Key Factors Influencing the Adoption of Improved Wheat Production Technologies in the Irrigated, Heat-Prone, Arid Environments of Sudan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Design of the Survey and Data Collection
2.3. Sample Size and Areas
2.4. Attribution and Quality of Data
2.5. Analytical Techniques and Data Analysis Tools
2.6. Selection of the Model
2.7. Trade-Off Analyses of Improved Technologies and Management
3. Results and Discussion
3.1. Socioeconomic Characteristics of the Sampled Farmers
3.2. Wheat Productivity Statistics during Season 2020/2021
3.3. Adoption of the Technologies
3.4. Binary Logistic Regression
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jack, B. Market Inefficiencies and the Adoption of Agricultural Technologies in Developing Countries; MAA: Cambridge, UK, 2013. [Google Scholar]
- Macours, K. Farmers’ Demand and the Traits and Diffusion of Agricultural Innovations in Developing Countries. Annu. Rev. Resour. Econ. 2019, 11, 483–499. [Google Scholar] [CrossRef]
- Oyetunde-Usman, Z. Heterogenous Factors of Adoption of Agricultural Technologies in West and East Africa Countries: A Review. Front. Sustain. Food Syst. 2022, 6, 761498. [Google Scholar] [CrossRef]
- Adekunle, A.A.; Fatunbi, A.O.; Buruchara, R.; Nyamwaro, S. Forum for Agricultural Research in Africa Integrated Agricultural Research for Development: From Concept to Practice; CGIAR: Accra, Ghana, 2013. [Google Scholar]
- Hassan, A.O.; A Hashim, A.; A Fageer, E.; Chebil, A.; Tahir, I.; Assefa, S. Impacts of Improved Wheat Production Package on Farmers’ Productivity and Income in Sudan. Agric. Res. Technol. 2018, 17, 556041. [Google Scholar] [CrossRef]
- Tahir, I.S.A.; Mustafa, H.M.; Idris, A.A.M.; Elhashimi, A.M.A.; Hassan, M.K.; Fadul, E.M.; Kurmut, A.M.A.; Eltayeb, S.M.; Meheesi, S.; Hassan, A.O.; et al. Enhancing Wheat Production and Food Security in Sudan through Scaling up Improved Technologies Using Innovation Platforms. Int. J. Agric. Sustain. 2020, 18, 376–388. [Google Scholar] [CrossRef]
- Tolessa, D.; Soloman, A.; Wudineh, G.; Rahima, M.; Wasihun, L.; Wondimu, L. Dissemination of Improved Technologies Based on Innovation Platform Approach for Sustainable Wheat Production in Ethiopia. Int. J. Agril. Innov. Res. 2017, 6, 123–134. [Google Scholar]
- CBoS. 56th Annual Report of Central Bank of Sudan; Central Bank of Sudan: Khartoum, Sudan, 2016. [Google Scholar]
- Roberts, M.J.; Schlenker, W. Identifying Supply and Demand Elasticities of Agricultural Commodities: Implications for the US Ethanol Mandate. Am. Econ. Rev. 2013, 103, 2265–2295. [Google Scholar] [CrossRef]
- Shiferaw, B.; Bank, W.; Sonder, K.; Smale, M.; Braun, H.-J. The Potential for Wheat Production in Africa: Analysis of Biophysical Suitability and Economic Profitability; CIMMYT: Texcoco, Mexico, 2013. [Google Scholar]
- Frija, A.; Ouerghemmi, H.; Mottaleb, K.A. Dietary Change in Asia, Sub-Saharan Africa, and North Africa: Historical Changes and Future Food Consumption Perspectives Rationale and Objective. 2021. Available online: https://repo.mel.cgiar.org/handle/20.500.11766/66832 (accessed on 26 July 2024).
- Silva, J.V.; Jaleta, M.; Tesfaye, K.; Abeyo, B.; Devkota, M.; Frija, A.; Habarurema, I.; Tembo, B.; Bahri, H.; Mosad, A.; et al. Pathways to Wheat Self-Sufficiency in Africa. Glob. Food Secur. 2023, 37, 100684. [Google Scholar] [CrossRef] [PubMed]
- Ageeb, O.A.; Elahmadi, A.B.; Solh, M.B.; Saxena, M.C. Wheat Production and Improvement in the Sudan. In Proceedings of the National Research Review Workshop, Wad Mdani, Sudan, 27–30 August 1996; ICARDA l Agricultural Research Corporation: Aleppo, Syria, 1996; pp. viii+262. [Google Scholar]
- Chebil, A.; Hashim, A.A.; Hassan, A.O.; Abdalla, I.; Tahir, I.; Assefa, S.; Yameogo, O. Metafrontier Analysis of Technical Efficiency of Wheat Farms in Sudan. J. Agric. Sci. 2016, 8, 179. [Google Scholar] [CrossRef]
- Ahmed, N.; Elmulthum, M.; Elsir, M.; Awaad, A.; Elsir, A.; Elamin, M. Can Sudan Achieve Food Security during the next Decade?: Some Forecasts of Self-Sufficiency in Cereals. Sci. Res. Essays 2011, 6, 529–532. [Google Scholar] [CrossRef]
- Hassan, R.M.; Faki, H.H.M. Economic Policy and Technology Determinants of the Comparative Advantage of Wheat Production in Sudan; CIMMYT: Bangkok, Thailand, 1993; ISBN 9686127747. [Google Scholar]
- Iizumi, T.; Ali-Babiker, I.-E.A.; Tsubo, M.; Tahir, I.S.A.; Kurosaki, Y.; Kim, W.; Gorafi, Y.S.A.; Idris, A.A.M.; Tsujimoto, H. Rising Temperatures and Increasing Demand Challenge Wheat Supply in Sudan. Nat. Food 2021, 2, 19–27. [Google Scholar] [CrossRef]
- Musa, A.I.I.; Tsubo, M.; Ali-Babiker, I.-E.A.; Iizumi, T.; Kurosaki, Y.; Ibaraki, Y.; El-Hag, F.M.A.; Tahir, I.S.A.; Tsujimoto, H. Relationship of Irrigated Wheat Yield with Temperature in Hot Environments of Sudan. Theor. Appl. Clim. 2021, 145, 1113–1125. [Google Scholar] [CrossRef]
- Bekuma, T.; Mamo, G.; Regassa, A. Indigenous and Improved Adaptation Technologies in Response to Climate Change Adaptation and Barriers Among Smallholder Farmers in the East Wollega Zone of Oromia, Ethiopia. Res. Glob. 2023, 6, 100110. [Google Scholar] [CrossRef]
- Deressa, T.T.; Hassan, R.M.; Ringler, C.; Alemu, T.; Yesuf, M. Determinants of Farmers’ Choice of Adaptation Methods to Climate Change in the Nile Basin of Ethiopia. Glob. Environ. Chang. 2009, 19, 248–255. [Google Scholar] [CrossRef]
- Makate, C.; Makate, M.; Mango, N.; Siziba, S. Increasing Resilience of Smallholder Farmers to Climate Change through Multiple Adoption of Proven Climate-Smart Agriculture Innovations. Lessons from Southern Africa. J. Environ. Manag. 2019, 231, 858–868. [Google Scholar] [CrossRef]
- Tasnim, Z.; Tasnim, Z.; Saha, S.M.; Saha, S.M.; Hossain, E.; Hossain, E.; Khan, A.; Khan, A. Perception of and Adaptation to Climate Change: The Case of Wheat Farmers in Northwest Bangladesh. Environ. Sci. Pollut. Res. 2022, 30, 32839–32853. [Google Scholar] [CrossRef]
- Upendram, S.; Regmi, H.P.; Cho, S.-H.; Mingie, J.C.; Clark, C.D. Factors Affecting Adoption Intensity of Climate Change Adaptation Practices: A Case of Smallholder Rice Producers in Chitwan, Nepal. Front. Sustain. Food Syst. 2023, 6, 1016404. [Google Scholar] [CrossRef]
- Bushara, M.; Ahmed, A. Economic Analysis of Cotton Production in the Gezira Scheme: 1970–2004. J. Bus. Financ. Aff. 2016, 5, 2167–2234. [Google Scholar] [CrossRef]
- FAO. Special Report—2020 FAO Crop and Food Supply Assessment Mission (CFSAM) to the Republic of the Sudan; FAO: Rome, Italy, 2021. [Google Scholar]
- Mohammed, H.A.H.; Hashim, A.A.; Fadlalla, B. Socio-Economic and Climatic Factors That Influence Pastoralists’ Perception on Natural Rangeland Resources in Butana Area, Sudan. ARPN J. Sci. Technol. 2013, 3, 283–289. [Google Scholar]
- Sperandei, S. Understanding Logistic Regression Analysis. Biochem. Medica 2014, 24, 12–18. [Google Scholar] [CrossRef]
- Fritz, M.; Berger, P.D. Will Anybody Buy? Logistic Regression. In Improving the User Experience Through Practical Data Analytics; Elsevier: Amsterdam, The Netherlands, 2015; pp. 271–304. [Google Scholar]
- Gujarati, D.N.; Porter, D.C. Essentials of Econometrics, 4th ed.; McGraw-Hill Companies, Inc.: New York, NY, USA, 2010; ISBN 9780073375847. [Google Scholar]
- Ullah, A.; Saqib, S.E.; Kächele, H. Determinants of Farmers’ Awareness and Adoption of Extension Recommended Wheat Varieties in the Rainfed Areas of Pakistan. Sustainability 2022, 14, 3194. [Google Scholar] [CrossRef]
- Eshete, Y.; Alamirew, B.; Bishaw, Z. Yield and Cost Effects of Plot-Level Wheat Seed Rates and Seed Recycling Practices in the East Gojam Zone, Amhara Region, Ethiopia: Application of the Dose–Response Model. Sustainability 2021, 13, 3793. [Google Scholar] [CrossRef]
- Newport, D.; Lobell, D.B.; Srivastava, A.K.; Rao, P.; Umashaanker, M.; Malik, R.K.; Mcdonald, A.; Jain, M. Factors Constraining Timely Sowing of Wheat as an Adaptation to Climate Change in Eastern India. Weather. Clim. Soc. 2020, 12, 515–528. [Google Scholar] [CrossRef]
- Paudel, G.P.; Chamberlin, J.; Singh, B.; Maharjan, S.; Nguyen, T.T.; Craufurd, P.; McDonald, A.J.; Paudel, G.P.; Chamberlin, J.; Singh, B.; et al. Insights for Climate Change Adaptation from Early Sowing of Wheat in the Northern Indo-Gangetic Basin. Int. J. Disaster Risk Reduct. 2023, 92, 103714. [Google Scholar] [CrossRef]
- Nazu, S.B.; Khan, A.; Saha, S.M.; Hossain, E.; Rashid, M.H.-A. Adoption of Improved Wheat Management Practices: An Empirical Investigation on Conservation and Traditional Technology in Bangladesh. J. Agric. Food Res. 2021, 4, 100143. [Google Scholar] [CrossRef]
- Choudhary, A.K.; Yadav, D.; Sood, P.; Rahi, S.; Arya, K.; Thakur, S.; Lal, R.; Kumar, S.; Sharma, J.; Dass, A.; et al. Post-Emergence Herbicides for Effective Weed Management, Enhanced Wheat Productivity, Profitability and Quality in North-Western Himalayas: A ‘Participatory-Mode’ Technology Development and Dissemination. Sustainability 2021, 13, 5425. [Google Scholar] [CrossRef]
- Siyum, N.; Giziew, A.; Abebe, A. Factors Influencing Adoption of Improved Bread Wheat Technologies in Ethiopia: Empirical Evidence from Meket District. Heliyon 2022, 8, e08876. [Google Scholar] [CrossRef] [PubMed]
- Ashu, E.; Tenaye, A.; Tassew, W. Determinants of Improved Chickpea Variety Adoption: The case of Southern Ethiopia. Appl. Food Res. 2023, 3, 100245. [Google Scholar] [CrossRef]
- Atinafu, A.; Lejebo, M.; Alemu, A. Adoption of Improved Wheat Production Technology in Gorche District, Ethiopia. Agric. Food Secur. 2022, 11, 3. [Google Scholar] [CrossRef]
- Gebremariam, L.T.; Hagos, H. Determinants of Intensity of Bread Wheat Packages Adoption in Tigary, Northern Ethiopia. Turk. J. Agric.-Food Sci. Technol. 2018, 6, 1101–1107. [Google Scholar] [CrossRef]
- Ntshangase, N.L.; Muroyiwa, B.; Sibanda, M. Farmers’ Perceptions and Factors Influencing the Adoption of No-Till Conservation Agriculture by Small-Scale Farmers in Zashuke, KwaZulu-Natal Province. Sustainability 2018, 10, 555. [Google Scholar] [CrossRef]
- Ruzzante, S.; Labarta, R.; Bilton, A. Adoption of Agricultural Technology in the Developing World: A Meta-Analysis of the Empirical Literature. World Dev. 2021, 146, 105599. [Google Scholar] [CrossRef]
- Zeleke, B.D.; Geleto, A.K.; Komicha, H.H.; Asefa, S. Determinants of Adopting Improved Bread Wheat Varieties in Arsi Highland, Oromia Region, Ethiopia: A Double-Hurdle Approach. Cogent Econ. Finance 2021, 9, 1932040. [Google Scholar] [CrossRef]
- Zakaria, A.; Azumah, S.B.; Appiah-Twumasi, M.; Dagunga, G. Adoption of Climate-Smart Agricultural Practices among Farm Households in Ghana: The Role of Farmer Participation in Training Programmes. Technol. Soc. 2020, 63, 101338. [Google Scholar] [CrossRef]
- Tahir, I.S.A.; Gorafi, Y.S.A.; Idris, A.A.M.; Saad, A.S.I.; Mustafa, H.M.; Elbashir, A.A.E.; Elsheikh, O.; Elhashimi, A.M.A.; Elbashier, E.M.E.; Tsujimoto, H. Seed Security for Adaptation to Climate Change and Boasting Wheat Productivity in Hot and Dry Environments. In Proceedings of the African Plant Breeders Association Conference, 3rd Edition: Leveraging Genetic Innovation for Resilient African Food Systems in the Wake of Global Shocks, Benguerir, Morocco, 25 October 2023. [Google Scholar]
- Dessale, M. Analysis of Technical Efficiency of Small Holder Wheat-Growing Farmers of Jamma District, Ethiopia. Agric. Food Secur. 2019, 8, 1. [Google Scholar] [CrossRef]
- Sherzod, B.; Kim, K.-R.; Lee, S.H. Agricultural Transition and Technical Efficiency: An Empirical Analysis of Wheat-Cultivating Farms in Samarkand Region, Uzbekistan. Sustainability 2018, 10, 3232. [Google Scholar] [CrossRef]
- Ji, I.; Vitale, J.D.; Vitale, P.P.; Adam, B.D. Technical Efficiency of U.S. Western Great Plains Wheat Farms Using Stochastic Frontier Analysis. J. Appl. Econ. 2023, 26, 2178798. [Google Scholar] [CrossRef]
Respondent | |||||
---|---|---|---|---|---|
Study Area | Control Sites | Intervention Sites | Total | ||
No | % | No | % | No | |
Northern State | 66 | 71.0 | 27 | 29.0 | 93 |
Kassala State | 39 | 38.6 | 62 | 61.4 | 101 |
Gezira State | 60 | 56.6 | 46 | 43.4 | 106 |
Total | 165 | 55.0 | 135 | 45.0 | 300 |
Production Practices and Management | Recommended Technologies and Management | Unrecommended Technologies and Management |
---|---|---|
Land preparation | 3 ridging + leveling | Disc ploughing + ridging + leveling |
Chisel ploughing + ridging + leveling | Disc ploughing + 2 ridging + leveling | |
Chisel ploughing + ridging + leveling | Disc ploughing + 3 ridging+ leveling | |
Disc harrowing+ ridging + leveling | ||
Released varieties | Used recommended varieties | Used non-recommended varieties |
Seed sources | Scheme administration | Market |
Agricultural bank | Farmers own seeds | |
ARC | Seeds from other farmers | |
Seed companies | Unknown sources | |
Seed rate | 119 kg to 143 kg/hectare | 143 to 177 kg/hectare |
Sowing date | 1 to 14 November | 1 to 14 December |
15 to 30 November | 15 to 30 December | |
DAP fertilization | 119 kg DAP/hectare | 178.5 kg DAP/hectare |
238 kg DAP/hectare | ||
Urea fertilization | 238 kg urea/hectare | 179 kg urea/hectare |
278 kg/urea/hectare | ||
119 kg urea/hectare | ||
357 kg urea/hectare | ||
Optimum numbers of irrigation | More than 5 irrigations | Less than 5 irrigations |
Herbicide application | Herbicides applied | Herbicides not applied |
Characteristics | Northern State | Kassala State | Gezira State | The Three States | |
---|---|---|---|---|---|
Education level | Illiterate | 17.2 | 11.9 | 17.9 | 15.7 |
Primary | 44.1 | 16.8 | 29.2 | 29.7 | |
Intermediate | 0.0 | 0.0 | 21.7 | 7.7 | |
Secondary | 28.0 | 60.4 | 19.8 | 36.0 | |
University | 10.8 | 10.9 | 11.3 | 11.0 | |
Total | 100.0 | 100.0 | 100.0 | 100.0 | |
Chi-square | 95.60, p < 0.0001 | ||||
Main job | Crop production | 81.8 | 97.0 | 76.4 | 85.0 |
Animal production | 0.0 | 0.0 | 8.5 | 3.0 | |
Famer and trader | 5.4 | 0.0 | 9.5 | 5.0 | |
Farmer and animal production | 12.9 | 3.0 | 5.6 | 7.0 | |
Chi-square | 62.88, p < 0.0001 | ||||
Land tenure | Own | 92.5 | 87.1 | 89.6 | 89.6 |
Share | 2.2 | 8.9 | 1.9 | 4.3 | |
Rent in | 2.2 | 3.0 | 0.9 | 2.0 | |
Own and rent in | 3.2 | 1.0 | 6.6 | 3.7 | |
Own and share | 0.0 | 0.0 | 0.9 | 0.3 | |
Chi-square | 16.79, p = 0.079 | ||||
Farmers experience in wheat cultivation (years) | Mean | 26.8 | 22.7 | 21.9 | 24.2 |
Standard deviation | 9.2 | 11.1 | 11.2 | 9.5 | |
CV | 0.34 | 0.49 | 0.51 | 0.39 |
Statistics | Adopters | Non-Adopters |
---|---|---|
Number of farmers | 224 | 76 |
Mean yield (t/ha) | 2.93 | 2.59 |
Std. Deviation | 0.81 | 0.69 |
C.V | 0.28 | 0.27 |
t-statistics | p = 0.015 |
Production Technology | Farmers Category | Northern State | Kassala State | Gezira State | Mean | Chi-Square (p Value) |
---|---|---|---|---|---|---|
Land preparation | Adopters | 6.5 | 57.4 | 54.7 | 39.5 | 65.55 (<0.001) |
Non-adopters | 93.5 | 42.6 | 45.3 | 60.5 | ||
Released varieties | Adopters | 88.2 | 100.0 | 100.0 | 96.1 | 25.42 (<0.001) |
Non-adopters | 11.8 | 0.0 | 0.0 | 3.9 | ||
Seed source | Adopters | 90.3 | 40.6 | 21.7 | 50.9 | 97.98 (<0.001) |
Non-adopters | 9.7 | 59.4 | 78.3 | 49.1 | ||
Seed rate | Adopters | 73.1 | 92.1 | 83.0 | 82.7 | 12.34 (0.002) |
Non-adopters | 26.9 | 7.9 | 17.0 | 17.3 | ||
Sowing date | Adopters | 96.8 | 99.0 | 84.9 | 93.6 | 34.36 (<0.001) |
Non-adopters | 3.2 | 1.0 | 15.1 | 6.4 | ||
P fertilizer (TSP or DAP) | Adopters | 100.0 | 100.0 | 92.5 | 97.5 | 15.04 (<0.001) |
Non-adopters | 0.0 | 0.0 | 7.5 | 2.5 | ||
N fertilizer (Urea) | Adopters | 78.5 | 55.4 | 83.0 | 72.3 | 27.13 (<0.001) |
Non-adopters | 21.5 | 44.6 | 17.0 | 27.7 | ||
Herbicide application | Adopters | 64.5 | 98.0 | 100.0 | 87.5 | 4.39 (<0.001) |
Non-adopters | 35.5 | 2.0 | 0.0 | 12.5 | ||
Numbers of irrigation | Adopters | 82.8 | 100.0 | 86.8 | 89.9 | 19.58 (<0.001) |
Non-adopters | 17.2 | 0.0 | 13.2 | 10.1 | ||
Mean | Adopters | 75.6 | 82.5 | 78.5 | 78.9 | |
Non-adopters | 24.4 | 17.5 | 21.5 | 21.1 |
Explanatory Variables | Coefficient | Odds Ratio | p-Value |
---|---|---|---|
Farming experience | 0.019 | 1.019 | 0.256 |
Education level | 0.126 | 1.134 | 0.005 |
Wheat area | 0.09 | 1.095 | 0.079 |
Land tenure | 1.481 | 4.395 | 0.025 |
Access to quality seeds | 1.615 | 5.027 | 0.0 |
Access to financial support | 1.524 | 4.588 | 0.0 |
Access to extension services | 1.899 | 6.681 | 0.0 |
Constant | −5.092 | 0.006 | 0.0 |
Chi-square (p-value) | <0.0001 | ||
1 Log likelihood | 204.416 | ||
2 Cox and Snell R Square | 0.357 | ||
3 Nagelkerke R Square | 0.528 | ||
n | 300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, A.M.M.; Hassan, A.O.; Idris, A.A.M.; Gorafi, Y.S.A.; Tsujimoto, H.; Tahir, I.S.A. Key Factors Influencing the Adoption of Improved Wheat Production Technologies in the Irrigated, Heat-Prone, Arid Environments of Sudan. Sustainability 2024, 16, 6600. https://doi.org/10.3390/su16156600
Ibrahim AMM, Hassan AO, Idris AAM, Gorafi YSA, Tsujimoto H, Tahir ISA. Key Factors Influencing the Adoption of Improved Wheat Production Technologies in the Irrigated, Heat-Prone, Arid Environments of Sudan. Sustainability. 2024; 16(15):6600. https://doi.org/10.3390/su16156600
Chicago/Turabian StyleIbrahim, Abdelhamed Mohammed Magboul, Alawia Osman Hassan, Amani Ahmed Mohamed Idris, Yasir Serag Alnor Gorafi, Hisashi Tsujimoto, and Izzat Sidahmed Ali Tahir. 2024. "Key Factors Influencing the Adoption of Improved Wheat Production Technologies in the Irrigated, Heat-Prone, Arid Environments of Sudan" Sustainability 16, no. 15: 6600. https://doi.org/10.3390/su16156600
APA StyleIbrahim, A. M. M., Hassan, A. O., Idris, A. A. M., Gorafi, Y. S. A., Tsujimoto, H., & Tahir, I. S. A. (2024). Key Factors Influencing the Adoption of Improved Wheat Production Technologies in the Irrigated, Heat-Prone, Arid Environments of Sudan. Sustainability, 16(15), 6600. https://doi.org/10.3390/su16156600