A Study on the Mechanisms of Coal Fly Ash to Improve the CO2 Capture Efficiency of Calcium-Based Adsorbents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization Methods
2.3. CO2 Capture Reaction Device
3. Results and Discussion
3.1. Composition and Microstructure Characteristics
3.2. Effects of Modification Methods
3.3. Effect of Doping Ratio
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yue, T.; Liu, Q.; Tong, Y.; Gao, J.; Zheng, Y.; Li, G.; Li, R. Analysis of emission evolution and synergistic reduction effect of air pollutants and CO2 from Chinese coal-fired power plants. Atmos. Pollut. Res. 2024, 15, 102001. [Google Scholar] [CrossRef]
- Wang, S.; Wu, J.; Xiang, M.Y.; Wang, S.Y.; Xue, S.X.; Lv, L.H.; Huang, G.H. Multi-objective optimisation model of a low-cost path to peaking carbon dioxide emissions and carbon neutrality in China. Sci. Total Environ. 2024, 912, 169386. [Google Scholar] [CrossRef]
- Gao, Z.X.; Li, C.H.; Yuan, Y.N.; Hu, X.D.; Ma, J.J.; Ma, C.H.; Guo, T.; Zhang, J.L.; Guo, Q.J. Utilizing metal oxide enhancement for efficient CO2 capture and conversion in calcium-based dual-function materials. J. Energy Inst. 2024, 114, 101630. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, Y.S.; Liu, H.W.; Boczkaj, G.; Cao, Y.J.; Wang, C.Q. Carbon dioxide sequestration by industrial wastes through mineral carbonation: Current status and perspectives. J. Clean. Prod. 2024, 434, 140258. [Google Scholar] [CrossRef]
- Imani, M.; Tahmasebpoor, M.; Sanchez-Jim, P.; Valverde, J.; Garcia, V.M. A novel, green, cost-effective and fluidizable SiO2-decorated calcium-based adsorbent recovered from eggshell waste for the CO2 capture process. Sep. Purif. Technol. 2023, 305, 122523. [Google Scholar] [CrossRef]
- Long, Y.; Sun, J.; Mo, C.N.; She, X.Y.; Zeng, P.X.; Xia, H.Q.; Zhang, J.B.; Zhou, Z.J.; Nie, X.M.; Zhao, C.W. One-step fabricated Zr-supported, CaO-based pellets via graphite-moulding method for regenerable CO2 capture. Sci. Total Environ. 2022, 851, 158357. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Wang, Y.; Wei, L.F.; Peng, M.K.; Li, Z.Y.; Liu, C.X.; Liu, Q.L. Integrated CO2 capture and conversion by Cu/CaO dual function materials: Effect of in-situ conversion on the sintering of CaO and its CO2 capture performance. Carbon Capture Sci. Technol. 2024, 12, 100220. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, Y.Q.; Lei, P.W.; Yang, Z.Y.; Liu, L.N.; Zhang, Z.K. CaO-based adsorbents derived from municipal solid waste incineration bottom ash for CO2 capture. Sustain. Mater. Technol. 2024, 39, e00856. [Google Scholar] [CrossRef]
- Xu, R.C.; Sun, J.; Zhang, X.Y.; Jiang, L.; Zhou, Z.J.; Zhu, L.; Zhu, J.T.; Tong, X.L.; Zhao, C.W. Strengthening performance of Al-stabilized, CaO-based CO2 sorbent pellets by the combination of impregnated layer solution combustion and graphite-moulding. Sep. Purif. Technol. 2023, 315, 123757. [Google Scholar] [CrossRef]
- Jani, V.; Rasyotra, A.; Gunda, H.; Ghoroi, C.; Jasuja, K. Titanium diboride (TiB2) derived nanosheets enhance the CO2 capturing ability of Calcium Oxide (CaO). Ceram. Int. 2022, 48, 32380–32388. [Google Scholar] [CrossRef]
- Wei, S.; Han, R.; Su, Y.; Gao, J.; Qin, Y. Size effect of calcium precursor and binder on CO2 capture of composite CaO-based pellets. Energy Procedia 2019, 158, 5073–5078. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Sun, J.; Jiang, L.; Zhang, X.Y.; Zhao, C.W.; Bu, C.S. Hydrophobic interface-assisted casting of Al-supported, CaO-based sorbent pellets for high-temperature CO2 capture. Sep. Purif. Technol. 2024, 340, 126797. [Google Scholar] [CrossRef]
- Kong, P.J.; Sun, J.; Li, K.K.; Jiang, L.; Sun, R.Y.; Zhang, T.Z.; Zhou, Z.J. Insight into the deactivation mechanism of CaO-based CO2 sorbent under in-situ coal combustion. Sep. Purif. Technol. 2024, 346, 127529. [Google Scholar] [CrossRef]
- Heidari, M.; Tahmasebpoor, M.; Antzaras, A.; Lemonidou, A.A. CO2 capture and fluidity performance of CaO-based sorbents: Effect of Zr, Al and Ce additives in tri-, bi- and mono-metallic configurations. Process Saf. Environ. Prot. 2020, 144, 349–365. [Google Scholar] [CrossRef]
- Liu, X.; Chen, J.; Ma, Y.; Liu, C.; Huang, A.; He, J.; Wang, M.; Tang, H.; Zuo, W.; Li, Y. Synergistic effects of CeO2 and Al2O3 on reactivity of CaO-based sorbents for CO2 capture. Sep. Purif. Technol. 2024, 347, 127660. [Google Scholar] [CrossRef]
- Ma, K.L.; Han, L.; Wu, Y.L.; Rong, N.; Xin, C.J.; Wang, Z.H.; Ding, H.R.; Qi, Z.F. Synthesis of a composite Fe-CaO-based sorbent/catalyst by mechanical mixing for CO2 capture and H2 production: An examination on CaO carbonation and tar reforming performance. J. Energy Inst. 2023, 109, 101256. [Google Scholar] [CrossRef]
- Chen, X.B.; Tang, Y.T.; Ke, C.C.; Zhang, C.Y.; Ding, S.C.; Ma, X.Q. CO2 capture by double metal modified CaO-based sorbents from pyrolysis gases. Chin. J. Chem. Eng. 2022, 43, 40–49. [Google Scholar] [CrossRef]
- Zhang, Z.K.; Yang, Z.Y.; Zhang, S.T.; Zhang, D.; Shen, B.X.; Li, Z.C.; Ma, J.; Liu, L.N. Fabrication of robust CaO-based sorbent via entire utilization of MSW incineration bottom ash for CO2 capture. Sep. Purif. Technol. 2023, 307, 122795. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Ge, Z.W.; Sun, H.C.; Wang, L.; Zhang, S.; Lin, X.P.; Chen, Q.C.; Chen, H.S. The role of oxygen vacancy in CaO-Ca12Al14O33 materials derived from hydrocalumite for enhanced CO2 capture cyclic performance. Chem. Eng. J. 2024, 481, 147955. [Google Scholar] [CrossRef]
- Wang, C.L.; Jiang, H.; Miao, E.D.; Wang, Y.J.; Zhang, T.T.; Xiao, Y.Q.; Liu, Z.Y.; Ma, J.; Xiong, Z.; Zhao, Y.C.; et al. Accelerated CO2 mineralization technology using fly ash as raw material: Recent research advances. Chem. Eng. J. 2024, 488, 150676. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, Y.X.; Kong, P.J.; Cheng, L.; Liu, G.J.; Sun, J. Coal fly ash-bound limestone-derived sorbent pellets for high-temperature CO2 capture. Carbon Capture Sci. Technol. 2024, 10, 100155. [Google Scholar] [CrossRef]
- Scaccia, S.; Vanga, G.; Gattia, D.M.; Stendardo, S. Preparation of CaO-based sorbent from coal fly ash cenospheres for calcium looping process. J. Alloys Compd. 2019, 801, 123–129. [Google Scholar] [CrossRef]
- Liu, J.; Yang, X.Y.; Liu, H.H.; Cheng, W.Y.; Bao, Y.C. Modification of calcium-rich biochar by loading Si/Mn binary oxide after NaOH activation and its adsorption mechanisms for removal of Cu(II) from aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 2020, 601, 124960. [Google Scholar] [CrossRef]
- Wondu, E.; Lule, Z.C.; Kim, J. Polyisocyanate-based water-soluble polyurethane/CaCO3 composites for gunpowder storage. Polym. Test. 2021, 99, 107211. [Google Scholar] [CrossRef]
- Modekwe, H.U.; Moothi, K.; Daramola, M.O.; Mamo, M.A. Corn cob char as catalyst support for developing carbon nanotubes from waste polypropylene plastics: Comparison of activation techniques. Polymers 2022, 14, 2898. [Google Scholar] [CrossRef]
- Chang, P.H.; Huang, W.C.; Lee, T.J.; Chang, Y.P.; Chen, S.Y. Self-reactivated mesostructured Ca-Al-O composite for enhanced high-temperature CO2 capture and carbonation/calcination cycles performance. ACS Appl. Mater. Interfaces 2015, 7, 6172–6179. [Google Scholar] [CrossRef] [PubMed]
- Lafmejani, M.K.A.; Parsa, A.; Mirmohammadi, M.; Ahmadi, T.; Mirmohammadi, H. A novel and facile synthesis of calcium silicate nanoparticles as a base for root canal cement/sealer under constant potential: Compared to chemical synthesis. Mater. Chem. Phys. 2024, 315, 128924. [Google Scholar] [CrossRef]
- Zhang, L. Surface modification of titanium by hydroxyapatite/CaSiO3/chitosan porous bioceramic coating. Int. J. Electrochem. Sci. 2020, 15, 3616–3626. [Google Scholar] [CrossRef]
- Chen, H.C.; Khalili, N. Fly-ash-modified calcium-based sorbents tailored to CO2 capture. Ind. Eng. Chem. Res. 2017, 56, 1888–1894. [Google Scholar] [CrossRef]
- Yan, F.; Jiang, J.G.; Zhao, M.; Tian, S.C.; Li, K.M.; Li, T.R. A green and scalable synthesis of highly stable Ca-based sorbents for CO2 capture. J. Mater. Chem. A 2015, 3, 7966–7973. [Google Scholar] [CrossRef]
- Yan, F.; Jiang, J.G.; Li, K.M.; Tian, S.C.; Zhao, M.; Chen, X.J. Performance of coal fly ash stabilized, CaO-based sorbents under different carbonation-calcination conditions. ACS Sustain. Chem. Eng. 2015, 3, 2092–2099. [Google Scholar] [CrossRef]
Limestone | CaO | MgO | SiO2 | Na2O | Fe2O3 | Al2O3 | K2O | TiO2 | LOI |
---|---|---|---|---|---|---|---|---|---|
Mass fraction | 55.16 | 0.58 | 0.14 | 0.03 | 0.01 | <0.01 | <0.01 | <0.01 | 43.92 |
Fly Ash | SiO2 | Al2O3 | CaO | SO3 | TiO2 | Fe2O3 | MgO | LOI |
---|---|---|---|---|---|---|---|---|
Mass fraction | 45.1 | 24.2 | 5.6 | 2.1 | 1.21 | 0.85 | 0.54 | 2.8 |
Absorbent | First Calcination | Tenth Calcination | ||
---|---|---|---|---|
SBET/(m2/g) | Vtotal/(cm3/g) | SBET/(m2/g) | Vtotal/(cm3/g) | |
CaO/FA (0%) | 16.379 | 0.149 | 10.084 | 0.077 |
CaO/FA (5%) | 17.669 | 0.140 | 14.551 | 0.084 |
CaO/FA (10%) | 16.564 | 0.136 | 14.040 | 0.078 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Zhang, K.; Luo, J.; Wu, M.; Wang, X.; Wang, K.; Liu, S. A Study on the Mechanisms of Coal Fly Ash to Improve the CO2 Capture Efficiency of Calcium-Based Adsorbents. Sustainability 2024, 16, 8139. https://doi.org/10.3390/su16188139
Zhao Z, Zhang K, Luo J, Wu M, Wang X, Wang K, Liu S. A Study on the Mechanisms of Coal Fly Ash to Improve the CO2 Capture Efficiency of Calcium-Based Adsorbents. Sustainability. 2024; 16(18):8139. https://doi.org/10.3390/su16188139
Chicago/Turabian StyleZhao, Ziyu, Kefan Zhang, Jianfeng Luo, Meixuan Wu, Xiyue Wang, Keke Wang, and Shengyu Liu. 2024. "A Study on the Mechanisms of Coal Fly Ash to Improve the CO2 Capture Efficiency of Calcium-Based Adsorbents" Sustainability 16, no. 18: 8139. https://doi.org/10.3390/su16188139
APA StyleZhao, Z., Zhang, K., Luo, J., Wu, M., Wang, X., Wang, K., & Liu, S. (2024). A Study on the Mechanisms of Coal Fly Ash to Improve the CO2 Capture Efficiency of Calcium-Based Adsorbents. Sustainability, 16(18), 8139. https://doi.org/10.3390/su16188139