The Impact of Human Capital and Tourism Industry Agglomeration on China’s Tourism Eco-Efficiency: An Analysis Based on the Undesirable Super-SBM-ML Model
Abstract
:1. Introduction
2. Literature Review
2.1. Human Capital
2.2. Tourism Eco-Efficiency
2.3. Influence Mechanism of Human Capital and Tourism Industry Agglomeration on Tourism Eco-Efficiency
3. Theoretical Hypotheses
3.1. The Direct Impact of Human Capital on Tourism Eco-Efficiency
3.2. Mediating Mechanisms of the Impact of Human Capital on Tourism Eco-Efficiency
3.3. Threshold Effect of Human Capital on Tourism Eco-Efficiency Influence
4. Materials and Methods
4.1. Research Methods
4.1.1. Super-SBM Model
4.1.2. Malmquist-Luenberger (ML) Index Model
4.1.3. Tobit Regression Model
4.1.4. Mediation Effects Model
4.1.5. Threshold Effects Model
4.2. Indicator Construction and Variable Selection
4.2.1. Explained Variable
4.2.2. Explanatory Variable
4.2.3. Mediating Variable
4.2.4. Control Variables
4.3. Data Sources
5. Results
5.1. Analysis of the Dynamic Evolution and Internal Driving Forces of Tourism Eco-Efficiency
5.2. Analysis of the Impact of Human Capital and Tourism Industry Agglomeration on Tourism Eco-Efficiency
5.2.1. Benchmark Regression Analysis
5.2.2. Robustness Test
5.2.3. Regional Heterogeneity Tests
5.2.4. Mediation Effect Test
5.2.5. Threshold Effect Test
6. Discussion
7. Conclusions and Suggestions
7.1. Conclusions
7.2. Suggestions
7.3. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liao, Q.; Zeng, J.; Qu, J. Overseas Environment and Health Development Strategic Plan and its Inspiration. J. Environ. Health 2014, 31, 635–639. [Google Scholar]
- Wang, Z.; Wang, J.; Zhang, G.; Wang, Z. Evaluation of Agricultural Extension Service for Sustainable Agricultural Development Using a Hybrid Entropy and TOPSIS Method. Sustainability 2021, 13, 347. [Google Scholar] [CrossRef]
- Kapera, I. Sustainable tourism development efforts by local governments in Poland. Sustain. Cities Soc. 2018, 40, 581–588. [Google Scholar] [CrossRef]
- Liu, J.; Ma, Y. The perspective of tourism sustainable development: A review of eco-efficiency of tourism. Tour. Trib. 2017, 32, 47–56. [Google Scholar]
- Lenzen, M.; Sun, Y.Y.; Faturay, F.; Ting, Y.P.; Geschke, A.; Malik, A. The carbon footprint of global tourism. Nat. Clim. Change 2018, 8, 522–528. [Google Scholar] [CrossRef]
- Peeters, P.; Dubois, G. Tourism travel under climate change mitigation constraints. J. Transp. Geogr. 2010, 18, 449–457. [Google Scholar] [CrossRef]
- Tang, C.; Zha, J.; Zhang, J.; Tao, Y.; Wang, L.; Wang, L.; Han, Y. Dual-carbon goal of China’s tourism industry under high-quality development: Evaluation & prediction, major challenges and realization path. J. Chin. Ecotour. 2021, 11, 471–497. [Google Scholar]
- Yan, X. Comprehensive implementation of the new development concept is the road to high-quality development of the tourism industry. Tour. Trib. 2023, 38, 3–5. [Google Scholar]
- Hickel, J. The sustainable development index: Measuring the ecological efficiency of human development in the anthropocene. Ecol. Econ. 2019, 167, 106331. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L. Ecological efficiency management of tourism scenic spots based on carbon footprint analysis. Int. J. Low-Carbon Technol. 2020, 15, 550–554. [Google Scholar] [CrossRef]
- Lu, J.; Zhao, Y.; Chen, Y. Research on the Influence Mechanism of Human Capital and Technological Innovation on Environmental Pollution: An Empirical Study Based on 285 Cities Across the Country. Resour. Environ. Yangtze Basin 2019, 28, 2186–2196. [Google Scholar]
- Sheng, Y.; Liu, Q. Spatial difference of human capital promoting regional tourism economic efficiency: Empirical research based on “Hu Line”. Sci. Geogr. Sin. 2020, 40, 1710–1719. [Google Scholar]
- Zhao, Y.; Li, J.; Lu, J. Effect of Human Capital Accumulation on Environmental Pollution in the Yangtze River Economic Belt: Based on the Moderating Effect of Technological Innovation. Sci. Technol. Manag. Res. 2023, 43, 85–95. [Google Scholar]
- Cao, R.; Mo, Y.; Ma, J. Carbon Footprint Analysis of Tourism Life Cycle: The Case of Guilin from 2011 to 2022. Sustainability 2023, 15, 7124. [Google Scholar] [CrossRef]
- Wang, S.X.; Yu, B.F.; Zhe, G.Z. Population growth and the environmental Kuznets curve. China Econ. Rev. 2015, 36, 146–165. [Google Scholar] [CrossRef]
- Çakar, N.D.; Gedikli, A.; Erdoğan, S.; Yıldırım, D.C. Exploring the nexus between human capital and environmental degradation: The case of EU countries. J. Environ. Manag. 2021, 295, 113057. [Google Scholar] [CrossRef]
- Zeng, X.; Zeng, X. Regional Human Capital, Resources Agglomeration Capacity and the Urban Sprawl. J. Hunan Univ. Sci. Technol. (Soc. Sci. Ed.) 2018, 21, 62–70. [Google Scholar]
- Wang, Z.; Sun, Y. Analysis on the Impact of Tourism Industry Agglomeration on Ecological Efficiency and it’s Regional Differences of Urban Agglomeration in the Middle Reaches of the Yangtze River. Resour. Environ. Yangtze Basin 2021, 30, 796–807. [Google Scholar]
- Liu, J.; Wang, J. Research on Associated Action between Tourism Industrial Agglomeration Development and Carrying Capacity Ascension in China’s Coastal Regions. Commer. Res. 2016, 10, 145–156. [Google Scholar]
- Lu, F.; Gong, H. A study on the measurement, temporal and spatial characteristics and influencing factors of tourism eco-efficiency in China. Stat. Decis. 2020, 36, 96–100. [Google Scholar]
- Schultz, T.W. Investment in Human Capital. Ame. Eeon Rev. 1961, 51, 1–17. [Google Scholar]
- Lucas, R.E. On the mechanics of economic development. J. Monet. Eeon. 1988, 22, 3–42. [Google Scholar] [CrossRef]
- Hao, N.; Ji, M. Development of Platform Economy and Urban–Rural Income Gap: Theoretical Deductions and Empirical Analyses. Sustainability 2023, 15, 7684. [Google Scholar] [CrossRef]
- Wang, W. Financial support for agriculture, human capital and income gap between urban and rural residents. Economic Survey. J. China Univ. Geosci. (Soc. Sci. Ed.) 2023, 23, 109–125. [Google Scholar]
- Li, C.; Sun, T.; Wang, S. Dividend from demographic structure, fiscal expenditure bias and urban-rural income gap in China. Econ. Perspect. 2021, 1, 105–124. [Google Scholar]
- Gulaliyev, M.G.; Muradov, R.S.; Hajiyeva, L.A.; Muradova, H.R.; Aliyev, E.S. Study of human capital development, economic indicators and environmental quality. Ekoloji 2019, 28, 495–503. [Google Scholar]
- Ni, L.K.; Ahmad, S.F.; Alshammari, T.O.; Liang, H.S.; Alsanie, G.; Irshad, M.; Alyafi-AlZahri, R.; Binsaeed, R.H.; Al-Abyadh, M.H.A.; Abu Bakir, S.M.M. The role of environmental regulation and green human capital towards sustainable development: The mediating role of green innovation and industry upgradation. J. Clean Prod. 2023, 421, 138497. [Google Scholar] [CrossRef]
- Mahmood, N.; Wang, Z.H.; Hassan, S.T. Renewable energy, economic growth, human capital, and CO2 emission: An empirical analysis. Environ. Sci. Pollut. R. 2019, 26, 20619–20630. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.M.; Murad, M.W.; Noman, A.H.M.; Ozturk, I. Relationships among carbon emissions, economic growth, energy consumption and population growth: Testing Environmental Kuznets Curve hypothesis for Brazil, China, India and Indonesia. Ecol. Indic. 2016, 70, 466–479. [Google Scholar] [CrossRef]
- Lin, L.; Li, J. The net work analysis on spatial correlation of environmental pollution in the Yangtze river Economic Belt: Based on the comprehensive indicator of water and air pollution. Econ. Prob. 2019, 9, 86–92+111. [Google Scholar]
- Wu, Y.; Feng, K.; Hu, P. An empirical study of population growth, industrial structure optimization and regional ecological efficiency. J. Dalian Univ. Technol. (Soc. Sci.) 2019, 40, 17–26. [Google Scholar]
- Li, J.; Luo, N. Effect of urban scale on eco-efficiency and the regional difference analysis. China Popul. Resour. Environ. 2016, 26, 129–136. [Google Scholar]
- Appiah-Twum, F.; Long, X. Human capital, trade competitiveness and environmental efficiency convergence across Asia Pacific countries. Environ. Resour Econ. 2023, 85, 109–132. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xu, W. Change of agricultural ecological efficiency under effect of rural population aging. J. South China Agr. Univ. (Soc. Sci. Ed.) 2021, 20, 14–29. [Google Scholar]
- Yang, M.; Liu, X.; Wu, X. Study on the effect of population structure on ecological efficiency in China. Contemp. Econ. Manag. 2022, 44, 58–67. [Google Scholar]
- Wang, F.; Wen, Z. Environmental regulation, technological innovation and ecological efficiency: Empirical research on China’s provincial panel data based on 2006–2020. J. Tech. Econ. Manag. 2023, 4, 15–19. [Google Scholar]
- Gössling, S.; Hansson, C.B.; Hörstmeier, O.; Saggel, S. Ecological footprint analysis as a tool to assess tourism sustainability. Ecol. Econ. 2002, 43, 199–211. [Google Scholar] [CrossRef]
- Xiao, J.; Yu, A.; Wang, M. Carbon footprint evaluation in tours: A case study of Zhoushan Islands. Tour Sci. 2011, 4, 58–66. [Google Scholar]
- Yao, Z.; Chen, T.; Yin, S.; Li, X. Regional tourism eco-efficiency model and an empirical research of Hainan Province. Sci. Geogr. Sin. 2016, 36, 417–423. [Google Scholar]
- Guo, L.; Li, C.; Peng, H.; Zhong, S.; Zhang, J.; Yu, H. Tourism eco-efficiency at the provincial level in China in the context of energy conservation and emission reduction. Prog. Geogr. 2021, 40, 1284–1297. [Google Scholar] [CrossRef]
- Ma, Y.; Gan, C.; Wang, K. Relationship between tourism industry agglomeration and tourism eco-efficiency: An empirical analysis based on the provincial panel data of China. J. Fujian Norm. Univ. (Nat. Sci. Ed.) 2021, 37, 99–107+116. [Google Scholar]
- Hong, Z.; Wang, L.; Zhang, C. Influencing factors of regional tourism eco-efficiency under the background of green development in the western China. Acta Ecol. Sin. 2021, 41, 3512–3524. [Google Scholar]
- Zhu, M.; Wang, D. Dilemmas and ways out for tourist participation in tourism eco-efficiency optimization. Tour. Trib. 2016, 31, 11–13. [Google Scholar]
- Surugiu, C.; Surugiu, M.R.; Breda, Z.; Dinca, A.-I. An Input-Output Approach of CO2 Emissions in Tourism Sector in Post-Communist Romania. Procedia Econ. Financ. 2012, 3, 987–992. [Google Scholar] [CrossRef]
- Wei, Z.; Guo, W. A study on the spatial-temporal characteristics and influential factors of tourism ecological efficiency. Ecol. Econ. 2021, 37, 111–119. [Google Scholar]
- Wang, Z.; Wang, Z. A study on spatial-temporal heterogeneity of environmental regulation on tourism eco-efficiency: Taking Yangtze River Delta urban agglomeration as an example. Resour. Environ. Yangtze Basin 2022, 31, 750–758. [Google Scholar]
- Liu, Z.; Li, H.; Hu, Y.; Li, C. Human capital structure upgrading and economic growth: A reconsideration of disparities among China’s eastern, central and western regions. Econ. Res. J. 2018, 53, 50–63. [Google Scholar]
- Huang, Q.; Shi, P.; Hu, J. Industrial agglomeration and high- quality economic development: Examples of 107 prefecture- level cities in the Yangtze River Economic Belt. Reform 2020, 1, 87–99. [Google Scholar]
- Zhang, H.; Li, J.; Li, Y. Research on the mechanism of industrial collaborative agglomeration promoting high-quality economic development: Nonlinear relationship, innovation efficiency path and the moderating role of human capital. West Forum 2022, 32, 73–88. [Google Scholar]
- Ni, J.; Li, H. Industrial agglomeration, human capital and regional innovation: An empirical study based on the perspective of heterogeneous industrial agglomeration and cooperative agglomeration. Inq. Econ. Iss. 2017, 12, 156–162. [Google Scholar]
- Qin, T.; Kang, L.; Liang, W. Research on innovation effect of regional human capital based on the view of green low-carbon development—An empirical study of regional industrial enterprises panel data in China. Hum. Resour. Dev. China 2018, 35, 107–117. [Google Scholar]
- Cheng, G.; Hu, J. Influences of human capital on environmental quality. Urban Prob. 2019, 10, 46–52. [Google Scholar]
- Chankrajang, T.; Muttarak, R. Green returns to education: Doesschooling contribute to pro-environmental behaviours? Evidence from Thailand. Ecol. Econ. 2017, 131, 434–448. [Google Scholar] [CrossRef]
- Zhao, L.D.; Zhang, L.; Xu, L.; Hu, M. Mechanism of human capital, industrial structure adjustment and green development efficiency. China. Popul. Resour. Environ. 2016, 26, 106–114. [Google Scholar]
- Hao, Y.; Li, Y. The impact of human capital on environmental quality: Empirical evidence and mechanism analysis. J. Environ. Econ. 2022, 7, 142–160. [Google Scholar]
- Chen, X.; Yi, D. A study on the impact of human capital on China’s urbanization. Econ Theory. Bus Manag. 2017, 9, 101–112. [Google Scholar]
- Zhao, K. Industrial agglomeration, human capital accumulation and high-quality growth of regional economy. J. Hubei Eng. Univ. 2023, 43, 85–94. [Google Scholar]
- Wang, Z.; Tang, G. Research on the influence of tourism industry agglomeration in ethnic regions on tourism ecological efficiency—A case study of Enshi Tujia and Miao Autonomous Prefecture in Hubei. Commer. Sci. Res. 2021, 28, 74–81. [Google Scholar]
- Wang, L.; Liao, W.; Huang, M.; Deng, R. Calculation of tourism carbon footprint on final consumption: A case of Jiangxi Province. Ecol. Econ. 2011, 27, 121–124,168. [Google Scholar]
- Wu, M.; Huang, W. Agglomeration and green technology innovation efficiency of industrial enterprises—Based on spatial statistical analysis. Arch. Environ. Prot. 2022, 48, 3–14. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Wang, B.; Wu, Y.; Yan, P. Environmental efficiency and environmental total factor productivity growth in China’s regional economies. Econ. Res. J. 2010, 5, 95–109. [Google Scholar]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef]
- Chung, Y.H.; Färe, R.; Grosskopf, S. Productivity and undesirable outputs: A directional distance function approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef]
- Xu, Q.; Cheng, H. Temporal and Spatial Characteristics and Influencing Factors of Coupling Coordination Between China’s Tourism Eco-efficiency and Tourism Green Innovation Efficiency. J. Zhongzhou Univ. 2021, 38, 33–40. [Google Scholar]
- Zhang, W.; Zhan, Y.; Yin, R.; Yuan, X. The Tourism Eco-Efficiency Measurement and Its Influencing Factors in the Yellow River Basin. Sustainability 2022, 14, 15654. [Google Scholar] [CrossRef]
- Tang, J.; Cai, C.; Liu, Y. Impact of tourism development on the construction of urban ecological civilization and its spatial spillover effect: An empirical study on 284 prefecture level and above cities in China. Acta Ecol. Sin. 2023, 43, 2800–2817. [Google Scholar]
- Hansen, B.E. Threshold Effects in Non-dynamic Panels: Estimation, Testing, and Inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef]
- Xue, D.; Li, X.; Ahmad, F.; Abid, N.; Mushtaq, Z. Exploring Tourism Efficiency and Its Drivers to Understand the Backwardness of the Tourism Industry in Gansu, China. Int. J. Environ. Res. Public Health 2022, 19, 11574. [Google Scholar] [CrossRef]
Indicators | Variables | Variable Description |
---|---|---|
Resource input | Infrastructure inputs | Number of star-rated hotels (number) |
Number of travel agencies (number) | ||
Number of A-class tourist attractions (number) | ||
Capital inputs | Fixed asset value of tourism industry (×100 million yuan) | |
Labour inputs | Number of people employed in tourism industry (number) | |
Desired output | Benefit output | Total tourism revenue (×100 million yuan) |
Total number of tourists (10,000 people) | ||
Undesired outputs | Environmental pollution | Tourism wastewater emission (×10,000 ton) |
Tourism exhaust emission (×10,000 ton) | ||
Tourism fixed waste (×10,000 ton) |
Variables | Indicator | Indicator Description |
---|---|---|
Explained variable | Tourism eco-efficiency (Tee) | Measurement of Super-Efficient SBM Models Based on Undesired Outputs |
Explanatory variable | Human capital (Hc) | (Number of students enrolled in tertiary institutions/total population) × average years of schooling |
Intermediate variable | Tourism industry agglomeration (Tag) | Formulaic measurements based on locational entropy |
Control variable | Foreign investment level (Fdi) | Regional FDI volume/regional GDP |
Government intervention degree (Gov) | Fiscal expenditure/regional GDP by region | |
Tourism consumption capacity (lnPtc) | ln (total tourism revenue/total number of tourists) | |
Industry structure ratio (Is) | Gross tertiary output/regional GDP |
Country | ML | TC | EC | PEC | SEC | Country | ML | TC | EC | PEC | SEC |
---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 1.095 | 1.077 | 1.015 | 1.234 | 0.881 | Henan | 1.180 | 1.159 | 1.030 | 1.007 | 1.018 |
Tianjin | 1.056 | 1.053 | 1.004 | 1.036 | 0.971 | Hubei | 1.128 | 1.141 | 1.000 | 0.974 | 1.021 |
Hebei | 1.309 | 1.124 | 1.170 | 1.153 | 1.002 | Hunan | 1.249 | 1.208 | 1.098 | 1.073 | 1.039 |
Shanxi | 1.256 | 1.146 | 1.101 | 1.095 | 1.004 | Guangdong | 1.004 | 1.013 | 0.992 | 0.992 | 1.001 |
Inner Mongolia | 1.167 | 1.105 | 1.057 | 1.033 | 1.025 | Guangxi | 1.219 | 1.121 | 1.091 | 1.082 | 1.006 |
Liaoning | 1.221 | 1.124 | 1.089 | 1.060 | 1.080 | Hainan | 1.191 | 1.142 | 1.037 | 1.317 | 1.275 |
Jilin | 1.380 | 1.199 | 1.169 | 1.139 | 1.025 | Chongqing | 1.036 | 1.023 | 1.013 | 1.012 | 1.001 |
Heilongiiang | 0.968 | 1.036 | 0.938 | 0.931 | 0.995 | Sichuan | 0.998 | 1.000 | 0.998 | 0.995 | 1.002 |
Shanghai | 1.039 | 1.031 | 1.008 | 1.016 | 0.992 | Guizhou | 1.013 | 1.009 | 1.000 | 1.000 | 1.001 |
JIangsu | 1.214 | 1.177 | 1.072 | 0.998 | 1.073 | Yunnan | 1.153 | 1.051 | 1.159 | 1.107 | 1.044 |
Zhejiang | 1.118 | 1.076 | 1.089 | 1.043 | 1.073 | Shaanxi | 1.154 | 1.231 | 0.937 | 0.974 | 0.994 |
Anhui | 1.285 | 1.250 | 1.037 | 1.087 | 0.988 | Gansu | 1.287 | 1.382 | 1.149 | 1.077 | 1.014 |
fujian | 1.156 | 1.079 | 1.106 | 1.078 | 1.024 | Qinghai | 1.048 | 1.060 | 1.002 | 1.023 | 1.159 |
Jiangxi | 1.213 | 1.110 | 1.094 | 1.078 | 1.012 | Ningxia | 1.337 | 1.045 | 1.296 | 1.065 | 1.284 |
Shandong | 1.239 | 1.183 | 1.076 | 1.000 | 1.071 | Xinijiang | 1.237 | 1.022 | 1.245 | 1.190 | 1.103 |
Variable | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
Tee | Tee | Tee | Tee | Tee | |
Hc | 3.216 *** | 3.210 *** | 3.208 *** | 3.884 *** | 3.376 *** |
(7.91) | (7.93) | (7.92) | (8.95) | (6.65) | |
Fdi | −0.382 | −0.381 | −0.229 | −0.318 | |
(−0.76) | (−0.76) | (−0.47) | (−0.65) | ||
Gov | −0.156 | −0.152 | −0.208 | ||
(−0.84) | (−0.84) | (−1.16) | |||
lnPtc | −0.254 *** | −0.291 *** | |||
(−4.16) | (−4.54) | ||||
Is | 0.084 * | ||||
(1.80) | |||||
Constant | 0.154 * | 0.164 * | 0.210 ** | 1.852 *** | 2.112 *** |
(1.73) | (1.84) | (2.02) | (4.55) | (4.91) | |
Wald test | 62.64 *** | 63.71 *** | 64.20 *** | 82.74 *** | 87.85 *** |
LR test | 220.80 *** | 219.50 *** | 217.70 *** | 215.76 *** | 210.13 *** |
Log likelihood | 47.201 | 47.493 | 47.85 | 56.275 | 57.875 |
Obs | 300 | 300 | 300 | 300 | 300 |
N | 30 | 30 | 30 | 30 | 30 |
Variable | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
Chc | Lhc | Entropy Method | 2011–2018 | Ivreg | |
Hc | 35.453 *** | 0.168 *** | 1.596 *** | 3.416 *** | 4.1933 *** |
(7.03) | (3.30) | (6.30) | (5.07) | (1.331) | |
Fdi | −0.333 | −0.605 | −0.443 | −0.354 | −1.8205 ** |
(−0.69) | (−1.19) | (−0.91) | (−0.62) | (0.752) | |
Gov | −0.261 | −0.161 | −0.121 | −0.276 | −0.2665 *** |
(−1.47) | (−0.81) | (−0.65) | (−1.46) | (0.091) | |
lnPtc | −0.307 *** | −0.253 *** | −0.294 *** | −0.332 *** | −0.3283 *** |
(−4.79) | (−3.76) | (−4.55) | (−4.29) | (0.048) | |
Is | 0.124 *** | 0.142 ** | 0.062 | 0.128 ** | 0.0293 |
(2.87) | (2.57) | (1.24) | (2.45) | (0.045) | |
Constant | 2.106 *** | 0.848 | 2.228 *** | 2.356 *** | 2.344 *** |
(4.93) | (1.39) | (5.15) | (4.75) | (0.295) | |
Wald test | 94.81 *** | 49.65 *** | 81.82 *** | 50.62 *** | |
LR test | 216.14 *** | 208.09 *** | 210.14 *** | 207.81 *** | |
Log likelihood | 59.806 | 41.956 | 56.036 | 67.477 | |
Kleibergen-Paap rk LM | 12.44 (0.000) | ||||
Kleibergen-Paap rk Wald F | 13.666 (8.96) | ||||
Obs | 300 | 300 | 300 | 240 | 240 |
N | 30 | 30 | 30 | 30 | 30 |
Variable | Eastern Region | Central Region | Western Region | |||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
Hc | 3.573 *** | 2.858 *** | 2.487 *** | 5.125 *** | 3.492 *** | 2.174 ** |
(5.47) | (3.46) | (2.75) | (4.18) | (5.18) | (2.48) | |
Fdi | −0.235 | −2.615 | −2.112 | |||
(−0.58) | (−1.61) | (−0.55) | ||||
Gov | 0.885 | −1.822 ** | −0.468 * | |||
(1.01) | (−2.54) | (−1.74) | ||||
lnPtc | 0.269 ** | −0.204 | −0.523 *** | |||
(2.27) | (−1.45) | (−5.25) | ||||
Is | 0.006 | −0.204 | 0.512 *** | |||
(0.11) | (−1.46) | (3.90) | ||||
Constant | 0.063 | −1.875 ** | 0.283 | 1.893 ** | 0.138 | 3.548 *** |
(0.40) | (−2.42) | (1.52) | (2.23) | (0.97) | (5.10) | |
Wald test | 29.90 *** | 43.57 *** | 7.58 *** | 33.26 *** | 26.85 *** | 66.92 *** |
LR test | 97.61 *** | 87.80 *** | 13.13 *** | 4.00 ** | 117.35 *** | 105.57 *** |
Log likelihood | 42.685 | 48.037 | 2.081 | 14.097 | 15.303 | 29.371 |
Obs | 100 | 100 | 90 | 90 | 110 | 110 |
N | 10 | 10 | 9 | 9 | 11 | 11 |
Variable | Full-Sample Intermediation Mechanism | Full Sample Robustness Intermediation Mechanism | ||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Tag | Tee | Tag | Tee | |
Tag | 0.350 *** | 0.357 *** | ||
(7.90) | (8.49) | |||
Hc | 6.386 *** | 1.874 *** | 2.720 *** | 1.002 *** |
(9.32) | (3.70) | (7.57) | (4.24) | |
Fdi | 1.784 *** | −0.775 * | 1.481 *** | −0.843 * |
(3.39) | (−1.75) | (2.71) | (−1.92) | |
Gov | 0.867 ** | −0.412 ** | 0.973 *** | −0.349 ** |
(2.40) | (−2.43) | (2.62) | (−2.10) | |
lnPtc | 0.665 *** | −0.502 *** | 0.664 *** | −0.511 *** |
(9.15) | (−7.67) | (8.76) | (−7.92) | |
Is | −0.557 *** | 0.214 *** | −0.545 *** | 0.186 *** |
(−8.57) | (4.34) | (−7.64) | (3.67) | |
Constant | −4.303 *** | 3.383 *** | −4.073 *** | 3.465 *** |
(−8.71) | (7.84) | (−7.94) | (8.22) | |
Wald test | 197.02 *** | 169.57 *** | 157.92 *** | 175.25 *** |
LR test | 407.50 *** | 204.65 *** | 387.92 *** | 193.21 *** |
Log likelihood | 18.271 | 87.628 | 6.487 | 89.31 |
Obs | 300 | 300 | 300 | 300 |
N | 30 | 30 | 30 | 30 |
Variable | Eastern Intermediary Mechanism | Central Intermediary Mechanism | Western Intermediary Mechanism | |||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
Tag | Tee | Tag | Tee | Tag | Tee | |
Tag | 0.264 ** | 0.578 *** | 0.312 *** | |||
(2.41) | (7.01) | (4.32) | ||||
Hc | 2.769 *** | 2.385 *** | 5.707 *** | 2.615 ** | 6.455 *** | 0.971 |
(3.42) | (2.80) | (4.36) | (2.51) | (5.65) | (0.97) | |
Fdi | 1.405 *** | −0.559 | 3.713 ** | −4.383 *** | 17.006 *** | −5.105 |
(4.06) | (−1.37) | (2.01) | (−3.18) | (3.87) | (−1.25) | |
Gov | 1.651 ** | 0.731 | 2.424 ** | −2.940 *** | −0.194 | −0.389 |
(2.19) | (0.86) | (2.15) | (−3.83) | (−0.39) | (−1.64) | |
lnPtc | 0.680 *** | 0.085 | 0.588 *** | −0.617 *** | 0.451 *** | −0.614 *** |
(6.45) | (0.60) | (3.81) | (−4.82) | (4.00) | (−6.03) | |
Is | −0.613 *** | 0.140 * | −0.606 *** | 0.134 | 0.265 * | 0.335 ** |
(−11.69) | (1.76) | (−3.53) | (1.01) | (1.66) | (2.44) | |
Constant | −3.850 *** | −0.892 | −4.055 *** | 4.517 *** | −3.303 *** | 4.203 *** |
(−5.44) | (−1.03) | (−4.14) | (5.57) | (−4.05) | (5.73) | |
Wald test | 172.37 *** | 46.09 *** | 76.99 *** | 101.57 *** | 180.4 *** | 95.69 *** |
LR test | 63.24 *** | 93.79 *** | 45.63 *** | 17.10 *** | 202.49 *** | 59.52 *** |
Log likelihood | 55.893 | 51.034 | 7.798 | 34.595 | 16.151 | 38.047 |
Obs | 100 | 100 | 90 | 90 | 110 | 110 |
N | 10 | 10 | 9 | 9 | 11 | 11 |
Threshold Variables | Threshold Number | F-Value | p-Value | Threshold Value | 95% Confidence Interval |
---|---|---|---|---|---|
Tag1 | Single-threshold (q1) | 35.46 ** | 0.023 | 0.853 | [0.845, 0.876] |
Dual-threshold (q2) | 37.94 *** | 0.003 | 1.599 | [1.494, 1.638] | |
Tag2 | Single-threshold (q1) | 33.78 *** | 0.007 | 0.853 | [0.843, 0.867] |
Dual-threshold (q2) | 35.75 *** | 0.003 | 1.599 | [1.494, 1.638] | |
Tis | Single-threshold (q1) | 28.90 *** | 0.007 | 0.108 | [0.101, 0.108] |
Dual-threshold (q2) | 22.37 ** | 0.033 | 0.307 | [0.209, 0.318] |
Variables | (1) | (2) | (3) |
---|---|---|---|
Tee | Tee | Tee | |
0.934 | 0.474 | 2.621 *** | |
(1.36) | (1.37) | (4.10) | |
1.825 *** | 0.920 *** | 3.516 *** | |
(2.81) | (2.83) | (5.50) | |
2.995 *** | 1.555 *** | 4.705 *** | |
(5.00) | (5.13) | (7.59) | |
Fdi | −1.151 ** | −1.247 *** | −0.122 |
(−2.43) | (−2.63) | (−0.26) | |
Gov | −1.242 ** | −1.186 ** | −0.655 |
(−2.47) | (−2.30) | (−1.28) | |
lnPtc | −0.489 *** | −0.486 *** | −0.504 *** |
(−7.19) | (−7.08) | (−6.85) | |
Is | 0.333 *** | 0.330 *** | 0.151 ** |
(5.14) | (4.73) | (2.52) | |
Constant | 3.802 *** | 3.793 *** | 3.615 *** |
(8.20) | (8.21) | (7.41) | |
R-squared | 0.390 | 0.378 | 0.348 |
Obs | 300 | 300 | 300 |
N | 30 | 30 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Wei, M.; Wang, N.; Chen, Q. The Impact of Human Capital and Tourism Industry Agglomeration on China’s Tourism Eco-Efficiency: An Analysis Based on the Undesirable Super-SBM-ML Model. Sustainability 2024, 16, 6918. https://doi.org/10.3390/su16166918
Wang Q, Wei M, Wang N, Chen Q. The Impact of Human Capital and Tourism Industry Agglomeration on China’s Tourism Eco-Efficiency: An Analysis Based on the Undesirable Super-SBM-ML Model. Sustainability. 2024; 16(16):6918. https://doi.org/10.3390/su16166918
Chicago/Turabian StyleWang, Qiao, Meixian Wei, Nan Wang, and Qiuhua Chen. 2024. "The Impact of Human Capital and Tourism Industry Agglomeration on China’s Tourism Eco-Efficiency: An Analysis Based on the Undesirable Super-SBM-ML Model" Sustainability 16, no. 16: 6918. https://doi.org/10.3390/su16166918
APA StyleWang, Q., Wei, M., Wang, N., & Chen, Q. (2024). The Impact of Human Capital and Tourism Industry Agglomeration on China’s Tourism Eco-Efficiency: An Analysis Based on the Undesirable Super-SBM-ML Model. Sustainability, 16(16), 6918. https://doi.org/10.3390/su16166918