.03 |
BC1400 | 41.55% | USD 12.24 | USD 30.60 | USD 42.85 |
Bok_BC700 | 37.36% | USD 11.07 | USD 27.67 | USD 38.73 |
Bok_BC1400 | 37.45% | USD 10.71 | USD 26.77 | USD 37.48 |
Treatment | Savings/Day Compared to the CK1400 Control | ||
---|---|---|---|
Small | Medium | Large | |
Bok700 | USD 54.20 | USD 137.47 | USD 363.07 |
Bok1400 | USD 82.77 | USD 230.69 | USD 459.90 |
BC700 | USD 195.19 | USD 482.37 | USD 1363.44 |
BC1400 | USD 271.09 | USD 679.03 | USD 1854.72 |
Bok_BC700 | USD 154.22 | USD 393.04 | USD 1023.27 |
Bok_BC1400 | USD 93.01 | USD 260.85 | USD 516.11 |
Treatment | Savings/Day Compared to the CK1400 Control | ||
---|---|---|---|
Small | Medium | Large | |
Bok700 | USD 69.07 | USD 203.72 | USD 415.80 |
Bok1400 | USD 99.04 | USD 300.46 | USD 517.56 |
BC700 | USD 192.98 | USD 505.91 | USD 1356.38 |
BC1400 | USD 271.70 | USD 709.63 | USD 1857.53 |
Bok_BC700 | USD 169.69 | USD 461.49 | USD 1078.81 |
Bok_BC1400 | USD 109.89 | USD 332.83 | USD 576.58 |
Treatment | Savings/Day Compared to the CK1400 Treatment | ||
---|---|---|---|
Small | Medium | Large | |
Bok700 | USD 67.87 | USD 200.78 | USD 407.44 |
Bok1400 | USD 99.92 | USD 302.63 | USD 523.71 |
BC700 | USD 186.71 | USD 490.47 | USD 1312.50 |
BC1400 | USD 264.66 | USD 692.30 | USD 1808.30 |
Bok_BC700 | USD 166.34 | USD 453.25 | USD 1055.39 |
Bok_BC1400 | USD 112.37 | USD 338.94 | USD 593.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavagi, V.; Kaplan, J.; Vidalakis, G.; Ortiz, M.; Rodriguez, M.V.; Amador, M.; Hopkins, F.; Ying, S.; Pagliaccia, D. Recycling Agricultural Waste to Enhance Sustainable Greenhouse Agriculture: Analyzing the Cost-Effectiveness and Agronomic Benefits of Bokashi and Biochar Byproducts as Soil Amendments in Citrus Nursery Production. Sustainability 2024, 16, 6070. https://doi.org/10.3390/su16146070
Lavagi V, Kaplan J, Vidalakis G, Ortiz M, Rodriguez MV, Amador M, Hopkins F, Ying S, Pagliaccia D. Recycling Agricultural Waste to Enhance Sustainable Greenhouse Agriculture: Analyzing the Cost-Effectiveness and Agronomic Benefits of Bokashi and Biochar Byproducts as Soil Amendments in Citrus Nursery Production. Sustainability. 2024; 16(14):6070. https://doi.org/10.3390/su16146070
Chicago/Turabian StyleLavagi, Valeria, Jonathan Kaplan, Georgios Vidalakis, Michelle Ortiz, Michael V. Rodriguez, Madison Amador, Francesca Hopkins, Samantha Ying, and Deborah Pagliaccia. 2024. "Recycling Agricultural Waste to Enhance Sustainable Greenhouse Agriculture: Analyzing the Cost-Effectiveness and Agronomic Benefits of Bokashi and Biochar Byproducts as Soil Amendments in Citrus Nursery Production" Sustainability 16, no. 14: 6070. https://doi.org/10.3390/su16146070
APA StyleLavagi, V., Kaplan, J., Vidalakis, G., Ortiz, M., Rodriguez, M. V., Amador, M., Hopkins, F., Ying, S., & Pagliaccia, D. (2024). Recycling Agricultural Waste to Enhance Sustainable Greenhouse Agriculture: Analyzing the Cost-Effectiveness and Agronomic Benefits of Bokashi and Biochar Byproducts as Soil Amendments in Citrus Nursery Production. Sustainability, 16(14), 6070. https://doi.org/10.3390/su16146070