Correlation of the Walk Score and Environmental Perceptions with Perceived Neighborhood Walkability: The Quantile Regression Model Approach
Abstract
:1. Introduction
2. Literature Review
2.1. The Walk Score
2.2. Elements of Walkable Neighborhood Environment
2.3. Usefulness of the Quantile Regression Model
3. Materials and Methods
3.1. Study Area and Participant Recruitment
3.2. Measures
3.2.1. The Dependent Variable
3.2.2. The Independent Variables
3.2.3. Control Variables
3.3. Methodology
4. Results
4.1. Effect of the Walk Score on Perceived Neighborhood Walkability
4.2. How Perceptions of the Built Environment Affect Perceived Neighborhood Walkability
4.3. How Individual Characteristics Affect Perceived Neighborhood Walkability
5. Discussion
- Comfort
- Connectivity
- Convenience
- Safety
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oyeyemi, A.L.; Kolo, S.M.; Rufai, A.A.; Oyeyemi, A.Y.; Omotara, B.A.; Sallis, J.F. Associations of Neighborhood Walkability with Sedentary Time in Nigerian Older Adults. Int. J. Environ. Res. Public Health 2019, 16, 1879. [Google Scholar] [CrossRef] [PubMed]
- Oreskovic, N.M.; Charles, P.R.; Shepherd, D.T.; Nelson, K.P.; Bar, M. Attributes of form in the built environment that influence perceived walkability. J. Archit. Plann. Res. 2014, 31, 218–232. [Google Scholar] [PubMed]
- Yu, J.; Yang, C.; Zhao, X.; Zhou, Z.; Zhang, S.; Zhai, D.; Li, J. The associations of built environment with older people recreational walking and physical activity in a Chinese Small-Scale City of Yiwu. Int. J. Environ. Res. Public Health 2021, 18, 2699. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; van Dijk, T.; Wagenaar, C. How the Built Environment Promotes Residents’ Physical Activity: The Importance of a Holistic People-Centered Perspective. Int. J. Environ. Res. Public Health 2022, 19, 5595. [Google Scholar] [CrossRef] [PubMed]
- Reisi, M.; Ahmadi Nadoushan, M.; Aye, L. Local walkability index: Assessing built environment influence on walking. Bull. Geogr. Socioecon. Ser. 2019, 46, 7–21. [Google Scholar] [CrossRef]
- Dyck, D.V.; Cardon, G.; Deforche, B.; De Bourdeaudhuij, I. Do adults like living in high-walkable neighborhoods? Associations of walkability parameters with neighborhood satisfaction and possible mediators. Health Place 2011, 17, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Jensen, W.A.; Brown, B.B.; Smith, K.R.; Brewer, S.C.; Amburgey, J.W.; McIff, B. Active Transportation on a Complete Street: Perceived and Audited Walkability Correlates. Int. J. Environ. Res. Public Health 2017, 14, 1014. [Google Scholar] [CrossRef] [PubMed]
- Ton, D.; Duives, D.C.; Cats, O.; Hoogendoorn-Lanser, S.; Hoogendoorn, S.P. Cycling or walking? Determinants of mode choice in the Netherlands. Transp. Res. Part A Policy Pract. 2019, 123, 7–23. [Google Scholar] [CrossRef]
- Latinopoulos, C.; Patrier, A.; Sivakumar, A. Planning for e-scooter use in metropolitan cities: A case study for Paris. Transp. Res. Part D Transp. Environ. 2021, 100, 103037. [Google Scholar] [CrossRef]
- Zagorskas, J.; Burinskienė, M. Challenges Caused by Increased Use of E-Powered Personal Mobility Vehicles in European Cities. Sustainability 2020, 12, 273. [Google Scholar] [CrossRef]
- Jie, F.; Standing, C.; Biermann, S.; Standing, S.; Le, T. Factors affecting the adoption of shared mobility systems: Evidence from Australia. Res. Transp. Bus. Manag. 2021, 41, 100651. [Google Scholar] [CrossRef]
- Rafiemanzelat, R.; Emadi, M.I.; Kamali, A.J. City sustainability: The influence of walkability on built environments. Transp. Res. Procedia. 2017, 24, 97–104. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, J.; Xiao, L. Built environment correlates of walking for transportation: Differences between commuting and non-commuting trips. J. Transp. Land Use 2021, 14, 1129–1148. [Google Scholar] [CrossRef]
- Fonseca, F.; Papageorgiou, G.; Tondelli, S.; Ribeiro, P.; Conticelli, E.; Jabbari, M.; Ramos, R. Perceived walkability and respective urban determinants: Insights from Bologna and Porto. Sustainability 2022, 14, 9089. [Google Scholar] [CrossRef]
- Xiao, L.; Yang, L.; Liu, J.; Yang, H. Built Environment Correlates of the Propensity of Walking and Cycling. Sustainability 2020, 12, 8752. [Google Scholar] [CrossRef]
- Zeng, F.; Shen, Z. Study on the Impact of Historic District Built Environment and Its Influence on Residents’ Walking Trips: A Case Study of Zhangzhou Ancient City’s Historic District. Int. J. Environ. Res. Public Health 2020, 17, 4367. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-S.; Shepley, M.M. Perceived neighborhood environments and leisure-time walking among Korean adults: An application of the theory of planned behavior. Health Environ. Res. Des. J. 2012, 5, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Vale, D.S.; Pereira, M. Influence on pedestrian commuting behavior of the built environment surrounding destinations: A structural equations modeling approach. Int. J. Sustain. Transp. 2016, 10, 730–741. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Páez, A. An investigation of the attributes of walkable environments from the perspective of seniors in Montreal. J. Transp. Geogr. 2016, 51, 85–96. [Google Scholar] [CrossRef]
- Gerike, R.; Koszowski, C.; Schröter, B.; Buehler, R.; Schepers, P.; Weber, J.; Wittwer, R.; Jones, P. Built Environment Determinants of Pedestrian Activities and Their Consideration in Urban Street Design. Sustainability 2021, 13, 9362. [Google Scholar] [CrossRef]
- Su, M.; Tan, Y.-y.; Liu, Q.-m.; Ren, Y.-j.; Kawachi, I.; Li, L.-m.; Lv, J. Association between perceived urban built environment attributes and leisure-time physical activity among adults in Hangzhou, China. Prev. Med. 2014, 66, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Saadi, I.; Aganze, R.; Moeinaddini, M.; Asadi-Shekari, Z.; Cools, M. A Participatory Assessment of Perceived Neighbourhood Walkability in a Small Urban Environment. Sustainability 2022, 14, 206. [Google Scholar] [CrossRef]
- Arellana, J.; Saltarín, M.; Larrañaga, A.M.; Alvarez, V.; Henao, C.A. Urban walkability considering pedestrians’ perceptions of the built environment: A 10-year review and a case study in a medium-sized city in Latin America. Transp. Rev. 2020, 40, 183–203. [Google Scholar] [CrossRef]
- Walk Score. Walk Score Professional. Available online: https://www.walkscore.com/professional/why-walkscore.php (accessed on 15 December 2022).
- Zhang, J.; Tan, P.Y.; Zeng, H.; Zhang, Y. Walkability Assessment in a Rapidly Urbanizing City and Its Relationship with Residential Estate Value. Sustainability 2019, 11, 2205. [Google Scholar] [CrossRef]
- Kim, E.J.; Won, J.; Kim, J. Is Seoul Walkable? Assessing a Walkability Score and Examining Its Relationship with Pedestrian Satisfaction in Seoul, Korea. Sustainability 2019, 11, 6915. [Google Scholar] [CrossRef]
- Cerin, E.; Sit, C.H.P.; Barnett, A.; Johnston, J.M.; Cheung, M.-C.; Chan, W.-M. Ageing in an ultra-dense metropolis: Perceived neighbourhood characteristics and utilitarian walking in Hong Kong elders. Public Health Nutr. 2014, 17, 225–232. [Google Scholar] [CrossRef]
- Kim, E.J.; Kim, Y.-J. A Reliability Check of Walkability Indices in Seoul, Korea. Sustainability 2020, 12, 176. [Google Scholar] [CrossRef]
- Towne, S.D.; Won, J.; Lee, S.; Ory, M.G.; Forjuoh, S.N.; Wang, S.; Lee, C. Using walk score™ and neighborhood perceptions to assess walking among middle-aged and older adults. J. Community Health 2016, 41, 977–988. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, F.; Ribeiro, P.J.G.; Conticelli, E.; Jabbari, M.; Papageorgiou, G.; Tondelli, S.; Ramos, R.A.R. Built environment attributes and their influence on walkability. Int. J. Sustain. Transp. 2022, 16, 660–679. [Google Scholar] [CrossRef]
- De Vos, J.; Lättman, K.; van der Vlugt, A.-L.; Welsch, J.; Otsuka, N. Determinants and effects of perceived walkability: A literature review, conceptual model and research agenda. Transp. Rev. 2023, 43, 303–324. [Google Scholar] [CrossRef]
- Rivera-Navarro, J.; Bonilla, L.; Gullón, P.; González-Salgado, I.; Franco, M. Can we improve our neighbourhoods to be more physically active? Residents’ perceptions from a qualitative urban health inequalities study. Health Place 2022, 77, 102658. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Park, S.; Lee, J.S. Meso- or micro-scale? Environmental factors influencing pedestrian satisfaction. Transp. Res. Part D Transp. Environ. 2014, 30, 10–20. [Google Scholar] [CrossRef]
- Adkins, A.; Dill, J.; Luhr, G.; Neal, M. Unpacking walkability: Testing the influence of urban design features on perceptions of walking environment attractiveness. J. Urban Des. 2012, 17, 499–510. [Google Scholar] [CrossRef]
- Camhi, S.M.; Troped, P.J.; Garvey, M.; Hayman, L.L.; Must, A.; Lichtenstein, A.H.; Crouter, S.E. Associations between Walk Score and objective measures of physical activity in urban overweight and obese women. PLoS ONE 2019, 14, e0214092. [Google Scholar] [CrossRef] [PubMed]
- Wasfi, R.A.; Dasgupta, K.; Orpana, H.; Ross, N.A. Neighborhood walkability and Body Mass Index trajectories: Longitudinal Study of Canadians. Am. J. Public Health 2016, 106, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Cole, R.; Dunn, P.; Hunter, I.; Owen, N.; Sugiyama, T. Walk Score and Australian adults’ home-based walking for transport. Health Place 2015, 35, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.C.; Pantin, H.; Lombard, J.; Toro, M.; Huang, S.; Plater-Zyberk, E.; Perrino, T.; Perez-Gomez, G.; Barrera-Allen, L.; Szapocznik, J. Walk Score®: Associations with purposive walking in recent Cuban immigrants. Am. J. Prev. Med. 2013, 45, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Koohsari, M.J.; Sugiyama, T.; Hanibuchi, T.; Shibata, A.; Ishii, K.; Liao, Y.; Oka, K. Validity of Walk Score® as a measure of neighborhood walkability in Japan. Prev. Med. Rep. 2018, 9, 114–117. [Google Scholar] [CrossRef] [PubMed]
- Khder, H.M.; Mousavi, S.M.; Khan, T.H. Impact of Street’s Physical Elements on Walkability: A Case of Mawlawi Street in Sulaymaniyah, Iraq. Int. J. Built Environ. Sustain. 2016, 3, 18–26. [Google Scholar] [CrossRef]
- Moura, F.; Cambra, P.; Gonçalves, A.B. Measuring walkability for distinct pedestrian groups with a participatory assessment method: A case study in Lisbon. Landsc. Urban Plan. 2017, 157, 282–296. [Google Scholar] [CrossRef]
- Papageorgiou, G.; Maimaris, A.; Efstathiadou, T.; Balamou, E. Evaluating Attitudes on the Quality of Service of Pedestrian Networks. WIT Trans. Built Environ. 2017, 176, 35–41. [Google Scholar] [CrossRef]
- Arisar, U.; Talpur, M.A.H.; Shar, B.; Ali, M.; Khoso, A. Influence of design characteristics on walkability A study on MUET Campus Jamshoro. Int. J. Eng. Technol. 2018, 2, 13–16. [Google Scholar]
- Harun, N.Z.; Nashar, A.; Bachok, S. Walkability factors for a campus street. Plan. Malays. 2020, 18. [Google Scholar] [CrossRef]
- Naharudin, N.; Salleh, A.H.; Halim, M.A.; Latif, Z.A. Conceptual Framework for Walkability Assessment for Pedestrian Access to Rail Transit Services by using Spatial-MCDA. IOP Conf. Ser. Earth Environ. Sci. 2020, 540, 012023. [Google Scholar] [CrossRef]
- Manzolli, J.A.; Oliveira, A.; Neto, M.D. Evaluating Walkability through a Multi-Criteria Decision Analysis Approach: A Lisbon Case Study. Sustainability 2021, 13, 1450. [Google Scholar] [CrossRef]
- Darmawan, A.M.; Rahmi, D.H. Quality of walkability in Peunayong, Banda Aceh. Built Environ. Stud. 2021, 2, 43–50. [Google Scholar] [CrossRef]
- Loo, B.P.Y. Walking towards a happy city. J. Transp. Geogr. 2021, 93, 103078. [Google Scholar] [CrossRef]
- Fonseca, F.; Fernandes, E.; Ramos, R. Walkable Cities: Using the Smart Pedestrian Net Method for Evaluating a Pedestrian Network in Guimarães, Portugal. Sustainability 2022, 14, 10306. [Google Scholar] [CrossRef]
- Sukor, N.S.A.; Fisal, S.F.M. Safety, Connectivity, and Comfortability as Improvement Indicators of Walkability to the Bus Stops in Penang Island. Eng. Technol. Appl. Sci. Res. 2020, 10, 6450–6455. [Google Scholar] [CrossRef]
- Hassan, D.K.; Elkhateeb, A. Walking experience: Exploring the trilateral interrelation of walkability, temporal perception, and urban ambiance. Front. Arch. Res. 2021, 10, 516–539. [Google Scholar] [CrossRef]
- Kim, E.J.; Jin, S. Walk Score and Neighborhood Walkability: A Case Study of Daegu, South Korea. Int. J. Environ. Res. Public Health 2023, 20, 4246. [Google Scholar] [CrossRef] [PubMed]
- Koohsari, M.J.; Sugiyama, T.; Lamb, K.E.; Villanueva, K.; Owen, N. Street connectivity and walking for transport: Role of neighborhood destinations. Prev. Med. 2014, 66, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Jia, C.; Winter, S. Measuring Perceived Walkability at the City Scale Using Open Data. Land 2024, 13, 261. [Google Scholar] [CrossRef]
- Herrmann-Lunecke, M.G.; Mora, R.; Vejares, P. Perception of the built environment and walking in pericentral neighbourhoods in Santiago, Chile. Travel Behav. Soc. 2021, 23, 192–206. [Google Scholar] [CrossRef]
- Zumelzu, A.; Estrada, M.; Moya, M.; Troppa, J. Experiencing Public Spaces in Southern Chile: Analysing the Effects of the Built Environment on Walking Perceptions. Int. J. Environ. Res. Public Health 2022, 19, 12577. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-J. Understanding the determinants on household electricity consumption in Korea: OLS regression and quantile regression. Electr. J. 2020, 33, 106802. [Google Scholar] [CrossRef]
- Yuan, H.; Golpelwar, M. Testing subjective well-being from the perspective of social quality: Quantile regression evidence from Shanghai, China. Soc. Indic. Res. 2013, 113, 257–276. [Google Scholar] [CrossRef]
- Gim, T.H.T. Quantile regression on the nonlinear relationship between land use and trip time. Pap. Reg. Sci. 2021, 100, 1055–1078. [Google Scholar] [CrossRef]
- Binder, M.; Coad, A. From Average Joe’s happiness to Miserable Jane and Cheerful John: Using quantile regressions to analyze the full subjective well-being distribution. J. Econ. Behav. Oragan. 2011, 79, 275–290. [Google Scholar] [CrossRef]
- McCord, M.J.; Davis, P.T.; Bidanset, P.; McCluskey, W.; McCord, J.; Haran, M.; MacIntyre, S. House prices and neighbourhood amenities: Beyond the norm? Int. J. Hous. Mark. Anal. 2018, 11, 263–289. [Google Scholar] [CrossRef]
- Perez-Sanchez, V.R.; Serrano-Estrada, L.; Marti, P.; Mora-Garcia, R.-T. The What, Where, and Why of Airbnb Price Determinants. Sustainability 2018, 10, 4596. [Google Scholar] [CrossRef]
- Giambona, F.; Porcu, M. Student background determinants of reading achievement in Italy. A quantile regression analysis. Int. J. Educ. Dev. 2015, 44, 95–107. [Google Scholar] [CrossRef]
- Petscher, Y.; Logan, J.A.R. Quantile regression in the study of developmental sciences. Child Dev. 2014, 85, 861–881. [Google Scholar] [CrossRef]
- Jun, H.-J.; Hur, M. The relationship between walkability and neighborhood social environment: The importance of physical and perceived walkability. Appl. Geogr. 2015, 62, 115–124. [Google Scholar] [CrossRef]
- Rani, K.; Boora, A.; Gr, B.; Parida, M. Which Factors Affect “Walkability” of Pedestrians on Sidewalk in Indian cities? Proc. East. Asia Soc. Transp. Stud. 2018, 11, 1–19. [Google Scholar]
- Bornioli, A.; Parkhurst, G.; Morgan, P.L. Affective experiences of built environments and the promotion of urban walking. Transp. Res. Part A Policy Pract. 2019, 123, 200–215. [Google Scholar] [CrossRef]
- Chung, U.-K. A Basic Study on the Development of Pedestrian Friendly City in Daegu; Daegu Gyeongbuk Development Institute: Daegu, Republic of Korea, 2018. [Google Scholar]
- Walk Score. Walk Score Methodology. Available online: https://www.walkscore.com/methodology.shtml (accessed on 27 May 2022).
- D-Data Hub. Available online: https://data.daegu.go.kr/open/main.do (accessed on 13 May 2022).
- Financial Supervisory Service of Korea. Available online: https://www.fcsc.kr/ (accessed on 25 May 2022).
- Road Name Address. Available online: https://business.juso.go.kr/addrlink/main.do (accessed on 1 June 2022).
- BigData MarketC. Available online: https://www.bigdata-culture.kr/bigdata/user/data_market/detail.do?id=33660160-404b-11eb-af9a-4b03f0a582d6 (accessed on 1 June 2022).
- Spatial Information Open Platform. Available online: https://www.vworld.kr/dtmk/dtmk_ntads_s001.do (accessed on 27 May 2022).
- Koenker, R.; Bassett, G. Regression quantiles. Econometrica 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Dall’Oglio, A.M.; Rossiello, B.; Coletti, M.F.; Caselli, M.C.; Ravà, L.; Di Ciommo, V.; Orzalesi, M.; Giannantoni, P.; Pasqualetti, P. Developmental evaluation at age 4: Validity of an Italian parental questionnaire. J. Paediatr. Child Health 2010, 46, 419–426. [Google Scholar] [CrossRef]
- Dall’Oglio, I.; Nicolò, R.; Di Ciommo, V.; Bianchi, N.; Ciliento, G.; Gawronski, O.; Pomponi, M.; Roberti, M.; Tiozzo, E.; Raponi, M. A Systematic Review of Hospital Foodservice Patient Satisfaction Studies. J. Acad. Nutr. Diet. 2015, 115, 567–584. [Google Scholar] [CrossRef]
- Nguyen, M.C.; Gabbe, S.G.; Kemper, K.J.; Mahan, J.D.; Cheavens, J.S.; Moffatt-Bruce, S.D. Training on mind-body skills: Feasibility and effects on physician mindfulness, compassion, and associated effects on stress, burnout, and clinical outcomes. J. Posit. Psychol. 2020, 15, 194–207. [Google Scholar] [CrossRef]
- Singh, R. Factors affecting walkability of neighborhoods. Procedia Soc. Behav. Sci. 2016, 216, 643–654. [Google Scholar] [CrossRef]
- Barton, J.; Hine, R.; Pretty, J. The health benefits of walking in greenspaces of high natural and heritage value. J. Intergr. Environ. Sci. 2009, 6, 261–278. [Google Scholar] [CrossRef]
- Villanueva, K.; Knuiman, M.; Nathan, A.; Giles-Corti, B.; Christian, H.; Foster, S.; Bull, F. The impact of neighborhood walkability on walking: Does it differ across adult life stage and does neighborhood buffer size matter? Health Place 2014, 25, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Barros, A.P.; Martínez, L.M.; Viegas, J.M. How urban form promotes walkability? Transp. Res. Procedia. 2017, 27, 133–140. [Google Scholar] [CrossRef]
Element | [40] | [41] | [42] | [43] | [44] | [45] | [46] | [47] | [48] | [49] | Elements Used in This Study |
---|---|---|---|---|---|---|---|---|---|---|---|
Accessibility | x | x | |||||||||
Attractiveness | x | ||||||||||
Coexistence | x | ||||||||||
Comfort | x | x | x | x | x | x | x | x | x | x | |
Commitment | x | ||||||||||
Connectivity | x | x | x | x | x | x | x | x | x | ||
Conspicuousness | x | x | x | x | |||||||
Convenience | x | x | x | x | x | x | x | x | x | x | |
Conviviality | x | x | x | x | |||||||
Ease | x | ||||||||||
Mobility | x | ||||||||||
Safety | x | x | x | x | x | x | x | x |
Category | Total Count | Weight | Data Source |
---|---|---|---|
Access to amenities | |||
Grocery stores | 1 | 3 | [70] |
Restaurants | 10 | 0.75, 0.45, 0.25, 0.25, 0.225, 0.225, 0.225, 0.225, 0.2, 0.2 | |
Shopping | 5 | 0.5, 0.45, 0.4, 0.35, 0.3 | |
Coffee | 2 | 1.25, 0.75 | |
Banks | 1 | 1 | [71] |
Parks | 1 | 1 | [72] |
Schools | 1 | 1 | |
Books | 1 | 1 | [73] |
Entertainment | 1 | 1 | [70] |
Pedestrian friendliness | |||
Intersection density (intersections per square miles) | Over 200: no penalty 150–200: 1% penalty 120–150: 2% penalty 90–120: 3% penalty 60–90: 4% penalty Under 60: 5% penalty | [74] | |
Average block length (in meters) | Under 120 m: no penalty 120–150 m: 1% penalty 150–165 m: 2% penalty 165–180 m: 3% penalty 180–195 m: 4% penalty Over 195 m: 5% penalty |
Variable(s) | Description | Frequency (%) | Mean (SD) | |
---|---|---|---|---|
Dependent variable | ||||
Perceived neighborhood walkability | Continuous: 0–100 | 76.10 (17.57) | ||
Independent variables | ||||
Walk score a | Continuous: 0–100 | 77.73 (9.24) | ||
Perceptions of the built environment | ||||
Comfort | Green spaces | Categorical: 1 = strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, 5 = strongly agree | 3.57 (1.07) | |
Natural scenery | 2.96 (1.22) | |||
Street cleanliness | 3.16 (1.04) | |||
Odors and smoke | 2.59 (1.02) | |||
Noise level | 2.85 (1.10) | |||
Connectivity | Multiple alternative routes | 3.77 (0.98) | ||
Sidewalk connections | 3.54 (1.05) | |||
Pedestrian obstacles | 2.52 (1.03) | |||
Convenience | Various facilities | 4.03 (0.92) | ||
Sidewalk width | 3.49 (1.12) | |||
Sidewalk conditions | 3.61 (0.98) | |||
Hills and stairs | 2.44 (1.09) | |||
Pedestrian shelters | 3.29 (1.17) | |||
Safety | Pedestrian segregation | 3.69 (1.06) | ||
Crosswalk and traffic lights | 3.81 (0.87) | |||
Traffic volume | 3.86 (0.91) | |||
Security facilities | 3.64 (0.92) | |||
Control variables | ||||
Individual characteristics | Gender | Binary: 0 = male 1 = female | 139 (37.5) 232 (62.5) | |
Age | Continuous: Age | 34.80 (14.46) | ||
Perceived distance of neighborhood unit | Categorical: 1 = less than 400 m radius (5 min walk), 2 = 400–800 m radius (10 min walk), 3 = 800 m–1.6 km radius (20 min walk), 4 = 1.6 km–2.4 km radius (30 min walk), 5 = more than 2.4 km radius (more than 30 min walk) | 3.11 (1.00) | ||
Car ownership | Binary: 0 = no 1 = yes | 213 (57.4) 158 (42.6) |
Variables | Quantile Regression | |||||
---|---|---|---|---|---|---|
Q10 | Q25 | Q50 | Q75 | Q90 | ||
Walk score | 0.412 ** (0.201) | 0.192 (0.176) | −0.071 (0.086) | −0.022 (0.054) | −0.092 * (0.049) | |
Perceptions of the built environment | ||||||
Comfort | Green spaces | 5.371 *** (1.703) | 2.647 ** (1.220) | 2.306 *** (0.722) | 3.010 *** (0.545) | 1.743 * (0.906) |
Street cleanliness | −1.921 (1.590) | 0.035 (1.054) | 0.150 (0.745) | 0.154 (0.596) | 0.490 (0.667) | |
Odors and smoke | −1.095 (1.469) | −1.624 (1.065) | −2.480 *** (0.634) | −2.249 *** (0.502) | −1.600 * (0.941) | |
Connectivity | Multiple alternative routes | 6.458 *** (1.886) | 5.472 *** (1.267) | 3.611 *** (0.815) | 3.817 *** (0.796) | 2.625 *** (0.760) |
Convenience | Sidewalk width | 3.664 ** (1.432) | 1.550 (1.084) | 1.272 (0.824) | 0.861 (0.635) | 1.149 (0.895) |
Hills and stairs | −2.826 * (1.615) | −3.132 *** (0.984) | −1.546 ** (0.736) | −0.742 (0.532) | −0.665 (0.685) | |
Safety | Traffic volume | −3.872 *** (1.212) | −1.190 (1.226) | −0.007 (0.749) | −0.163 (0.506) | −0.102 (0.765) |
Security facilities | 1.795 (2.080) | −0.382 (1.429) | 1.794 * (0.942) | −0.197 (0.841) | 0.085 (0.961) | |
Individual characteristics | ||||||
Gender (ref. male) | −0.486 (3.283) | 0.122 (1.973) | 1.026 (1.377) | 0.255 (0.963) | 1.600 (1.158) | |
Age | 0.105 (0.101) | −0.090 (0.059) | −0.080 (0.051) | 0.006 (0.056) | 0.027 (0.050) | |
Perceived distance of neighborhood unit | 3.723 ** (1.586) | 0.484 (1.039) | 1.090 (0.687) | 0.220 (0.552) | 0.412 (0.691) | |
Car ownership (ref. no) | −3.989 (4.203) | −1.939 (2.179) | −0.625 (1.656) | 0.543 (0.978) | 0.469 (1.144) | |
(Intercept) | −20.744 (14.382) | 38.971 ** (15.389) | 59.497 *** (8.340) | 66.572 *** (5.901) | 78.482 *** (6.919) | |
R2 | 0.260 | 0.188 | 0.185 | 0.163 | 0.167 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, S.; Kim, E.J. Correlation of the Walk Score and Environmental Perceptions with Perceived Neighborhood Walkability: The Quantile Regression Model Approach. Sustainability 2024, 16, 7074. https://doi.org/10.3390/su16167074
Jin S, Kim EJ. Correlation of the Walk Score and Environmental Perceptions with Perceived Neighborhood Walkability: The Quantile Regression Model Approach. Sustainability. 2024; 16(16):7074. https://doi.org/10.3390/su16167074
Chicago/Turabian StyleJin, Suin, and Eun Jung Kim. 2024. "Correlation of the Walk Score and Environmental Perceptions with Perceived Neighborhood Walkability: The Quantile Regression Model Approach" Sustainability 16, no. 16: 7074. https://doi.org/10.3390/su16167074
APA StyleJin, S., & Kim, E. J. (2024). Correlation of the Walk Score and Environmental Perceptions with Perceived Neighborhood Walkability: The Quantile Regression Model Approach. Sustainability, 16(16), 7074. https://doi.org/10.3390/su16167074