The Effect of Awareness of Renewable Energy Resources on Sustainable Production in Dairy Farming: The Case of Konya Province (Turkey)
Abstract
:1. Introduction
2. Materials and Methods
- n: number of samples,
- N: Number of establishments in the main population,
- Nh: Number of establishments in the hth stratum (frequency),
- Sh: Standard deviation of the hth stratum,
- d: Allowable margin of error from the main population mean,
- z: Refers to the z value in the standard normal distribution chart according to the error rates. If the number of units is over 30, the z value is used in the t distribution [39].
- : Milk Production Sustainability Index;
- (MPSk): n Sustainable Production questions (1, 2, 3, …, n number of indicators);
- ISF: Implementation Status of Farmers (1: Never heard of it, 2: I don’t know, 3: I know, 4: I sometimes implement, 5: I definitely implement);
- MaxP: The maximum score (5) that can be obtained in the current implementation situation [47].
3. Results
4. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chel, A.; Kaushik, G. Renewable energy for sustainable agriculture. Agron. Sustain. Dev. 2011, 31, 91–118. [Google Scholar] [CrossRef]
- Manioudis, M.; Meramveliotakis, G. Broad strokes towards a grand theory in the analysis of sustainable development: A return to the classical political economy. New Political Econ. 2022, 27, 866–878. [Google Scholar] [CrossRef]
- Meramveliotakis, G.; Manioudis, M. History, knowledge, and sustainable economic development: The contribution of john stuart mill’s grand stage theory. Sustainability 2021, 13, 1468. [Google Scholar] [CrossRef]
- Pretty, J. Agricultural sustainability: Concepts, principles and evidence. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 447–465. [Google Scholar] [CrossRef]
- Velten, S.; Leventon, J.; Jager, N.; Newig, J. What is sustainable agriculture? A systematic review. Sustainability 2015, 7, 7833–7865. [Google Scholar] [CrossRef]
- Brundtland, G.H. Brundtland report. Our common future. Comissão Mund. 1987, 4, 17–25. [Google Scholar]
- Lal, R. Soils and sustainable agriculture. A review. Agron. Sustain. Dev. 2008, 28, 57–64. [Google Scholar] [CrossRef]
- Khosla, A.; Awan, H.T.A.; Singh, K.; Walvekar, R.; Zhao, Z.; Kaushik, A.; Khalid, M.; Chaudhary, V. Emergence of MXene and MXene–Polymer hybrid membranes as future-environmental remediation strategies. Adv. Sci. 2022, 9, 2203527. [Google Scholar] [CrossRef]
- Rani, G.M.; Pathania, D.; Umapathi, R.; Rustagi, S.; Huh, Y.S.; Gupta, V.K.; Chaudhary, V. Agro-waste to sustainable energy: A green strategy of converting agricultural waste to nano-enabled energy applications. Sci. Total Environ. 2023, 875, 162667. [Google Scholar]
- Pretty, J.N. Regenerating Agriculture: Policiees and Pratice Sustainability and Self Reliance; Earth Scan: London, UK, 1995. [Google Scholar]
- Pretty, J.N.; Brett, C.; Gee, D.; Hine, R.E.; Mason, C.F.; Morison, J.I.; van der Bijl, G. An assessment of the total external costs of UK agriculture. Agric. Syst. 2000, 65, 113–136. [Google Scholar] [CrossRef]
- Turhan, Ş. Sustainability in agriculture and organic farming. Turk. J. Agric. Econ. 2005, 11, 13–24. [Google Scholar]
- Özkan, M.; Armağan, G. Tarım İşletmelerinde Sürdürülebilirliğin Ölçülmesi, Aydın İli Örneği. Tarım Ekon. Derg. 2019, 25, 109–116. [Google Scholar] [CrossRef]
- Bundschuh, J.; Chen, G. (Eds.) Sustainable Energy Solutions in Agriculture; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Eckard, R.J.; Clark, H. Potential solutions to the major greenhouse-gas issues facing Australasian dairy farming. Anim. Prod. Sci. 2018, 60, 10–16. [Google Scholar] [CrossRef]
- Kazem, H.A.; Al-Waeli, A.H.; Chaichan, M.T.; Sopian, K.; Al Busaidi, A.S.; Gholami, A. Photovoltaic-thermal systems applications as dryer for agriculture sector: A review. Case Stud. Therm. Eng. 2023, 47, 103047. [Google Scholar] [CrossRef]
- International Energy Agency. Efficiency; International Energy Agency (IEA): Paris, France, 2010. [Google Scholar]
- Surendra, K.C.; Takara, D.; Hashimoto, A.G.; Khanal, S.K. Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renew. Sustain. Energy Rev. 2014, 31, 846–859. [Google Scholar] [CrossRef]
- Anonymous; United Nation Development Programme (UNDP)/World Health Organization (WHO). The Energy Access Situation in Developing Countries: A Review Focusing on the Least Developed Countries and Sub-Saharan Africa; UNDP: New York, NY, USA, 2009. [Google Scholar]
- Kraatz, S. Energy intensity in livestock operations–Modeling of dairy farming systems in Germany. Agric. Syst. 2012, 110, 90–106. [Google Scholar] [CrossRef]
- da Rosa Righi, R.; Goldschmidt, G.; Kunst, R.; Deon, C.; da Costa, C.A. Towards combining data prediction and internet of things to manage milk production on dairy cows. Comput. Electron. Agric. 2020, 169, 105156. [Google Scholar] [CrossRef]
- Lovarelli, D.; Bacenetti, J.; Guarino, M. A review on dairy cattle farming: Is precision livestock farming the compromise for an environmental, economic and social sustainable production? J. Clean. Prod. 2020, 262, 121409. [Google Scholar] [CrossRef]
- Čechura, L.; Žáková Kroupová, Z. Technical efficiency in the European dairy industry: Can we observe systematic failures in the efficiency of input use? Sustainability 2021, 13, 1830. [Google Scholar] [CrossRef]
- Rotz, C.A. Modeling greenhouse gas emissions from dairy farms. J. Dairy Sci. 2018, 101, 6675–6690. [Google Scholar] [CrossRef]
- Villarroel-Schneider, J.; Höglund-Isaksson, L.; Mainali, B.; Martí-Herrero, J.; Cardozo, E.; Malmquist, A.; Martin, A. Energy self-sufficiency and greenhouse gas emission reductions in Latin American dairy farms through massive implementation of biogas-based solutions. Energy Convers. Manag. 2022, 261, 115670. [Google Scholar] [CrossRef]
- Casey, J.W.; Holden, N.M. Analysis of greenhouse gas emissions from the average Irish milk production system. Agric. Syst. 2005, 86, 97–114. [Google Scholar] [CrossRef]
- Thoma, G.; Popp, J.; Nutter, D.; Shonnard, D.; Ulrich, R.; Matlock, M.; Adom, F. Greenhouse gas emissions from milk production and consumption in the United States: A cradle-to-grave life cycle assessment circa 2008. Int. Dairy J. 2013, 31, S3–S14. [Google Scholar] [CrossRef]
- Aguirre-Villegas, H.A.; Larson, R.; Reinemann, D.J. From waste-to-worth: Energy, emissions, and nutrient implications of manure processing pathways. Biofuels Bioprod. Biorefining 2014, 8, 770–793. [Google Scholar] [CrossRef]
- Minoofar, A.; Gholami, A.; Eslami, S.; Hajizadeh, A.; Gholami, A.; Zandi, M.; Kazem, H.A. Renewable energy system opportunities: A sustainable solution toward cleaner production and reducing carbon footprint of large-scale dairy farms. Energy Convers. Manag. 2023, 293, 117554. [Google Scholar] [CrossRef]
- Bacenetti, J.; Sala, C.; Fusi, A.; Fiala, M. Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable. Appl. Energy 2016, 179, 669–686. [Google Scholar] [CrossRef]
- Lijó, L.; Lorenzo-Toja, Y.; González-García, S.; Bacenetti, J.; Negri, M.; Moreira, M.T. Eco-efficiency assessment of farm-scaled biogas plants. Bioresour. Technol. 2017, 237, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Frey, G.W.; Linke, D.M. Hydropower as a renewable and sustainable energy resource meeting global energy challenges in a reasonable way. Energy Policy 2002, 30, 1261–1265. [Google Scholar] [CrossRef]
- Al-Hamamre, Z.; Saidan, M.; Hararah, M.; Rawajfeh, K.; Alkhasawneh, H.E.; Al-Shannag, M. Wastes and biomass materials as sustainable-renewable energy resources for Jordan. Renew. Sustain. Energy Rev. 2017, 67, 295–314. [Google Scholar] [CrossRef]
- Nacer, T.; Hamidat, A.; Nadjemi, O. A comprehensive method to assess the feasibility of renewable energy on Algerian dairy farms. J. Clean. Prod. 2016, 112, 3631–3642. [Google Scholar] [CrossRef]
- Breen, M.; Upton, J.; Murphy, M.D. Photovoltaic systems on dairy farms: Financial and renewable multi-objective optimization (FARMOO) analysis. Appl. Energy 2020, 278, 115534. [Google Scholar] [CrossRef]
- TSI. 2024. Available online: https://biruni.tuik.gov.tr/medas/?kn=134&locale=tr (accessed on 18 May 2024).
- Güneş, T.; Arıkan, R. Tarım Ekonomisi İstatistiği, Ankara Üniversitesi Ziraat Fakültesi Yayınları. Ders Kitabı. 1988, 305, 1049. [Google Scholar]
- Oğuz, C.; Karakayacı, Z. Tarım Ekonomisinde Araştırma ve Örnekleme Metodolojisi; Atlas Akademi: Vilnius, Lithuania, 2017; ISBN 978-605-82785-2-3. [Google Scholar]
- Yamane, T. Statistics, An Introductory Analysis, 2nd ed.; Harper and Row: New York, NY, USA, 1967; p. 886. [Google Scholar]
- Kıral, T.; Kasnakoğlu, H.; Tatlıdil, F.; Fidan, H.; Gündoğmuş, E. Tarımsal ürünler için maliyet hesaplama metodolojisi ve veri tabanı rehberi. Tarımsal Ekon. Araştırma Enstitüsü Yayınları 1999, 37. [Google Scholar]
- Oğuz, C.; Bayramoğlu, Z. Tarım Ekonomisi Kitabı, 3rd ed.; Atlas Akademi: Konya, Türkiye, 2018; ISBN 978-605-63373-3-8. [Google Scholar]
- Likert, R. A technique for the measurement of attitudes. Arch. Psychol. 1932. [Google Scholar]
- Kalaycı, Ş. SPSS Uygulamalı, çok Değişkenli Istatistik Teknikleri; Asil Yayın Dağıtım: Ankara, Türkiye, 2005; pp. 273–305. [Google Scholar]
- Anonymous. SPSS Base 15.0 User’s Guide. 2006. Available online: http://www.math.upatras.gr/~adk/lectures/ida/lab1/tutor5.pdf (accessed on 24 January 2024).
- Topçu, Y. Süt Sığırcılığı İşletmelerinde Başarıyı Etkileyen Faktörlerin Analizi: Erzurum İli Örneği. OMÜ Ziraat Fakültesi Derg. 2008, 23, 17–24. [Google Scholar]
- Tümer, E.İ.; Birinci, A.; Yıldırım, Ç. Ambalajlı Su Tüketimini Etkileyen Faktörlerin Belirlenmesi: Ankara İli Keçiören İlçesi Örneği/Determination of Factor Affecting Bottled Water Comsumption: The Case of Keçiören County of Ankara Province. Alinteri J. Agric. Sci. 2011, 21, 11–19. [Google Scholar]
- Yener, A. Konya Ilinde süt Sığırcılığı Yapan Aile Işletmelerinde Yeniliklerin Benimsenmesi ve Yayılmasına etki eden Faktörler; Selçuk Üniversitesi Fen Bilimleri Enstitüsü: Konya, Türkiye, 2017. [Google Scholar]
- Suhr, D.D. Exploratory or Confirmatory Factor Analysis? SAS Institute: Cary, NC, USA, 2006; pp. 1–17. [Google Scholar]
- Karagöz, Y. SPSS ve AMOS 23 Uygulamalı Istatistiksel Analizler, 1st ed.; Nobel Akademik Yayıncılık Eğitim ve Danışmanlık: Ankara, Türkiye, 2016; ISBN 978-605-320-547-0. [Google Scholar]
- Tilman, D.; Socolow, R.; Foley, J.A.; Hill, J.; Larson, E.; Lynd, L.; Williams, R. Beneficial biofuels—The food, energy, and environment trilemma. Science 2009, 325, 270–271. [Google Scholar] [CrossRef] [PubMed]
- Uyan, M. GIS-based solar farms site selection using analytic hierarchy process (AHP) in Karapinar region, Konya/Turkey. Renew. Sustain. Energy Rev. 2013, 28, 11–17. [Google Scholar] [CrossRef]
- Calvert, K.; Mabee, W. More solar farms or more bioenergy crops? Mapping and assessing potential land-use conflicts among renewable energy technologies in eastern Ontario, Canada. Appl. Geogr. 2015, 56, 209–221. [Google Scholar] [CrossRef]
- Tahri, M.; Hakdaoui, M.; Maanan, M. The evaluation of solar farm locations applying Geographic Information System and Multi-Criteria Decision-Making methods: Case study in southern Morocco. Renew. Sustain. Energy Rev. 2015, 51, 1354–1362. [Google Scholar] [CrossRef]
- Achterbosch, T.J.; van Berkum, S.; Meijerink, G.W.; Asbreuk, H.; Oudendag, D.A. Cash Crops and Food Security: Contributions to Income, Livelihood Risk and Agricultural Innovation; LEI: Wateringen, The Netherlands, 2014; (No. 2014-15). [Google Scholar]
- Alston, J.M.; Pardey, P.G. The economics of agricultural innovation. Handb. Agric. Econ. 2021, 5, 3895–3980. [Google Scholar]
- Rahbar, K.; Eslami, S.; Pouladian-Kari, R.; Kirchner, L. 3-D numerical simulation and experimental study of PV module self-cleaning based on dew formation and single axis tracking. Appl. Energy 2022, 316, 119119. [Google Scholar] [CrossRef]
- Gholami, A.; Ameri, M.; Zandi, M.; Ghoachani, R.G.; Kazem, H.A. Predicting solar photovoltaic electrical output under variable environmental conditions: Modified semi-empirical correlations for dust. Energy Sustain. Dev. 2022, 71, 389–405. [Google Scholar] [CrossRef]
- Gholami, A.; Ameri, M.; Zandi, M.; Ghoachani, R.G.; Gerashi, S.J.; Kazem, H.A.; Al-Waeli, A.H. Impact of harsh weather conditions on solar photovoltaic cell temperature: Experimental analysis and thermal-optical modeling. Sol. Energy 2023, 252, 176–194. [Google Scholar] [CrossRef]
- Malliaroudaki, M.I.; Watson, N.J.; Ferrari, R.; Nchari, L.N.; Gomes, R.L. Energy management for a net zero dairy supply chain under climate change. Trends Food Sci. Technol. 2022, 126, 153–167. [Google Scholar] [CrossRef]
- Usubiaga-Liaño, A.; Behrens, P.; Daioglou, V. Energy use in the global food system. J. Ind. Ecol. 2020, 24, 830–840. [Google Scholar] [CrossRef]
- Chaichan, M.T.; Kazem, H.A.; Alnaser, N.W.; Gholami, A.; Al-Waeli, A.H.A.A.; Alnaser, W.E. Assessment Cooling of Photovoltaic Modules Using Underground Water. Arab. Gulf J. Sci. Res. 2021, 39, 151–169. [Google Scholar] [CrossRef]
- Noorollahi, Y.; Pourarshad, M.; Veisi, A. The synergy of renewable energies for sustainable energy systems development in oil-rich nations; case of Iran. Renew. Energy 2021, 173, 561–568. [Google Scholar] [CrossRef]
- Østergaard, P.A.; Duic, N.; Noorollahi, Y.; Kalogirou, S.A. Recent advances in renewable energy technology for the energy transition. Renew. Energy 2021, 179, 877–884. [Google Scholar] [CrossRef]
- Noorollahi, Y.; Vahidrad, N.; Eslami, S.; Naseer, M.N. Modeling of Transition from Natural Gas to Hybrid Renewable Energy Heating system. Int. J. Sustain. Energy Plan. Manag. 2021, 32, 61–78. [Google Scholar] [CrossRef]
- Aryanfar, A.; Gholami, A.; Ghorbannezhad, P.; Yeganeh, B.; Pourgholi, M.; Zandi, M. Multi-criteria prioritization of the renewable power plants in Australia using the fuzzy logic in decision-making method (FMCDM). Clean Energy 2022, 6, 16–34. [Google Scholar] [CrossRef]
- Eslami, S.; Noorollahi, Y.; Marzband, M.; Anvari-Moghaddam, A. District heating planning with focus on solar energy and heat pump using GIS and the supervised learning method: Case study of Gaziantep, Turkey. Energy Convers. Manag. 2022, 269, 116131. [Google Scholar] [CrossRef]
- Shaller, N. The concept of agricultural sustainability. Agr. Eco. Env. 1993, 46, 89–97. [Google Scholar] [CrossRef]
- Conway, G.R. Sustainability in agricultural development: Tradeoffs with productivity, stability and equitability. J. Farm. Syst. Res. 1994, 4, 1–14. [Google Scholar]
- Rossing, W.A.H.; Meynard, J.M.; Van Ittersum, M.K. Model-based explorations to support development of sustainable farming systems: Case studies from France and the Netherlands. Eur. J. Agro. 1997, 7, 271–283. [Google Scholar] [CrossRef]
- Berentsen, P.B.M.; Giesen, G.W.J.; Schneiders, M.M.F.H. Conversion from conventional to biological dairy farming: Economic and environmental consequences at farm level. Bio. Agri. Hort. 1998, 16, 311–328. [Google Scholar] [CrossRef]
- Legg, W. Sustainable Agriculture: An Economic Perspective. In Paper Presented to ADAS Conference; University of Warwick: Coventry, UK, 1999. [Google Scholar]
- Cobb, D.; Feber, R.; Hopkins, A.; Stockdale, L.; O’Riordan, T.; Clements, B.; Firbank, L.; Goulding, K.; Jarvis, S.; Macdonald, D. Integrating the environmental and economic consequences of converting to organic agriculture: Evidence from a case study. Land Use Pol. 1999, 16, 207–221. [Google Scholar] [CrossRef]
- Pretty, J.; Hine, R. Reducing food poverty with sustainable agriculture: A summary of new evidence. In CES Occasional Paper; University of Essex: Colchester, UK, 2001. [Google Scholar]
- Pacini, C.; Wossink, A.; Giesen, G.; Huirne, R. Ecological-economic modeling to support multi-objective policy making: A farming systems approach implemented for Tuscany. Agr. Eco. Env. 2004, 102, 349–364. [Google Scholar] [CrossRef]
- Vandermeulen, V.; Van Huylenbroeck, G. Designing transdisciplinary research to support policy formulation for sustainable agricultural development. Ecol. Eco. 2008, 67, 352–361. [Google Scholar] [CrossRef]
- Sydorovych, O.; Wossink, A. The meaning of agricultural sustainability: Evidence from a conjoint choice survey. Agr. Syst. 2008, 98, 10–20. [Google Scholar] [CrossRef]
- Peacock, C.; Sherman, D.M. Small ruminant research, sustainable goat production, some global perspectives. Small Rumin. Res. 2010, 89, 70–80. [Google Scholar] [CrossRef]
- Hosseini, S.J.F.; Mohammadi, F.; Mirdamadi, S.M. Factors affecting environmental, economic and social aspects of sustainable agriculture in Iran. Afr. J. Agric. Res. 2011, 6, 451–457. [Google Scholar]
- Feliciano, R.J.; Boué, G.; Membré, J.M. Overview of the potential impacts of climate change on the microbial safety of the dairy industry. Foods 2020, 9, 1794. [Google Scholar] [CrossRef] [PubMed]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- Schifano, P.; Leone, M.; De Sario, M.; de’Donato, F.; Bargagli, A.M.; D’Ippoliti, D.; Marino, C.; Michelozzi, P. Changes in the effects of heat on mortality among the elderly from 1998–2010: Results from a multicenter time series study in Italy. Environ. Health 2012, 11, 58. [Google Scholar] [CrossRef] [PubMed]
- Vida, E.; Tedesco, D.E.A. The carbon footprint of integrated milk production and renewable energy systems–A case study. Sci. Total Environ. 2017, 609, 1286–1294. [Google Scholar] [CrossRef]
- Mahesh, A.; Jasmin, K.S. Role of renewable energy investment in India: An alternative to CO2 mitigation. Renew. Sustain. Energy Rev. 2013, 26, 414–424. [Google Scholar] [CrossRef]
- Peng, J.; Lu, L.; Yang, H. Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renew. Sustain. Energy Rev. 2013, 19, 255–274. [Google Scholar] [CrossRef]
- Bey, M.; Hamidat, A.; Benyoucef, B.; Nacer, T. Viability study of the use of grid connected photovoltaic system in agriculture: Case of Algerian dairy farms. Renew. Sustain. Energy Rev. 2016, 63, 333–345. [Google Scholar] [CrossRef]
Enterprise Groups (Number of Cattle (Head)) | Number of Units in Strata (Nh) | Standard Deviation (Sh) | Nh ∗ Sh | Nh ∗ (Sh)2 | Sample Volume (n) | Number of Surveys (Number) |
---|---|---|---|---|---|---|
6–20 | 3675 | 4.31 | 15,838.29 | 68,259 | 17.07 | 17 |
21–50 | 2867 | 8.38 | 24,028.99 | 201,393 | 25.90 | 26 |
51–150 | 1751 | 25.51 | 44,673.93 | 1,139,783 | 48.15 | 48 |
151–+ | 445 | 94.11 | 41,878.77 | 3,941,194 | 45.13 | 45 |
Total | 8738 | 132.31 | 126,419.97 | 5,350,628 | 136.25 | 136 |
1. Group | 2. Group | 3. Group | 4. Group | Enterprises Average | |
---|---|---|---|---|---|
Animal Production Value (USD) | 28,561.27 | 82,467.52 | 224,188.99 | 624,439.35 | 305,077.49 |
Crop Production Value (USD) | 30,423.31 | 50,913.07 | 42,324.13 | 115,171.52 | 66,582.44 |
Total GDP (USD) | 58,984.58 | 133,380.59 | 266,513.11 | 739,610.87 | 371,659.94 |
Animal Production Changing Costs (USD) | 29,899.53 | 84,005.81 | 169,085.64 | 475,925.63 | 236,950.05 |
Crop Production Changing Costs (USD) | 11,144.28 | 23,510.27 | 31,376.43 | 57,406.14 | 35,956.36 |
Total Changing Costs (USD) | 41,043.81 | 107,516.08 | 200,462.07 | 533,331.77 | 272,906.41 |
Gross Profit (USD) | 17,940.77 | 25,864.51 | 66,051.04 | 206,279.10 | 98,753.53 |
1. Group | 2. Group | 3. Group | 4. Group | Enterprises Average | % | ||
---|---|---|---|---|---|---|---|
Solar energy | I use it in electricity generation. | 0.00 | 0.08 | 0.00 | 0.11 | 0.05 | 0.00 |
I use it for storage. | 0.00 | 0.04 | 0.02 | 0.00 | 0.01 | 0.00 | |
I use it in natural lighting. | 0.06 | 0.04 | 0.00 | 0.00 | 0.01 | 5.88 | |
I use it for preheating and heating. | 0.06 | 0.04 | 0.06 | 0.00 | 0.04 | 5.88 | |
I use it for water works. | 0.00 | 0.04 | 0.08 | 0.07 | 0.06 | 0.00 | |
Geothermal energy | I use it for greenhouse heating. | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
I use it in my animal shelter. | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
I use it for soil heating. | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
I use it to dry my products. | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
I use it for soil reclamation. | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
I use it in agricultural production. | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Biomass Energy | I use it in electricity generation. | 0.00 | 0.00 | 0.02 | 0.00 | 0.01 | 0.00 |
I use it for space heating and cooling. | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
I use it for water heating and water cooling. | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
I also use biodiesel fuel. | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Wind power | I use it in electricity generation. | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
I use it for mechanical strength. | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
I use it for irrigation. | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Hydroelectric Energy | I use it in electricity generation. | 0.00 | 0.04 | 0.00 | 0.00 | 0.01 | 0.00 |
I use it for irrigation. | 0.00 | 0.04 | 0.00 | 0.00 | 0.01 | 0.00 | |
Waste Management | I use it in animal manure. | 0.24 | 0.23 | 0.27 | 0.69 | 0.40 | 23.53 |
I contribute to the conversion of agricultural waste into biochar. | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
1. Group | 2. Group | 3. Group | 4. Group | Enterprises Average | ||
---|---|---|---|---|---|---|
Economic | If milk production is supported by plant production, income will increase further. | 4.47 | 4.42 | 4.56 | 4.67 | 4.56 |
Using the obtained farm manure in crop production will create an alternative source to chemical fertilizers and increase the income level. | 4.53 | 4.5 | 4.48 | 4.6 | 4.53 | |
The use of renewable energy sources in milk production increases the income level | 4.35 | 4.58 | 4.31 | 4.33 | 4.38 | |
Adoption of dairy production renewable energy source is very costly | 3.88 | 4.31 | 4.19 | 4.36 | 4.23 | |
Dairy production waste management costs are high | 4.12 | 3.96 | 4.06 | 4.36 | 4.15 | |
Milk production is more income-generating than alternative production | 3.65 | 3.62 | 3.67 | 3.87 | 3.72 | |
The economic income of milk production is high | 3.82 | 3.35 | 3.58 | 3.69 | 3.60 | |
I have the potential to establish a renewable energy source | 1.94 | 2.77 | 3.25 | 3.6 | 3.11 | |
Milk production supports are sufficient | 2.65 | 2.27 | 2.52 | 2.62 | 2.52 | |
Social | Thanks to the use of renewable energy in milk production, income will increase and people will go beyond their needs for food and shelter. | 4.18 | 4.42 | 4.44 | 4.64 | 4.47 |
Thanks to waste management in milk production, people’s social areas will be cleaner. | 4.12 | 4.54 | 4.42 | 4.69 | 4.49 | |
Renewable energy in milk production will facilitate the living spaces of farms | 4.41 | 4.31 | 4.42 | 4.53 | 4.43 | |
The welfare level will increase when biomass obtained from dairy cattle is used as fuel. | 4.24 | 4.38 | 4.27 | 4.38 | 4.32 | |
I encourage people around me to use renewable energy. | 4 | 4.38 | 4.33 | 4.29 | 4.29 | |
Social facilities in the region are sufficient for the use of renewable energy | 3.12 | 3.42 | 2.88 | 2.51 | 2.89 | |
Environmental | Waste management in milk production makes a positive contribution to the environment | 4.35 | 4.35 | 4.35 | 4.53 | 4.41 |
Using renewable energy sources in milk production is environmentally friendly | 4.24 | 4.46 | 4.38 | 4.33 | 4.36 | |
Using the obtained farm manure in plant production will provide an alternative source to chemical fertilizers and protect the environment from chemical contamination. | 3.94 | 4.35 | 4.31 | 4.4 | 4.3 | |
Renewable energy source compared to fossil sources | 4.29 | 4.15 | 4.25 | 4.44 | 4.3 | |
Appropriate storage method should be used to reduce methane gas emissions of the obtained farm manure. | 3.94 | 4.27 | 4.1 | 4.27 | 4.17 | |
Milk production causes methane gas emissions. | 3.47 | 3.62 | 3.42 | 3.78 | 3.58 | |
Environmental conditions in the region are sufficient for renewable energy installation. | 2.59 | 3.15 | 3.13 | 4.56 | 3.54 |
Factors | Scale Items | Factor Loadings | Ort. Mean | Standard Deviation | Variance Ratios | Cronbach Alpha Coefficients |
---|---|---|---|---|---|---|
The need for encouragement and support about renewable energy sources | Tax exemption is required due to the high maintenance cost of the renewable energy system. | 0.764 | 4.5588 | 0.80521 | 37.856 | 0.882 |
Renewable energy sources contribute to the improvement of the economy. | 0.734 | 4.6838 | 0.65209 | |||
Subsidies are required for the purchase of a renewable energy system. | 0.722 | 4.4265 | 0.75653 | |||
Tax exemption is required due to the high installation costs of renewable energy systems. | 0.704 | 4.4926 | 0.77933 | |||
Renewable energy sources are more profitable than other energy systems. | 0.650 | 4.6103 | 0.67957 | |||
Renewable energy sources are important for agricultural production. | 0.640 | 4.6912 | 0.60264 | |||
It should support pilot demonstration projects for all types of renewable energy technologies. | 0.628 | 4.5147 | 0.73015 | |||
Subsidies are required for renewable energy system maintenance. | 0.610 | 4.4044 | 0.80165 | |||
Information about renewable energy should be included in secondary and post-secondary education curricula. | 0.584 | 4.3824 | 0.95109 | |||
Awareness of renewable energy sources | The need for encouragement and support about renewable energy sources | 0.884 | 4.7353 | 0.65812 | 22,064 | 0.827 |
Awareness of renewable energy sources | 0.866 | 4.7132 | 0.66564 | |||
Cumulative Value | 59.920 | |||||
Kaiser–Meyer–Olkin Bartlett’s Test of Sphericity | 0.854 | |||||
Chi-square Value | 762.590 | |||||
df | 55 | |||||
p | 0.000 |
Range | Minimum | Maximum | Mean | Std. Deviation | Variance | |
---|---|---|---|---|---|---|
Milk Production Sustainability Index | 0.80 | 0.20 | 1.00 | 0.8141 | 0.19773 | 0.039 |
Land Asset (Decar) | 3010.00 | 0.00 | 3010.00 | 216.7463 | 371.70849 | 138,167.204 |
Animal Asset (Head) | 595.00 | 5.00 | 600.00 | 109.8235 | 94.74894 | 8977.361 |
Age | 57.00 | 18.00 | 75.00 | 47.5735 | 12.47910 | 155.728 |
Economic | 2.67 | 2.33 | 5.00 | 3.8663 | 0.65565 | 0.430 |
Social | 2.67 | 2.33 | 5.00 | 4.1496 | 0.65012 | 0.423 |
Environmental | 2.57 | 2.43 | 5.00 | 4.0943 | 0.58780 | 0.346 |
The need for encouragement and support about renewable energy sources | 8.46843 | −5.09871 | 3.36973 | 0.0000000 | 1.00000000 | 1.000 |
Awareness of renewable energy sources | 8.17149 | −6.23434 | 1.93715 | 0.0000000 | 1.00000000 | 1.000 |
Unstandardized Coefficients | Standardized Coefficients | t | Sig. | VIF | ||
---|---|---|---|---|---|---|
B | Std. Error | Beta | ||||
(Constant) | 0.119 | 0.151 | 0.789 | 0.432 | ||
Land Asset (Decar) | 0.000 | 0.000 | −0.222 | −2.588 | 0.011 * | 1.341 |
Animal Asset (Head) | 0.000 | 0.000 | 0.227 | 2.593 | 0.011 * | 1.394 |
Age | 0.003 | 0.001 | 0.173 | 2.258 | 0.026 * | 1.068 |
Economic | 0.051 | 0.030 | 0.168 | 1.704 | 0.091 * | 1.781 |
Social | 0.023 | 0.030 | 0.077 | 0.786 | 0.433 | 1.746 |
Environmental | 0.060 | 0.031 | 0.178 | 1.948 | 0.054 * | 1.524 |
The need for encouragement and support about renewable energy sources | 0.021 | 0.016 | 0.105 | 1.341 | 0.182 | 1.122 |
Awareness of renewable energy sources | 0.030 | 0.016 | 0.154 | 1.963 | 0.052 * | 1.121 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yener Ögür, A. The Effect of Awareness of Renewable Energy Resources on Sustainable Production in Dairy Farming: The Case of Konya Province (Turkey). Sustainability 2024, 16, 8351. https://doi.org/10.3390/su16198351
Yener Ögür A. The Effect of Awareness of Renewable Energy Resources on Sustainable Production in Dairy Farming: The Case of Konya Province (Turkey). Sustainability. 2024; 16(19):8351. https://doi.org/10.3390/su16198351
Chicago/Turabian StyleYener Ögür, Aysun. 2024. "The Effect of Awareness of Renewable Energy Resources on Sustainable Production in Dairy Farming: The Case of Konya Province (Turkey)" Sustainability 16, no. 19: 8351. https://doi.org/10.3390/su16198351
APA StyleYener Ögür, A. (2024). The Effect of Awareness of Renewable Energy Resources on Sustainable Production in Dairy Farming: The Case of Konya Province (Turkey). Sustainability, 16(19), 8351. https://doi.org/10.3390/su16198351