Dynamic Interactive Effects of Technological Innovation, Transportation Industry Development, and CO2 Emissions
Abstract
:1. Introduction
2. Literature Review and Hypothesis Development
2.1. Nexus between Technological Innovation and CO2 Emissions
2.2. Nexus between Transportation Industry Development and CO2 Emissions
2.3. Nexus between Technological Innovation and Transportation Industry Development
3. Data and Methods
3.1. Data Sources and Variables
3.2. Methods
4. Results and Discussion
4.1. Unit Root Test
4.2. Impulse Response Function (IRF) and Variance Decomposition
4.2.1. Analysis of Impulse Response Function Results
4.2.2. Variance Decomposition
4.3. GMM-PVAR Estimation
5. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yue, H. Prediction of CO2 Emissions in China by Generalized Regression Neural Network Optimized with Fruit Fly Optimization Algorithm. Environ. Sci. Pollut. Res. 2023, 30, 80676–80692. [Google Scholar] [CrossRef] [PubMed]
- Moslem, S.; Stević, Ž.; Tanackov, I.; Pilla, F. Sustainable Development Solutions of Public Transportation:An Integrated IMF SWARA and Fuzzy Bonferroni Operator. Sustain. Cities Soc. 2023, 93, 104530. [Google Scholar] [CrossRef]
- Kwakwa, P.A.; Adjei-Mantey, K.; Adusah-Poku, F. The Effect of Transport Services and ICTs on Carbon Dioxide Emissions in South Africa. Environ. Sci. Pollut. Res. 2022, 30, 10457–10468. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Cao, H.; Yuan, L. Does Patent Pledge Reduce Pollution and Carbon Emissions? Evidence from China. Environ. Res. 2024, 247, 118274. [Google Scholar] [CrossRef] [PubMed]
- Bureau of Statistics of China. New Momentum Is Growing Vigorously and the New Economy Is in the Ascendant—The Ninth in a Series of Reports on the Achievements of Economic and Social Development Since the 18th National Congress of the Communist Party of China. 2022. Available online: http://www.stats.gov.cn/xxgk/jd/sjjd2020/202209/t20220926_1888675.html (accessed on 26 September 2022).
- Jiang, Y.; Khan, H. The Relationship between Renewable Energy Consumption, Technological Innovations, and Carbon Dioxide Emission: Evidence from Two-Step System GMM. Environ. Sci. Pollut. Res. 2023, 30, 4187–4202. [Google Scholar] [CrossRef]
- Labanca, N.; Pereira, Â.G.; Watson, M.; Krieger, K.; Padovan, D.; Watts, L.; Moezzi, M.; Wallenborn, G.; Wright, R.; Laes, E.; et al. Transforming Innovation for Decarbonisation? Insights from Combining Complex Systems and Social Practice Perspectives. Energy Res. Soc. Sci. 2020, 65, 101452. [Google Scholar] [CrossRef]
- Astuti, A.R.A.; Wenten, I.G.; Ariono, D.; Sasongko, D.; Saputera, W.H.; Khoiruddin, K. Advances in Carbon Control Technologies for Flue Gas Cleaning. Sep. Purif. Rev. 2024, 53, 487–516. [Google Scholar] [CrossRef]
- Hazarika, N.; Zhang, X. Factors That Drive and Sustain Eco-Innovation in the Construction Industry: The Case of Hong Kong. J. Clean. Prod. 2019, 238, 117816. [Google Scholar] [CrossRef]
- Antunes, J.; Tan, Y.; Wanke, P.; Jabbour, C.J.C. Impact of R&D and Innovation in Chinese Road Transportation Sustainability Performance: A Novel Trigonometric Envelopment Analysis for Ideal Solutions (TEA-IS). Socio-Econ. Plan. Sci. 2023, 87, 101544. [Google Scholar] [CrossRef]
- Li, H.; Luo, N. Will improvements in transportation infrastructure help reduce urban carbon emissions?—Motor vehicles as transmission channels. Environ. Sci. Pollut. Res. 2022, 29, 38175–38185. [Google Scholar] [CrossRef]
- Atalay, A. Spatial Relationship of Air and Rail Transport to Transportation Carbon Dioxide Emissions. Proc. Inst. Civ. Eng.—Transp. 2019, 175, 150–155. [Google Scholar] [CrossRef]
- Galkin, A.; Sirina, N.; Zubkov, V. Integrated Transport Service Model as a Mechanism for Sustainable Economic Development. Transp. Res. Procedia 2022, 63, 2661–2669. [Google Scholar] [CrossRef]
- Acheampong, A.O.; Dzator, J.; Dzator, M.; Salim, R. Unveiling the Effect of Transport Infrastructure and Technological Innovation on Economic Growth, Energy Consumption and CO2 Emissions. Technol. Forecast. Soc. Chang. 2022, 182, 121843. [Google Scholar] [CrossRef]
- Ling, S.; Jin, S.; Wang, H.; Zhang, Z.; Feng, Y. Transportation Infrastructure Upgrading and Green Development Efficiency: Empirical Analysis with Double Machine Learning Method. J. Environ. Manag. 2024, 358, 120922. [Google Scholar] [CrossRef]
- Wang, X.; Xie, Z.; Zhang, X.; Huang, Y. Roads to Innovation: Firm-Level Evidence from People’s Republic of China (PRC). China Econ. Rev. 2018, 49, 154–170. [Google Scholar] [CrossRef]
- Li, Y.; Lin, H.; Jin, J. Decision-Making for Sustainable Urban Transportation: A Statistical Exploration of Innovative Mobility Solutions and Reduced Emissions. Sustain. Cities Soc. 2024, 102, 105219. [Google Scholar] [CrossRef]
- Awan, A.; Alnour, M.; Jahanger, A.; Onwe, J.C. Do Technological Innovation and Urbanization Mitigate Carbon Dioxide Emissions from the Transport Sector? Technol. Soc. 2022, 71, 102128. [Google Scholar] [CrossRef]
- Liu, X.; Yuan, S.; Yu, H.; Liu, Z. How Ecological Policy Stringency Moderates the Influence of Industrial Innovation on Environmental Sustainability: The Role of Renewable Energy Transition in BRICST Countries. Renew. Energy 2023, 207, 194–204. [Google Scholar] [CrossRef]
- Li, W.; Bao, L.; Li, Y.; Si, H.; Li, Y. Assessing the Transition to Low-Carbon Urban Transport: A Global Comparison. Resour. Conserv. Recycl. 2022, 180, 106179. [Google Scholar] [CrossRef]
- Xu, L.; Fan, M.; Yang, L.; Shao, S. Heterogeneous Green Innovations and Carbon Emission Performance: Evidence at China’s City Level. Energy Econ. 2021, 99, 105269. [Google Scholar] [CrossRef]
- Schumpeter, J.A. The Theory of Economic Development: An Inquiry into Profits, Capital, Credit, Interest, and the Business Cycle; Harvard University Press: Cambridge, MA, USA, 1949. [Google Scholar]
- Shahbaz, M.; Raghutla, C.; Song, M.; Zameer, H.; Jiao, Z. Public-Private Partnerships Investment in Energy as New Determinant of CO2 Emissions: The Role of Technological Innovations in China. Energy Econ. 2020, 86, 104664. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Kirikkaleli, D. Impact of Renewable Energy Consumption, Globalization, and Technological Innovation on Environmental Degradation in Japan: Application of Wavelet Tools. Environ. Dev. Sustain. 2021, 23, 16057–16082. [Google Scholar] [CrossRef]
- Ostadzad, A.H. Innovation and Carbon Emissions: Fixed-Effects Panel Threshold Model Estimation for Renewable Energy. Renew. Energy 2022, 198, 602–617. [Google Scholar] [CrossRef]
- Chen, H.; Yi, J.; Chen, A.; Peng, D.; Yang, J. Green Technology Innovation and CO2 Emission in China: Evidence from a Spatial-Temporal Analysis and a Nonlinear Spatial Durbin Model. Energy Policy 2023, 172, 113338. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam, K.; Velayutham, E. Reduction of CO2 Emissions: The Role of Renewable Energy, Technological Innovation and Export Quality. Energy Reports 2022, 8, 2793–2805. [Google Scholar] [CrossRef]
- Khan, H.; Khan, I.; BiBi, R. The Role of Innovations and Renewable Energy Consumption in Reducing Environmental Degradation in OECD Countries: An Investigation for Innovation Claudia Curve. Environ. Sci. Pollut. Res. 2022, 29, 43800–43813. [Google Scholar] [CrossRef]
- Su, Z.-W.; Umar, M.; Kirikkaleli, D.; Adebayo, T.S. Role of Political Risk to Achieve Carbon Neutrality: Evidence from Brazil. J. Environ. Manag. 2021, 298, 113463. [Google Scholar] [CrossRef] [PubMed]
- Dauda, L.; Long, X.; Mensah, C.N.; Salman, M.; Boamah, K.B.; Ampon-Wireko, S.; Dogbe, C.S.K. Innovation, Trade Openness and CO2 Emissions in Selected Countries in Africa. J. Clean. Prod. 2021, 281, 125143. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, H. Dynamic Interaction of Renewable Energy Technological Innovation, Environmental Regulation Intensity and Carbon Pressure: Evidence from China. Renew. Energy 2022, 192, 420–430. [Google Scholar] [CrossRef]
- Raffiee, J.; Coff, R. Micro-Foundations of Firm-Specific Human Capital: When Do Employees Perceive Their Skills to Be Firm-Specific? Acad. Manag. J. 2016, 59, 766–790. [Google Scholar] [CrossRef]
- Zhao, X.; Ding, X.; Li, L. Research on Environmental Regulation, Technological Innovation and Green Transformation of Manufacturing Industry in the Yangtze River Economic Belt. Sustainability 2021, 13, 10005. [Google Scholar] [CrossRef]
- Herman, K.S.; Xiang, J. Environmental Regulatory Spillovers, Institutions, and Clean Technology Innovation: A Panel of 32 Countries over 16 Years. Energy Res. Soc. Sci. 2020, 62, 101363. [Google Scholar] [CrossRef]
- Li, S.; Liu, J.; Wu, J.; Hu, X. Spatial Spillover Effect of Carbon Emission Trading Policy on Carbon Emission Reduction: Empirical Data from Transport Industry in China. J. Clean. Prod. 2022, 371, 133529. [Google Scholar] [CrossRef]
- Park, J.; Jung, S. Exploring Urban Compactness and Greenhouse Gas Emissions in the Road Transport Sector: A Case Study of Big Cities in South Korea. Sustainability 2024, 16, 1911. [Google Scholar] [CrossRef]
- Awaworyi Churchill, S.; Inekwe, J.; Ivanovski, K.; Smyth, R. Transport Infrastructure and CO2 Emissions in the OECD over the Long Run. Transp. Res. Part D Transp. Environ. 2021, 95, 102857. [Google Scholar] [CrossRef]
- Umar, M.; Ji, X.; Kirikkaleli, D.; Xu, Q. COP21 Roadmap: Do Innovation, Financial Development, and Transportation Infrastructure Matter for Environmental Sustainability in China? J. Environ. Manag. 2020, 271, 111026. [Google Scholar] [CrossRef]
- Li, L.; Zhang, X. Integrated Optimization of Railway Freight Operation Planning and Pricing Based on Carbon Emission Reduction Policies. J. Clean. Prod. 2020, 263, 121316. [Google Scholar] [CrossRef]
- Xie, R.; Fang, J.; Liu, C. The effects of transportation infrastructure on urban carbon emissions. Appl. Energy 2017, 196, 199–207. [Google Scholar] [CrossRef]
- Dzator, J.; Acheampong, A.O.; Dzator, M. The Impact of Transport Infrastructure Development on Carbon Emissions in OECD Countries. In Environmental Sustainability and Economy; Elsevier: Amsterdam, The Netherlands, 2021; pp. 3–17. [Google Scholar] [CrossRef]
- Han, R.; Yu, B.Y.; Tang, B.J.; Liao, H.; Wei, Y.M. Carbon Emissions Quotas in the Chinese Road Transport Sector: A Carbon Trading Perspective. Energy Policy 2017, 106, 298–309. [Google Scholar] [CrossRef]
- Raux, C.; Croissant, Y.; Pons, D. Would Personal Carbon Trading Reduce Travel Emissions More Effectively than a Carbon Tax? Transp. Res. Part D Transp. Environ. 2015, 35, 72–83. [Google Scholar] [CrossRef]
- Olowogbon, T.S.; Fakayode, S.B.; Luke, A.O. Transportation and Economic Development: Advancing Technological Innovation and Sustainability in the Transportation Sector of a Developing Nation. In Innovation, Entrepreneurship and the Informal Economy in Sub–Saharan Africa: A Sustainable Development Agenda; Ibidunni, A.S., Ogundana, O.M., Olokundun, M.A., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2024; pp. 197–216. [Google Scholar] [CrossRef]
- Wang, C.A.; Wu, J.; Liu, X. High-Speed Rail and Urban Innovation: Based on the Perspective of Labor Mobility. J. Asia Pac. Econ. 2024, 29, 837–862. [Google Scholar] [CrossRef]
- Agrawal, A.; Galasso, A.; Oettl, A. Roads and Innovation. Rev. Econ. Stat. 2017, 99, 417–434. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, H.; Lin, S.; Zhang, J.; Zeng, J. Does High-Speed Railway Promote Regional Innovation Growth or Innovation Convergence? Technol. Soc. 2021, 64, 101472. [Google Scholar] [CrossRef]
- Dong, X.; Zheng, S.; Kahn, M.E. The Role of Transportation Speed in Facilitating High Skilled Teamwork across Cities. J. Urban Econ. 2020, 115, 103212. [Google Scholar] [CrossRef]
- Kraciuk, J.; Kacperska, E.; Łukasiewicz, K.; Pietrzak, P. Innovative Energy Technologies in Road Transport in Selected EU Countries. Energies 2022, 15, 6030. [Google Scholar] [CrossRef]
- Etukudoh, E.A.; Adefemi, A.; Ilojianya, V.I.; Umoh, A.A.; Ibekwe, K.I.; Nwokediegwu, Z.Q.S. A Review of sustainable transportation solutions: Innovations, challenges, and future directions. World J. Adv. Res. Rev. 2024, 21, 1440–1452. [Google Scholar] [CrossRef]
- Koukaki, T.; Tei, A. Innovation and Maritime Transport: A Systematic Review. Case Stud. Transp. Policy 2020, 8, 700–710. [Google Scholar] [CrossRef]
- Mouratidis, K.; Peters, S.; van Wee, B. Transportation Technologies, Sharing Economy, and Teleactivities: Implications for Built Environment and Travel. Transp. Res. Part D Transp. Environ. 2021, 92, 102716. [Google Scholar] [CrossRef]
- Jahanger, A.; Ozturk, I.; Onwe, J.C.; Ogwu, S.O.; Hossain, M.R.; Abdallah, A.A. Do Pro-Environmental Interventions Matter in Restoring Environmental Sustainability? Unveiling the Role of Environmental Tax, Green Innovation and Air Transport in G-7 Nations. Gondwana Res. 2024, 127, 165–181. [Google Scholar] [CrossRef]
- Bieser, J.C.T.; Vaddadi, B.; Kramers, A.; Höjer, M.; Hilty, L.M. Impacts of Telecommuting on Time Use and Travel: A Case Study of a Neighborhood Telecommuting Center in Stockholm. Travel. Behav. Soc. 2021, 23, 157–165. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Z.; Zhu, L. Does Technological Innovation Improve Energy-Environmental Efficiency? New Evidence from China’s Transportation Sector. Environ. Sci. Pollut. Res. 2021, 28, 69042–69058. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, P.; Ma, S. The Impact of Different Transportation Infrastructures on Urban Carbon Emissions: Evidence from China. Energy 2024, 295, 131041. [Google Scholar] [CrossRef]
- Wu, D.; Lin, J.C.; Oda, T.; Kort, E.A. Space-Based Quantification of per Capita CO2 Emissions from Cities. Environ. Res. Lett. 2020, 15, 035004. [Google Scholar] [CrossRef]
- Mishalani, R.G.; Goel, P.K.; Landgraf, A.J.; Westra, A.M.; Zhou, D. Passenger Travel CO2 Emissions in US Urbanized Areas: Multi-Sourced Data, Impacts of Influencing Factors, and Policy Implications. Transp. Policy 2014, 36, 231–241. [Google Scholar] [CrossRef]
- Wang, J.; Zou, D. Research on Regional Innovation Capability Based on Grey Relation Analysis. J. Phys. Conf. Ser. 2021, 2012, 012081. [Google Scholar] [CrossRef]
- Furman, J.L.; Stern, S. Climbing atop the shoulders of giants: The impact of institutions on cumulative research. Am. Econ. Rev. 2021, 111, 584–630. [Google Scholar]
- Ruiz-Ortega, M.J.; García-Villaverde, P.M.; De La Gala-Velásquez, B.; Hurtado-Palomino, A.; Arredondo-Salas, Á.Y. Innovation Capability and Pioneering Orientation in Peru’s Cultural Heritage Tourism Destinations: Conflicting Environmental Effects. J. Hosp. Tour. Manag. 2021, 48, 441–450. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Zhang, H.; Zhang, Y. Evaluation on New First-Tier Smart Cities in China Based on Entropy Method and TOPSIS. Ecol. Indic. 2022, 145, 109616. [Google Scholar] [CrossRef]
- Kirikkaleli, D.; Abbasi, K.R.; Oyebanji, M.O. The Asymmetric and Long-Run Effect of Environmental Innovation and CO2 Intensity of GDP on Consumption-Based CO2 Emissions in Denmark. Environ. Sci. Pollut. Res. 2023, 30, 50110–50124. [Google Scholar] [CrossRef]
- Xu, X.; Zeng, L.; Li, S.; Liu, Y.; Zhang, T. Dynamic Nonlinear CO2 Emission Effects of Urbanization Routes in the Eight Most Populous Countries. PLoS ONE 2024, 19, e0296997. [Google Scholar] [CrossRef]
- Vo, D.H.; Vo, A.T.; Ho, C.M. Urbanization and Renewable Energy Consumption in the Emerging ASEAN Markets: A Comparison between Short and Long-Run Effects. Heliyon 2024, 10, e30243. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, Q.; Zhang, M. Environmental Regulation and CO2 Emissions: Based on Strategic Interaction of Environmental Governance. Ecol. Complex. 2021, 45, 100893. [Google Scholar] [CrossRef]
- Zhang, B.; Yin, J.; Jiang, H.; Qiu, Y. Spatial–Temporal Pattern Evolution and Influencing Factors of Coupled Coordination between Carbon Emission and Economic Development along the Pearl River Basin in China. Environ. Sci. Pollut. Res. 2023, 30, 6875–6890. [Google Scholar] [CrossRef]
- Liu, J.; Ma, H.; Wang, Q.; Tian, S.; Xu, Y.; Zhang, Y.; Yuan, X.; Ma, Q.; Xu, Y.; Yang, S. Optimization of Energy Consumption Structure Based on Carbon Emission Reduction Target: A Case Study in Shandong Province, China. Chin. J. Popul. Resour. Environ. 2022, 20, 125–135. [Google Scholar] [CrossRef]
- Usman, O.; Alola, A.A.; Akadiri, S.S. Effects of Domestic Material Consumption, Renewable Energy, and Financial Development on Environmental Sustainability in the EU-28: Evidence from a GMM Panel-VAR. Renew. Energy 2022, 184, 239–251. [Google Scholar] [CrossRef]
- Öztürk, S.; Han, V.; Özsolak, B. How Do Renewable Energy, Gross Capital Formation, and Natural Resource Rent Affect Economic Growth in G7 Countries? Evidence from the Novel GMM-PVAR Approach. Environ. Sci. Pollut. Res. 2023, 30, 78438–78448. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Chen, W. Study on the Relationship between Agricultural Credit, Fiscal Support, and Farmers’ Income—Empirical Analysis Based on the PVAR Model. Sustainability 2023, 15, 3173. [Google Scholar] [CrossRef]
- Ganda, F. The Interplay between Technological Innovation, Financial Development, Energy Consumption and Natural Resource Rents in the BRICS Economies: Evidence from GMM Panel VAR. Energy Strategy Rev. 2024, 51, 101267. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Distribution of the Estimators for Autoregressive Time Series with a Unit Root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar] [CrossRef]
- Kumar, P.; Rani, P. The impact of renewable energy on carbon emissions in BRICS countries: A panel data approach with ADF and PMG methods. Renew. Energy 2022, 191, 1277–1289. [Google Scholar] [CrossRef]
- Santos, R.A.; Marques, A. Analyzing the impact of government spending on economic growth: Evidence from ADF tests and cointegration analysis. Econ. Lett. 2023, 234, 110415. [Google Scholar]
- Dutta, K.D.; Saha, M. Does Financial Development Cause Sustainable Development? A PVAR Approach. Econ. Chang. Restruct. 2022, 56, 879–917. [Google Scholar] [CrossRef]
- Dogan, E.; Chishti, M.Z.; Karimi Alavijeh, N.; Tzeremes, P. The Roles of Technology and Kyoto Protocol in Energy Transition towards COP26 Targets: Evidence from the Novel GMM-PVAR Approach for G-7 Countries. Technol. Forecast. Soc. Chang. 2022, 181, 121756. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, Z.; Xue, X.; Wang, Y. Spillover Effects of Railway and Road on CO2 Emission in China: A Spatiotemporal Analysis. J. Clean. Prod. 2019, 234, 797–809. [Google Scholar] [CrossRef]
- Erdoğan, S.; Yıldırım, S.; Yıldırım, D.Ç.; Gedikli, A. The Effects of Innovation on Sectoral Carbon Emissions: Evidence from G20 Countries. J. Environ. Manag. 2020, 267, 110637. [Google Scholar] [CrossRef]
- Wang, Q.; Dong, Z. Technological Innovation and Renewable Energy Consumption: A Middle Path for Trading off Financial Risk and Carbon Emissions. Environ. Sci. Pollut. Res. 2022, 29, 33046–33062. [Google Scholar] [CrossRef]
Construction Dimension | Evaluation Index | Unit | Attribute | Weight |
---|---|---|---|---|
Infrastructure scale | Highway network density | km/km2 | + | 0.087 |
Railway network density | km/km2 | + | 0.070 | |
Public transport network density | km/km2 | + | 0.050 | |
Inland waterway density | km/km2 | + | 0.048 | |
Urban road area per capita | km2 | + | 0.065 | |
Transportation capacity | Road passenger turnover | billion person-km | + | 0.056 |
Road freight turnover | billion ton-km | + | 0.072 | |
Railway passenger turnover | billion person-km | + | 0.064 | |
Rail freight turnover | billion ton-km | + | 0.084 | |
Water transport passenger turnover | billion person-km | + | 0.043 | |
Water freight turnover | billion ton-km | + | 0.078 | |
Public transport passenger turnover | million person-km | + | 0.044 | |
Added value of the transportation industry | CNY 100 million | + | 0.067 | |
Service efficiency | Traffic accidents | number | − | 0.049 |
The per capita travel cost of urban residents | yuan | − | 0.062 | |
The per capita travel cost of rural residents | yuan | − | 0.027 | |
The proportion of coal energy consumption | % | − | 0.034 |
Region | Variable | Sample | Mean | Std. Dev | Min | Max |
---|---|---|---|---|---|---|
All | CO2 | 450 | 12.808 | 12.102 | 0.570 | 74.040 |
Uric | 450 | 31.623 | 10.916 | 9.240 | 72.720 | |
Eotd | 450 | 0.303 | 0.073 | 0.177 | 0.528 | |
Eastern | CO2 | 150 | 16.943 | 14.850 | 0.570 | 55.900 |
Uric | 150 | 31.107 | 12.786 | 9.240 | 65.260 | |
Eotd | 150 | 0.352 | 0.082 | 0.219 | 0.528 | |
Central | CO2 | 90 | 10.019 | 3.701 | 2.390 | 16.880 |
Uric | 90 | 30.690 | 9.169 | 13.560 | 55.610 | |
Eotd | 90 | 0.331 | 0.047 | 0.236 | 0.426 | |
Western | CO2 | 165 | 10.510 | 12.120 | 0.878 | 74.040 |
Uric | 165 | 31.244 | 10.492 | 13.370 | 72.720 | |
Eotd | 165 | 0.254 | 0.038 | 0.177 | 0.348 | |
Northeastern | CO2 | 45 | 13.027 | 8.862 | 3.734 | 29.286 |
Uric | 45 | 36.593 | 7.307 | 21.610 | 54.990 | |
Eotd | 45 | 0.267 | 0.050 | 0.212 | 0.356 |
Region | Variable | Inverse Chi-Squared (8) | Inverse Normal | Inverse Logit t (24) | Modified Inv. Chi-Squared |
---|---|---|---|---|---|
All | CO2 | 18.404 ** | −2.516 *** | −2.453 *** | 2.601 *** |
Uric | 16.904 ** | −2.185 *** | −2.151 ** | 2.226 *** | |
Eotd | 26.120 *** | −3.462 *** | −3.617 *** | 4.530 *** | |
Eastern | CO2 | 10.872 *** | −2.623 *** | −3.201 *** | 4.436 *** |
Uric | 6.632 ** | −1.795 ** | −1.933 ** | 2.316 *** | |
Eotd | 11.210 *** | −2.680 *** | −3.302 *** | 4.605 *** | |
Central | CO2 | 8.935 *** | −2.274 *** | −2.626 *** | 3.468 *** |
Uric | 10.692 *** | −2.592 *** | −3.148 *** | 4.346 *** | |
Eotd | 12.118 *** | −2.829 *** | −3.570 *** | 5.059 *** | |
Western | CO2 | 8.1651 ** | −2.123 ** | −2.396 ** | 3.083 *** |
Uric | 6.6564 ** | −1.801 ** | −1.940 ** | 2.328 *** | |
Eotd | 10.101 *** | −2.489 *** | −2.973 *** | 4.050 *** | |
Northeastern | CO2 | 21.418 *** | −4.0818 *** | −6.3117 *** | 9.709 *** |
Uric | 7.779 ** | −2.045 ** | −2.280 ** | 2.890 *** | |
Eotd | 11.215 *** | −2.681 *** | −3.303 *** | 4.607 *** |
Region | S | D_CO2 | D_Uric | D_Eotd | |
---|---|---|---|---|---|
All | D_CO2 | 10 | 0.976 | 0.001 | 0.022 |
D_Uric | 10 | 0.001 | 0.993 | 0.006 | |
D_Eotd | 10 | 0.078 | 0.000 | 0.922 | |
D_CO2 | 20 | 0.976 | 0.001 | 0.022 | |
D_Uric | 20 | 0.001 | 0.993 | 0.006 | |
D_Eotd | 20 | 0.078 | 0.000 | 0.922 | |
Eastern | D_CO2 | 10 | 0.956 | 0.002 | 0.041 |
D_Uric | 10 | 0.066 | 0.931 | 0.002 | |
D_Eotd | 10 | 0.203 | 0.002 | 0.795 | |
D_CO2 | 20 | 0.956 | 0.002 | 0.041 | |
D_Uric | 20 | 0.066 | 0.931 | 0.002 | |
D_Eotd | 20 | 0.203 | 0.002 | 0.795 | |
Central | D_CO2 | 10 | 0.891 | 0.061 | 0.048 |
D_Uric | 10 | 0.065 | 0.904 | 0.031 | |
D_Eotd | 10 | 0.088 | 0.006 | 0.906 | |
D_CO2 | 20 | 0.891 | 0.061 | 0.048 | |
D_Uric | 20 | 0.065 | 0.904 | 0.031 | |
D_Eotd | 20 | 0.088 | 0.006 | 0.906 | |
Western | D_CO2 | 10 | 0.998 | 0.001 | 0.000 |
D_Uric | 10 | 0.012 | 0.917 | 0.071 | |
D_Eotd | 10 | 0.028 | 0.000 | 0.972 | |
D_CO2 | 20 | 0.998 | 0.001 | 0.000 | |
D_Uric | 20 | 0.012 | 0.917 | 0.071 | |
D_Eotd | 20 | 0.028 | 0.000 | 0.972 | |
Northeastern | D_CO2 | 10 | 0.961 | 0.021 | 0.018 |
D_Uric | 10 | 0.182 | 0.745 | 0.073 | |
D_Eotd | 10 | 0.049 | 0.024 | 0.927 | |
D_CO2 | 20 | 0.961 | 0.021 | 0.018 | |
D_Uric | 20 | 0.182 | 0.745 | 0.073 | |
D_Eotd | 20 | 0.049 | 0.024 | 0.927 |
Variable | All | Eastern | Central | Western | Northeastern | |||||
---|---|---|---|---|---|---|---|---|---|---|
SYS-GMM | FE | SYS-GMM | FE | SYS-GMM | FE | SYS-GMM | FE | SYS-GMM | FE | |
lnUric | −0.727 *** | −0.932 *** | −0.727 *** | −0.858 ** | 6.417 *** | 1.225 | 3.156 *** | −0.764 * | −2.670 *** | 2.445 |
lnEotd | 1.802 *** | 2.087 *** | 1.802 *** | 1.754 * | −1.586 *** | −4.134 | −7.619 *** | 1.012 | 13.207 *** | −4.623 ** |
lnUric × lnEotd | 0.332 ** | −0.690 *** | −0.332 *** | −0.540 * | −1.089 *** | 1.316 * | 2.528 *** | −0.574 | −2.673 *** | 1.732 * |
L1.CO2 | 0.771 *** | 0.617 *** | 0.979 *** | 0.622 *** | 0.949 *** | 0.769 *** | 0.945 *** | 0.589 *** | 0.972 *** | 0.763 *** |
Constant term | 7.550 ** | 4.626 *** | 7.550 *** | 4.862 *** | −0.817 *** | −1.820 | −2.951 * | 2.619 | 0.337 ** | −4.342 * |
AR (1) | 0.011 | 0.010 | 0.037 | 0.012 | 0.006 | |||||
AR (2) | 0.359 | 0.533 | 0.219 | 0.460 | 0.740 | |||||
Sargan | 0.275 | 0.517 | 0.441 | 0.596 | 0.429 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, K.; Wang, X.; Wang, Z.; Zhao, H.; Zhong, Y.; Shen, J.; Ren, X. Dynamic Interactive Effects of Technological Innovation, Transportation Industry Development, and CO2 Emissions. Sustainability 2024, 16, 8672. https://doi.org/10.3390/su16198672
An K, Wang X, Wang Z, Zhao H, Zhong Y, Shen J, Ren X. Dynamic Interactive Effects of Technological Innovation, Transportation Industry Development, and CO2 Emissions. Sustainability. 2024; 16(19):8672. https://doi.org/10.3390/su16198672
Chicago/Turabian StyleAn, Kaige, Xiaowei Wang, Zhenning Wang, He Zhao, Yao Zhong, Jia Shen, and Xiaohong Ren. 2024. "Dynamic Interactive Effects of Technological Innovation, Transportation Industry Development, and CO2 Emissions" Sustainability 16, no. 19: 8672. https://doi.org/10.3390/su16198672
APA StyleAn, K., Wang, X., Wang, Z., Zhao, H., Zhong, Y., Shen, J., & Ren, X. (2024). Dynamic Interactive Effects of Technological Innovation, Transportation Industry Development, and CO2 Emissions. Sustainability, 16(19), 8672. https://doi.org/10.3390/su16198672