Neural Network for Sky Darkness Level Prediction in Rural Areas
Abstract
:1. Introduction
Conceptual Framework
2. Data Collection
2.1. Location
2.2. Equipment
3. Multilayer Perceptron Development
4. Results and Discussion
5. Conclusions
5.1. Limitations/Future Lines of Research
5.2. Contribution to the Academic and Local Community
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gosnell, H.; Abrams, J. Amenity Migration: Diverse Conceptualizations of Drivers, Socioeconomic Dimensions, and Emerging Challenges. GeoJournal 2011, 76, 303–322. [Google Scholar] [CrossRef]
- Demográfico, R. Ministerio Para La Transición Ecológica y El Reto Demográfico. Available online: https://www.miteco.gob.es/es/reto-demografico/temas/que-es.html (accessed on 21 May 2024).
- Mihalic, T. Sustainable-Responsible Tourism Discourse–Towards ‘Responsustable’ Tourism. J. Clean. Prod. 2016, 111, 461–470. [Google Scholar] [CrossRef]
- Abdollahzadeh, G.; Sharifzadeh, A. Rural Residents’ Perceptions Toward Tourism Development: A Study from Iran. Int. J. Tour. Res. 2014, 16, 126–136. [Google Scholar] [CrossRef]
- Butler, R.W. Sustainable Tourism: A State-of-the-art Review. Tour. Geogr. 1999, 1, 7–25. [Google Scholar] [CrossRef]
- Jacobs, L.; Du Preez, E.A.; Fairer-Wessels, F. To Wish upon a Star: Exploring Astro Tourism as Vehicle for Sustainable Rural Development. Dev. South Afr. 2020, 37, 87–104. [Google Scholar] [CrossRef]
- Varela Perez, A.M. The Increasing Effects of Light Pollution on Professional and Amateur Astronomy. Science 2023, 380, 1136–1140. [Google Scholar] [CrossRef]
- Vargas-Sánchez, A.; Fotiadis, A.; Manuel Alcaraz, J.; Castellanos-Verdugo, M.; Manuel Hernández-Mogollón, J.; Pierre Levy-Mangin, J.; Manuel Berbel-Pineda, J.; José Martínez-López, F.; Riquel-Ligero, F.; Miguel Rodríguez-Antón, J.; et al. Astrotourism: A Literature Review and Framework for Future Research. Enlight. Tour. Pathmak. J. 2021, 11, 291–331. [Google Scholar] [CrossRef]
- Rodrigues, Á.; Loureiro, S.M.C.; Lins de Moraes, M.; Pereira, R.G. Memorable Tourism Experience in the Context of Astrotourism. Anatolia 2023, 34, 235–247. [Google Scholar] [CrossRef]
- Dalgleish, H.; Mengistie, G.; Backes, M.; Cotter, G.; Kasai, E. How Can Astrotourism Serve the Sustainable Development Goals? The Namibian Example. arXiv 2021, arXiv:2109.04790. [Google Scholar]
- Kanianska, R.; Škvareninová, J.; Kaniansky, S. Landscape Potential and Light Pollution as Key Factors for Astrotourism Development: A Case Study of a Slovak Upland Region. Land 2020, 9, 374. [Google Scholar] [CrossRef]
- SAWADA Koki, Y.T.O.M. Astrotourism and Sustainable Development: A Case Study of Y Oron Island, Kagoshima Prefecture, Japan. Wakayama Tour. Rev. 2023, 4, 21–24. [Google Scholar] [CrossRef]
- Govender, K. Astronomy for African Development. Proc. Int. Astron. Union 2009, 5, 577–586. [Google Scholar] [CrossRef]
- Davies, A. COVID-19 and ICT-Supported Remote Working: Opportunities for Rural Economies. World 2021, 2, 139–152. [Google Scholar] [CrossRef]
- Torabi, Z.A.; Pourtaheri, M.; Hall, C.M.; Sharifi, A.; Javidi, F. Smart Tourism Technologies, Revisit Intention, and Word-of-Mouth in Emerging and Smart Rural Destinations. Sustainability 2023, 15, 10911. [Google Scholar] [CrossRef]
- Green, R.F.; Luginbuhl, C.B.; Wainscoat, R.J.; Duriscoe, D. The Growing Threat of Light Pollution to Ground-Based Observatories. Astron. Astrophys. Rev. 2022, 30, 1. [Google Scholar] [CrossRef]
- Garstang, R.H. Model for Artificial Night-Sky Illumination. Publ. Astron. Soc. Pac. 1986, 98, 364. [Google Scholar] [CrossRef]
- Garstang, R.H. Predictions of Seasonal Variations in Night Sky Brightness. Observatory 1988, 108, 159–161. [Google Scholar]
- Solano Lamphar, H.A. The Emission Function of Ground-Based Light Sources: State of the Art and Research Challenges. J. Quant. Spectrosc. Radiat. Transf. 2018, 211, 35–43. [Google Scholar] [CrossRef]
- Garstang, R.H. Dust and Light Pollution. Publ. Astron. Soc. Pac. 1991, 103, 1109. [Google Scholar] [CrossRef]
- Garstang, R.H.; Wilson, M.; Palomar, M.; Peak, K.; Peak, S.; Kea, M.; Pedro Mártir, S.; Hopkins, M.; Lemmon, M. Night Sky Brightness at Observatories and Sites. Publ. Astron. Soc. Pac. 1989, 101, 306. [Google Scholar] [CrossRef]
- Garstang, R.H.; Garstang, H.R. Further Light Pollution Calculations. AAS 1992, 180, 9. [Google Scholar]
- Garstang, R.H.; Millis, R.L.; Franz, O.G.; Ables, H.D.; Dahn, C.C. Identification, Optimization and Protection of Optical Observatory Sites; Lowell Observatory: Flagstaff, AZ, USA, 1987; pp. 199–202. [Google Scholar]
- Cinzano, P.; Elvidge, C.D. Night Sky Brightness at Sites from DMSP-OLS Satellite Measurements. Mon. Not. R. Astron. Soc. 2004, 353, 1107–1116. [Google Scholar] [CrossRef]
- Cinzano, P. Measuring and Modelling Light Pollution. Soc. Astron. Ital. 2000, 71, 1–2000. [Google Scholar]
- Kyba, C.C.M.; Tong, K.P.; Bennie, J.; Birriel, I.; Birriel, J.J.; Cool, A.; Danielsen, A.; Davies, T.W.; Den Outer, P.N.; Edwards, W.; et al. Worldwide Variations in Artificial Skyglow. Sci. Rep. 2015, 5, 8409. [Google Scholar] [CrossRef]
- Aubé, M.; Kocifaj, M.; Zamorano, J.; Solano Lamphar, H.A.; Sanchez de Miguel, A. The Spectral Amplification Effect of Clouds to the Night Sky Radiance in Madrid. J. Quant. Spectrosc. Radiat. Transf. 2016, 181, 11–23. [Google Scholar] [CrossRef]
- Kómar, L.; Nečas, A. Effect of Cloud Micro-Physics on Zenith Brightness in Urban Environment. J. Quant. Spectrosc. Radiat. Transf. 2023, 302, 108563. [Google Scholar] [CrossRef]
- Puschnig, J.; Schwope, A.; Posch, T.; Schwarz, R. The Night Sky Brightness at Potsdam-Babelsberg Including Overcast and Moonlit Conditions. J. Quant. Spectrosc. Radiat. Transf. 2014, 139, 76–81. [Google Scholar] [CrossRef]
- Puschnig, J.; Wallner, S.; Posch, T. Circalunar Variations of the Night Sky Brightness–an FFT Perspective on the Impact of Light Pollution. Mon. Not. R. Astron. Soc. 2020, 492, 2622–2637. [Google Scholar] [CrossRef]
- Pun, C.S.J.; So, C.W.; Leung, W.Y.; Wong, C.F. Contributions of Artificial Lighting Sources on Light Pollution in Hong Kong Measured through a Night Sky Brightness Monitoring Network. J. Quant. Spectrosc. Radiat. Transf. 2014, 139, 90–108. [Google Scholar] [CrossRef]
- Kocifaj, M.; Kómar, L.; Lamphar, H.; Barentine, J.; Wallner, A.S. A Systematic Light Pollution Modelling Bias in Present Night Sky Brightness Predictions. Nat. Astron. 2023, 7, 269–279. [Google Scholar] [CrossRef]
- Slingo, J.; Palmer, T. Uncertainty in Weather and Climate Prediction. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 4751–4767. [Google Scholar] [CrossRef]
- C-Sánchez, E.; Sánchez-Medina, A.J.; Alonso-Hernández, J.B.; Voltes-Dorta, A. Astrotourism and Night Sky Brightness Forecast: First Probabilistic Model Approach. Sensors 2019, 19, 2840. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Martín, A.; Bocho-Roas, A.; Carmona-Fernández, D.; Calderón-Godoy, M.; Jaramillo-Morán, M.Á.; González, J.F. Influence of Illumination Parameters on Night Sky Observation in Rural Areas. Sustainability 2023, 15, 9359. [Google Scholar] [CrossRef]
- Jaramillo-Morán, M.A.; García-García, A. Applying Artificial Neural Networks to Forecast European Union Allowance Prices: The Effect of Information from Pollutant-Related Sectors. Energies 2019, 12, 4439. [Google Scholar] [CrossRef]
- García, A.; Jaramillo-Morán, M.A. Short-Term European Union Allowance Price Forecasting with Artificial Neural Networks. Entrep. Sustain. Issues 2020, 8, 261–275. [Google Scholar] [CrossRef]
- Lazcano, A.; Jaramillo-Morán, M.A.; Sandubete, J.E. Back to Basics: The Power of the Multilayer Perceptron in Financial Time Series Forecasting. Mathematics 2024, 12, 1920. [Google Scholar] [CrossRef]
- Lago, J.; De Ridder, F.; De Schutter, B. Forecasting Spot Electricity Prices: Deep Learning Approaches and Empirical Comparison of Traditional Algorithms. Appl. Energy 2018, 221, 386–405. [Google Scholar] [CrossRef]
- Interreg Globaltur Euroace. Available online: https://globaltur.eu/ (accessed on 16 December 2022).
- Riza, L.S.; Izzuddin, A.; Utama, J.A.; Samah, K.A.F.A.; Herdiwijaya, D.; Hidayat, T.; Anugraha, R.; Mumpuni, E.S. Data Analysis Techniques in Light Pollution: A Survey and Taxonomy. New Astron. Rev. 2022, 95, 101663. [Google Scholar] [CrossRef]
- Changruenngam, T.; Deetha, D.; Sukkai, C.; Youyuenyong, P.; Sarotsakulchai, N.; Surina, F. The First Dark Sky Map of Chiang Rai: Three Decades of Change Affecting Astro-Tourism. J. Phys. Conf. Ser. 2023, 2653, 012027. [Google Scholar] [CrossRef]
- Martínez-Martín, A.; Bocho-Roas, A.; Carmona-Fernández, D.; Calderón-Godoy, M.; Jaramillo-Morán, M.Á.; González, J.F. Interference of Meteorological Variables on Night Sky Observation in Rural and Urban Zones of South-Western Spain. Sustainability 2023, 15, 10887. [Google Scholar] [CrossRef]
- Measuring Darkness in Remote Places. EELabs. Available online: https://www.eelabs.eu/en/measuring-darkness-in-remote-places/ (accessed on 23 May 2024).
- Alarcon, M.R.; Puig-Subirà, M.; Serra-Ricart, M.; Lemes-Perera, S.; Mallorquín, M.; López, C. SG-WAS: A New Wireless Autonomous Night Sky Brightness Sensor. Sensors 2021, 21, 5590. [Google Scholar] [CrossRef]
- Set Files Associated with the Article ‘Neural Network for Night Sky Darkness Level Prediction in Rural Areas’. Available online: http://hdl.handle.net/10662/21494 (accessed on 11 June 2024).
- MATLAB-Language of Technical Calculus. Available online: https://es.mathworks.com/products/matlab.html (accessed on 30 May 2024).
- Song, H.; Li, G. Tourism Demand Modelling and Forecasting—A Review of Recent Research. Tour. Manag. 2008, 29, 203–220. [Google Scholar] [CrossRef]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer Feedforward Networks Are Universal Approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Cybenko, G. Approximation by Superpositions of a Sigmoidal Function. Math. Control. Signals Syst. 1989, 2, 303–314. [Google Scholar] [CrossRef]
- Weaver, D. Celestial Ecotourism: New Horizons in Nature-Based Tourism. J. Ecotourism 2011, 10, 38–45. [Google Scholar] [CrossRef]
Statistic | Value (mag/arcsec2) |
---|---|
Minimum | 9.5 |
Maximum | 22.91 |
Mean | 17.93 |
Standard deviation | 3.99 |
wj,1 | wj,2 | bj |
---|---|---|
2.36 | −0.21 | −2.86 |
4.03 | 1.30 | −3.18 |
−3.54 | 3.84 | 0.11 |
3.05 | −3.13 | 0.01 |
4.53 | 4.77 | 0.40 |
−3.94 | −3.93 | −0.22 |
−6.91 | −1.32 | −2.38 |
0.25 | 2.86 | 0.80 |
2.73 | 3.03 | 4.09 |
3.67 | 2.65 | 4.49 |
wOutput,j |
---|
1.32 |
−0.32 |
4.02 |
4.93 |
1.90 |
2.37 |
0.39 |
0.52 |
1.50 |
−1.43 |
Model | Sd | R2 | MAE | RMSE |
---|---|---|---|---|
Martínez-Martín et al. (this study) | 1.54 | 0.85 | 1.21 | 1.51 |
C-Sánchez et al. [34] | 4.77 | 0.87 | 1.57 | 2.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Martín, A.; Jaramillo-Morán, M.Á.; Carmona-Fernández, D.; Calderón-Godoy, M.; González, J.F.G. Neural Network for Sky Darkness Level Prediction in Rural Areas. Sustainability 2024, 16, 7795. https://doi.org/10.3390/su16177795
Martínez-Martín A, Jaramillo-Morán MÁ, Carmona-Fernández D, Calderón-Godoy M, González JFG. Neural Network for Sky Darkness Level Prediction in Rural Areas. Sustainability. 2024; 16(17):7795. https://doi.org/10.3390/su16177795
Chicago/Turabian StyleMartínez-Martín, Alejandro, Miguel Ángel Jaramillo-Morán, Diego Carmona-Fernández, Manuel Calderón-Godoy, and Juan Félix González González. 2024. "Neural Network for Sky Darkness Level Prediction in Rural Areas" Sustainability 16, no. 17: 7795. https://doi.org/10.3390/su16177795
APA StyleMartínez-Martín, A., Jaramillo-Morán, M. Á., Carmona-Fernández, D., Calderón-Godoy, M., & González, J. F. G. (2024). Neural Network for Sky Darkness Level Prediction in Rural Areas. Sustainability, 16(17), 7795. https://doi.org/10.3390/su16177795