Evaluating Intra-Field Spatial Variability for Nutrient Management Zone Delineation through Geospatial Techniques and Multivariate Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Soil and Crop Yield Sampling, and Analysis
2.2. Statistical and Geostatistical Analyses
2.3. Mapping of Spatial Variability
2.4. Multivariate Analysis and Delineation of Management Zones
3. Results and Discussion
3.1. Overall Variability of Soil and Crop Parameters
3.2. Spatial Variability of Soil Properties
3.3. Multivariate Analysis and Delineation of Management Zones
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diacono, M.; Rubino, P.; Montemurro, F. Precision nitrogen management of wheat. A review. Agron. Sustain. Dev. 2013, 33, 219–241. [Google Scholar] [CrossRef]
- Groß, J.; Gentsch, N.; Boy, J.; Heuermann, D.; Schweneker, D.; Feuerstein, U.; Brunner, J.; von Wirén, N.; Guggenberger, G.; Bauer, B. Influence of small-scale spatial variability of soil properties on yield formation of winter wheat. Plant Soil 2023, 493, 79–97. [Google Scholar] [CrossRef]
- Nyengere, J.; Okamoto, Y.; Funakawa, S.; Shinjo, H. Analysis of spatial heterogeneity of soil physicochemical properties in Northern Malawi. Geoderma Reg. 2023, 35, e00733. [Google Scholar] [CrossRef]
- Quigley, M.Y.; Rivers, M.L.; Kravchenko, A.N. Patterns and sources of spatial heterogeneity in soil matrix from contrasting long term management practices. Front. Environ. Sci. 2018, 6, 28. [Google Scholar] [CrossRef]
- Basso, B.; Dumont, B.; Cammarano, D.; Pezzuolo, A.; Marinello, F.; Sartori, L. Environmental and economic benefits of variable rate nitrogen fertilization in a nitrate vulnerable zone. Sci. Total Environ. 2016, 545, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Xu, D.; Xue, J.; Zhang, X.; Hong, Y.; Peng, J.; Li, H.; Mouazen, A.M.; He, Y.; Shi, Z. Delineation and optimization of cotton farmland management zone based on time series of soil-crop properties at landscape scale in south Xinjiang, China. Soil Tillage Res. 2023, 231, 105744. [Google Scholar] [CrossRef]
- Ohana-Levi, N.; Ben-Gal, A.; Peeters, A.; Termin, D.; Linker, R.; Baram, S.; Raveh, E.; Paz-Kagan, T. A comparison between spatial clustering models for determining N- fertilization management zones in orchards. Precis. Agric. 2021, 22, 99–123. [Google Scholar] [CrossRef]
- Moharana, P.; Jena, R.; Pradhan, U.; Nogiya, M.; Tailor, B.; Singh, R.; Singh, S. Geostatistical and fuzzy clustering approach for delineation of site-specific management zones and yield-limiting factors in irrigated hot arid environment of India. Precis. Agric. 2019, 21, 426–448. [Google Scholar] [CrossRef]
- Cordoba, M.; Bruno, C.; Costa, J.; Peralta, N.; Balzarini, M. Protocol for multivariate homogeneous zone delineation in precision agriculture. Biosyst. Eng. 2016, 143, 95–107. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Z.; Li, F.; Li, H.Y. Delineation of site-specific management zones using fuzzy clustering analysis in a coastal saline land. Comput. Electron. Agric. 2007, 56, 174–186. [Google Scholar] [CrossRef]
- Aggelopooulou, K.; Castrignanò, A.; Gemtos, T.; Benedetto, D.D. Delineation of management zones in an apple orchard in Greece using a multivariate approach. Comput. Electron. Agric. 2013, 90, 119–130. [Google Scholar] [CrossRef]
- Maestrini, B.; Basso, B. Drivers of within-field spatial and temporal variability of crop yield across the US Midwest. Sci. Rep. 2018, 8, 14833. [Google Scholar] [CrossRef]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Liu, X.; Zhang, W.; Zhang, M.; Ficklin, D.L.; Wang, F. Spatio-temporal variations of soil nutrients influenced by an altered land tenure system in China. Geoderma 2009, 152, 23–34. [Google Scholar] [CrossRef]
- Usowicz, B.; Lipiec, J. Spatial variability of soil properties and cereal yield in a cultivated field on sandy soil. Soil Tillage Res. 2017, 174, 241–250. [Google Scholar] [CrossRef]
- Dai, W.; Zhao, K.L.; Fu, W.J.; Jiang, P.K.; Li, Y.F.; Zhang, C.S.; Gielen, G.; Gong, X.; Li, Y.H.; Wang, H.L.; et al. Spatial variation of organic carbon density in topsoils of a typical subtropical forest, southeastern China. Catena 2018, 167, 181–189. [Google Scholar] [CrossRef]
- Duan, L.; Li, Z.; Xie, H.; Li, Z.; Zhang, L.; Zhou, Q. Large-scale spatial variability of eight soil chemical properties within paddy fields. Catena 2020, 188, 104350. [Google Scholar] [CrossRef]
- Fleming, K.L.; Heermann, D.F.; Westfall, D.G. Evaluating soil color with farmer input and apparent soil electrical conductivity for management zone delineation. Agron. J. 2004, 96, 1581–1587. [Google Scholar] [CrossRef]
- Hornung, A.; Khosla, R.; Reich, R.; Inman, D.; Westfall, D.G. Comparsion of site specific management zones: Soil-color-based and yield-based. Agron. J. 2006, 98, 407–415. [Google Scholar] [CrossRef]
- Ortega, R.A.; Santibanez, O.A. Determination of management zones in corn (Zea mays L.) based on soil fertility. Comput. Electron. Agric. 2007, 58, 49–59. [Google Scholar] [CrossRef]
- Kitchen, N.R.; Sudduth, K.A.; Myers, D.B.; Drummond, S.T.; Hong, S.Y. Delineation productivity zones on clay pan soil fields using apparent soil electrical conductivity. Comput. Electron. Agric. 2005, 46, 285–308. [Google Scholar] [CrossRef]
- Barman, A.; Sheoran, P.; Yadav, R.K.; Abhishek, R.; Sharma, R.; Prajapat, K.; Singh, R.K.; Kumar, S. Soil spatial variability characterization: Delineating index-based management zones in salt-affected agroecosystem of India. J. Environ. Manag. 2021, 296, 113243. [Google Scholar] [CrossRef]
- Sanches, G.M.; Magalhães, P.S.G.; Franco, H.C.J. Site-specific assessment of spatial and temporal variability of sugarcane yield related to soil attributes. Geoderma 2019, 334, 90–98. [Google Scholar] [CrossRef]
- Ouazaa, S.; Jaramillo-Barrios, C.I.; Chaali, N.; Amaya, Y.M.Q.; Carvajal, J.E.C.; Ramos, O.M. Towards site specific management zones delineation in rotational cropping system: Application of multivariate spatial clustering model based on soil properties. Geoderma Reg. 2022, 30, e00564. [Google Scholar] [CrossRef]
- Gili, A.; Álvarez, C.; Bagnato, R.; Noellemeyer, E. Comparison of three methods for delineating management zones for site-specific crop management. Comput. Electron. Agric. 2017, 139, 213–223. [Google Scholar] [CrossRef]
- Gavioli, A.; de Souza, E.G.; Bazzi, C.L.; Schenatto, K.; Betzek, N.M. Identification of management zones in precision agriculture: An evaluation of alternative cluster analysis methods. Biosyst. Eng. 2019, 181, 86–102. [Google Scholar] [CrossRef]
- Shukla, M.K.; Lal, R.; Ebinger, M. Principal component analysis for predicting corn biomass and grain yields. Soil Sci. 2004, 169, 215–224. [Google Scholar] [CrossRef]
- Shukla, A.K.; Sinha, N.K.; Tiwari, P.K.; Prakash, C.; Behera, S.K.; Lenka, N.K.; Singh, V.K.; Dwivedi, B.S.; Majumdar, K.; Kumar, A.; et al. Spatial distribution and management zones for sulfur and micronutrients in Shiwalik Himalayan region of India. Land Degrad. Dev. 2017, 28, 959–969. [Google Scholar] [CrossRef]
- Nawar, S.; Corstanje, R.; Halcro, G.; Mulla, D.; Mouazen, A.M. Delineation of soil management zones for variable-rate fertilization: A review. Adv. Agron. 2017, 143, 175–245. [Google Scholar] [CrossRef]
- Behera, S.K.; Mathur, R.K.; Shukla, A.K.; Suresh, K.; Prakash, C. Spatial variability of soil properties and delineation of soil management zones of oil palm plantations grown in a hot and humid tropical region of southern India. Catena 2018, 165, 251–259. [Google Scholar] [CrossRef]
- Bogunovic, I.; Mesic, M.; Zgorelee, Z.; Jurisic, A.; Bilandzija, D. Spatial variation of soil nutrients on sandy-loamy soil. Soil Tillage Res. 2014, 144, 174–183. [Google Scholar] [CrossRef]
- Blanchet, G.; Libohova, Z.; Joost, S.; Rossier, N.; Schneider, A.; Jeangros, B.; Sinaj, S. Spatial variability of potassium in agricultural soils of the canton of Fribourg, Switzerland. Geoderma 2017, 290, 107–121. [Google Scholar] [CrossRef]
- Tang, X.L.; Xia, M.P.; Pérez-Cruzado, C.; Guan, F.Y.; Fan, S.H. Spatial distribution of soil organic carbon stock in Moso bamboo forests in subtropical China. Sci. Rep. 2017, 7, 42640. [Google Scholar] [CrossRef] [PubMed]
- Song, F.F.; Xu, M.G.; Duan, Y.H.; Cai, Z.J.; Wen, S.L.; Chen, X.N.; Shi, W.Q.; Colinet, G. Spatial variability of soil properties in red soil and its implications for site-specific fertilizer management. J. Integr. Agric. 2020, 19, 2313–2325. [Google Scholar] [CrossRef]
- Idaho State Department of Agriculture. Crops Grown in Idaho. 2020. Available online: https://agri.idaho.gov/main/about/about-idaho-agriculture/idaho-crops/ (accessed on 8 January 2020).
- Walsh, O.S.; Tarkalson, D.; Moore, A.; Dean, G.; Elison, D.; Stark, J.; Neher, O.; Brown, B. Southern Idaho Fertilizer Guide: Sugar Beets; The University of Idaho Extension Bulletin; The University of Idaho: Moscow, ID, USA, 2019; Volume 935. [Google Scholar]
- Moore, A.; Stark, J.; Brown, B.; Hopkins, B. Sugar beets. In Southern Idaho Fertilizer Guide, Sugar Beets; Current Inf. Ser, 1174; The University of Idaho: Moscow, ID, USA, 2009. [Google Scholar]
- Vasu, D.; Singh, S.K.; Sahu, N.; Tiwary, P.; Chandran, P.; Duraisami, V.P.; Ramamurthy, V.; Lalitha, M.; Kalaiselvi, B. Assessment of spatial variability of soil properties using geospatial techniques for farm level nutrient management. Soil Tillage Res. 2017, 169, 25–34. [Google Scholar] [CrossRef]
- Schulte, E.E.; Hoskins, B. Recommended soil organic matter tests. Recommended Soil Testing Procedures for the North Eastern USA. Northeast. Reg. Publ. 1995, 493, 52–60. [Google Scholar]
- U.S. Salinity Lab. Staff. Methods for soil characterization. In Diagnosis and Improvement of Saline and Alkali Soils; Agr. Handbook 60; USDA: Washington, DC, USA, 1954; pp. 83–147. [Google Scholar]
- Miller, R.O.; Gavlak, R.; Horneck, D. Soil, Plant and Water Reference Methods for the Western Region, 4th ed.; Colorado State University: Fort Collins, CO, USA, 2013; p. 155. [Google Scholar]
- Mulvaney, R.L. Nitrogen-inorganic forms. In Methods of Soil Analysis, Part 3, Chemical Methods; SSSA Book Series No., 5; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpoor, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; SSSA: Madison, WI, USA, 1996; pp. 1123–1184. [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate (No. 939); US Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Schollenberger, C.J.; Simon, R.H. Determination of exchange capacity and exchangeable bases in soil by ammonium acetate method. Soil Sci. 1945, 59, 13–24. [Google Scholar] [CrossRef]
- Thomas, G.W. Exchangeable cations. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 2nd ed.; Agron. Monogr., 9, Page, A.L., Eds.; ASA and SSSA: Madison, WI, USA, 1982; pp. 159–165. [Google Scholar]
- Rhoades, J.D. Cation exchange capacity. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; Amer Society of Agronomy: Madison, WI, USA, 1983; Volume 9, pp. 149–157. [Google Scholar]
- Lindsay, W.L.; Norvell, W. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Barnett, V.; Lewis, T. Outliers in Statistical Data, 3rd ed.; Wiley: New York, NY, USA, 1994. [Google Scholar]
- Kerry, R.; Oliver, M.A. Comparing sampling needs for variograms of soil properties computed by the method of moments and residual maximum likelihood. Geoderma 2007, 140, 383–396. [Google Scholar] [CrossRef]
- Tripathi, R.; Nayak, A.K.; Shahid, M.; Lal, B.; Gautam, P.; Raja, R.; Mohanty, S.; Kumar, A.; Panda, B.B.; Sahoo, R.N. Delineation of soil management zones for a rice cultivated area in eastern India using fuzzy clustering. Catena 2015, 133, 128–136. [Google Scholar] [CrossRef]
- Taiyun, W.; Viliam, S. R package “corrplot”: Visualization of a Correlation Matrix (Version 0.84). Statistician 2017, 56, e24. [Google Scholar]
- Lark, R.M. Estimation of the variograms of soil properties by the method-of-moments and maximum likelihood; A comparison. Eur. J. Soil Sci. 2000, 51, 717–728. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Shao, M.A. Spatial variability of soil physical properties in a region of the Loess Plateau of PR China subject to wind and water erosion. Land Degrad. Dev. 2013, 24, 296–304. [Google Scholar] [CrossRef]
- Gao, X.S.; Xiao, Y.; Deng, L.J.; Li, Q.Q.; Wang, C.Q.; Li, B.; Deng, O.P.; Zeng, M. Spatial variability of soil total nitrogen, phosphorus and potassium in Renshou County of Sichuan Basin, China. J. Integr. Agric. 2019, 18, 279–289. [Google Scholar] [CrossRef]
- Hou, L.; Liu, Z.; Zhao, J.; Ma, P.; Xu, X. Comprehensive assessment of fertilization, spatial variability of soil chemical properties, and relationships among nutrients, apple yield and orchard age: A case study in Luochuan County, China. Ecol. Indic. 2021, 122, 107285. [Google Scholar] [CrossRef]
- Selmy, S.; Abd El-Aziz, S.; El-Desoky, A.; El-Sayed, M. Characterizing, predicting, and mapping of soil spatial variability in Gharb El-Mawhoub area of Dakhla Oasis using geostatistics and GIS approaches. J. Saudi Soc. Agric. Sci. 2022, 21, 383–396. [Google Scholar] [CrossRef]
- Johnston, K.; Ver Hoef, J.M.; Krivoruchko, K.; Lucas, N. Using ArcGIS Geostatistical Analyst; Esri: Redlands, CA, USA, 2001; Volume 380. [Google Scholar]
- Chilès, J.P.; Delfiner, P. Geostatistics: Modeling Spatial Uncertainty; Wiley: New York, NY, USA, 2012; p. 696. [Google Scholar]
- Shaddad, S.M.; Buttafuoco, G.; Elrys, A.; Castrignanò, A. Site-specific management of salt affected soils: A case study from Egypt. Sci. Total Environ. 2019, 688, 153–161. [Google Scholar] [CrossRef]
- Arumugam, T.; Kinattinkara, S.; Nambron, D.; Velusamy, S.; Shanmugamoorthy, M.; Pradeep, T.; Mageshkumar, P. An integration of soil characteristics by using GIS based Geostatistics and multivariate statistics analysis sultan Batheri block, Wayanad District, India. Urban Clim. 2022, 46, 101339. [Google Scholar] [CrossRef]
- Cambardella, C.A.; Moorman, T.B.; Novak, J.M.; Parkin, T.B.; Karlen, D.L.; Turco, R.F.; Konopka, A.E. Field-scale variability of soil properties in Central Iowa. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- Ali, A.M.; Ibrahim, S.M. Establishment of soil management zones using multivariate analysis and GIS. Commun. Soil Sci. Plant Anal. 2020, 51, 2491–2500. [Google Scholar] [CrossRef]
- Davatgar, N.; Neishabouri, M.R.; Sepaskhah, A.R. Delineation of site specific nutrient management zones for a paddy cultivated area based on soil fertility using fuzzy clustering. Geoderma 2012, 173, 111–118. [Google Scholar] [CrossRef]
- Andrews, S.S.; Mitchell, J.P.; Mancinelli, R.; Larlen, D.L.; Hartz, T.K.; Horwarth, W.R.; Pettygrove, G.S.; Scow, K.M.; Munk, D.S. On-farm assessment of soil quality in California’s Central Valley. Agron. J. 2002, 94, 12–23. [Google Scholar]
- Dragovic, S.; Onjia, A. Classification of soil samples according to their geographic origin using gamma-ray spectrometry and principal component analysis. J. Environ. Radioact. 2006, 89, 150–158. [Google Scholar] [CrossRef]
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: An R package for determining the relevant number of clusters in a data set. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef]
- Kurina, F.G.; Hang, S.; Cordoba, M.A.; Negro, G.J.; Balzarini, M.G. Enhancing edaphoclimatic zoning by adding multivariate spatial statistics to regional data. Geoderma 2018, 310, 170–177. [Google Scholar] [CrossRef]
- Yao, R.J.; Yang, J.S.; Zhang, T.J.; Gao, P.; Wang, X.P.; Hong, L.Z.; Wang, M.W. Determination of site-specific management zones using soil physico-chemical properties and crop yields in coastal reclaimed farmland. Geoderma 2014, 232, 381–393. [Google Scholar] [CrossRef]
- Vitharana, U.W.; Van Meirvenne, M.; Simpson, D.; Cockx, L.; De Baerdemaeker, J. Key soil and topographic properties to delineate potential management classes for precision agriculture in the European loess area. Geoderma 2008, 143, 206–215. [Google Scholar] [CrossRef]
- Lee, C.H.; Wu, M.Y.; Asio, V.B.; Chen, Z.S. Using a soil quality index to assess the effects of applying swine manure compost on soil quality under a crop rotation system in Taiwan. Soil Sci. 2006, 171, 210–222. [Google Scholar] [CrossRef]
- Wilding, L.P. Spatial Variability: Its documentation, accommodation, and implication to soil surveys. In Soil Spatial Variability; Nielsen, D.R., Bouma, J., Eds.; Pudoc: Wageningen, The Netherlands, 1985. [Google Scholar]
- Castrignanò, A.; Giugliarini, L.; Risaliti, R.; Martinelli, N. Study of spatial relationships among some soil physico-chemical properties of a field in central Italy using multivariate geostatistics. Geoderma 2000, 97, 39–60. [Google Scholar] [CrossRef]
- Fu, W.; Tunney, H.; Zhang, C. Spatial variation of soil nutrients in a dairy farm and its implications for site-specific fertilizer application. Soil Tillage Res. 2010, 106, 185–193. [Google Scholar] [CrossRef]
- Li, Q.Q.; Li, S.; Xiao, Y.; Zhao, B.; Wang, C.Q.; Li, B.; Gao, X.S.; Li, Y.D.; Bai, G.C.; Wang, Y.D.; et al. Soil acidification and its influencing factors in the purple hilly area of southwest China from 1981 to 2012. Catena 2019, 175, 278–285. [Google Scholar] [CrossRef]
- Vasu, D.; Singh, S.K.; Tiwary, P.; Chandran, P.; Ray, S.K.; Duraisami, V.P. Pedogenic processes and soil-landform relationships for identification of yield limiting properties. Soil Res. 2016, 55, 273–284. [Google Scholar] [CrossRef]
- Sahrawat, K.L. How fertile are semi-arid tropical soils. Curr. Sci. 2016, 100, 1671–1674. [Google Scholar] [CrossRef]
- Pal, D.K.; Wani, S.P.; Sahrawat, K.L.; Srivastava, P. Red ferruginous soils of tropical Indian environments: A review of the pedogenic processes and its implications for edaphology. Catena 2014, 121, 260–278. [Google Scholar] [CrossRef]
- Armstrong, M.; Boufassa, A. Comparing the robustness of ordinary kriging and lognormal kriging: Outlier resistance. Math. Geol. 1988, 20, 447–457. [Google Scholar] [CrossRef]
- Behera, S.K.; Shukla, A.K.; Pachauri, S.P.; Shukla, V.; Sikaniya, Y.; Srivastava, P.C. Spatio-temporal variability of available sulphur and micronutrients (Zn, Fe, Cu, Mn, B and Mo) in soils of a hilly region of northern India. Catena 2023, 226, 107082. [Google Scholar] [CrossRef]
- Behera, S.K.; Shukla, A.K.; Prakash, C.; Tripathi, A.; Kumar, A.; Trivedi, V. Establishing management zones of soil sulphur and micronutrients for sustainable crop production. Land Degrad. Dev. 2021, 32, 3614–3625. [Google Scholar] [CrossRef]
- Jiang, H.L.; Liu, G.S.; Liu, S.D.; Li, E.H.; Wang, R.; Yang, Y.F.; Hu, H.C. Delineation of site-specific management zones based on soil properties for a hillside field in central China. Arch. Agron. Soil Sci. 2012, 58, 1075–1090. [Google Scholar] [CrossRef]
- Ferreira, V.; Panagopoulos, T.; Andrade, R.; Guerrero, C.; Loures, L. Spatial variability of soil properties and soil erodibility in the Alqueva reservoir watershed. Solid Earth 2015, 6, 383–392. [Google Scholar] [CrossRef]
- Behera, S.K.; Suresh, K.; Rao, B.N.; Mathur, R.K.; Shukla, A.K.; Manorama, K.; Ramachandrudu, K.; Harinarayana, P.; Prakash, C. Spatial variability of some soil properties varies in oil palm (Elaeis guineensis Jacq.) plantations of west coastal area of India. Solid Earth 2016, 7, 979–993. [Google Scholar] [CrossRef]
- Tesfahunegn, G.B.; Tamene, L.; Vlek, P.L.G. Catchment-scale spatial variability of soil properties and implications on site-specific soil management in northern Ethiopia. Soil Tillage Res. 2011, 117, 124–139. [Google Scholar] [CrossRef]
- Khaledian, Y.; Kiani, F.; Ebrahimi, S.; Brevik, E.C.; Aitkenhead-Peterson, J. Assessment and monitoring of soil degradation during land use change using multivariate analysis. Land Degrad. Dev. 2017, 28, 128–141. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, M.; Butail, N.P.; Shukla, A.K.; Kumar, P. Spatial variability of soil properties and delineation of management zones for Suketi basin, Himachal Himalaya, India. Environ. Dev. Sustain. 2023, 1–26. [Google Scholar] [CrossRef]
- Tagarakis, A.; Liakos, V.; Fountas, S.; Koundouras, S.; Gemtos, T.A. Management zones delineation using fuzzy clustering techniques in grapevines. Precis. Agric. 2013, 14, 18–39. [Google Scholar] [CrossRef]
- Damian, J.M.; Santi, A.L.; Fornari, M.; Da Ros, C.O.; Eschner, V.L. Monitoring variability in cash-crop yield caused by previous cultivation of a cover crop under a no-tillage system. Comput. Electron. Agric. 2017, 142, 607–621. [Google Scholar] [CrossRef]
- Parker, R.N.; Asencio, E.K. GIS and Spatial Analysis for the Social Sciences: Coding, Mapping, and Modeling; Routledge: London, UK, 2009. [Google Scholar]
Soil Properties | SE (n = 187) | SW (n = 180) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Min | Max | SD | Skewness | Skewness a | CV (%) | Mean | Min | Max | SD | Skewness | Skewness a | CV (%) | |
OM (%) | 2.10 | 1.54 | 2.78 | 0.19 | 0.39 | - | 9.21 | 2.10 | 1.71 | 2.57 | 0.16 | 0.37 | - | 7.75 |
pH | 7.89 | 6.85 | 8.40 | 0.26 | −1.27 | 0.77 | 3.28 | 8.11 | 7.80 | 8.35 | 0.11 | −0.17 | - | 1.40 |
CEC (meq 100 g−1) | 19.21 | 14.80 | 22.65 | 1.43 | −0.64 | - | 7.43 | 17.40 | 8.00 | 21.90 | 2.95 | −1.23 | −0.06 | 16.94 |
Excess lime (%) | 2.93 | 0.00 | 12.55 | 2.34 | 1.63 | 0.30 | 79.90 | 4.03 | 1.00 | 8.95 | 1.81 | 0.72 | - | 44.90 |
EC (dS m−1) | 1.41 | 0.85 | 3.34 | 0.44 | 1.84 | 0.87 | 31.11 | 1.58 | 0.95 | 3.60 | 0.44 | 1.52 | 0.73 | 28.00 |
T.I.N (kg ha−1) | 42.96 | 17.64 | 98.49 | 15.73 | 0.90 | - | 36.62 | 16.16 | 8.59 | 35.12 | 3.65 | 2.36 | 0.75 | 22.59 |
P (kg ha−1) | 67.59 | 25.09 | 248.7 | 25.42 | 2.61 | 0.52 | 37.61 | 28.82 | 15.73 | 50.49 | 6.21 | 0.67 | - | 21.57 |
K (kg ha−1) | 309.7 | 171.7 | 668.9 | 106.9 | 1.73 | 0.88 | 34.52 | 164.8 | 63.9 | 380.6 | 51.6 | 0.81 | - | 31.32 |
Ca (kg ha−1) | 19.90 | 15.52 | 22.77 | 1.70 | −0.63 | - | 8.56 | 14.94 | 7.10 | 19.09 | 2.53 | −1.13 | −0.05 | 16.97 |
Mg (kg ha−1) | 7.58 | 4.86 | 14.14 | 0.99 | 1.36 | 0.15 | 13.06 | 5.49 | 2.25 | 7.17 | 0.99 | −1.13 | 0.22 | 18.08 |
Zn (kg ha−1) | 5.13 | 2.65 | 10.79 | 1.28 | 1.47 | 0.52 | 24.88 | 2.25 | 1.25 | 4.14 | 0.68 | 0.89 | - | 30.12 |
Fe (kg ha−1) | 8.37 | 3.74 | 19.26 | 3.06 | 1.15 | 0.33 | 36.53 | 6.20 | 3.83 | 12.18 | 1.27 | 1.39 | 0.38 | 20.45 |
Mn (kg ha−1) | 7.35 | 3.49 | 13.36 | 1.90 | 0.75 | - | 25.93 | 3.17 | 1.98 | 5.13 | 0.67 | 0.56 | - | 21.16 |
Cu (kg ha−1) | 1.45 | 0.61 | 2.63 | 0.30 | 0.66 | - | 20.75 | 1.40 | 0.7 | 2.73 | 0.36 | 1.01 | 0.04 | 25.59 |
B (kg ha−1) | 1.54 | 0.56 | 2.86 | 0.41 | −0.03 | - | 35.06 | 1.49 | 0.87 | 2.96 | 0.37 | 1.30 | 0.70 | 24.99 |
Crop yields (ton ha−1) | ||||||||||||||
Barley grain | 5.70 | 1.56 | 7.21 | 1.37 | −1.78 | 0.54 | 24.01 | 6.08 | 3.81 | 7.97 | 1.22 | −0.64 | - | 20.06 |
Barley biomass * | 16.70 | 6.61 | 22.14 | 3.89 | −1.08 | −0.91 | 23.09 | 17.58 | 12.89 | 22.47 | 2.82 | −0.02 | - | 16.05 |
Sugar beets root | 86.05 | 54.96 | 129.4 | 18.16 | 0.31 | - | 21.10 | 83.51 | 43.76 | 162.5 | 25.26 | 1.5 | 0.75 | 30.25 |
Sugar beets biomass * | 31.89 | 16.01 | 66.70 | 12.18 | 1.36 | 0.74 | 38.20 | 31.99 | 12.01 | 77.37 | 14.91 | 1.8 | 0.89 | 46.62 |
Soil Properties | Model | Nugget | Partial Sill | Sill | Nugget/ Sill (%) | SDC | ME | RMSSE |
---|---|---|---|---|---|---|---|---|
OM (%) | Spherical | 0.02 | 0.02 | 0.04 | 46.19 | Moderate | 0.00 | 1.00 |
pH | Spherical | 0.02 | 0.04 | 0.06 | 27.99 | Moderate | 0.00 | 1.05 |
CEC (meq 100 g−1) | Exponential | 0.00 | 1.68 | 1.68 | 0.00 | Strong | −0.01 | 1.15 |
Excess lime (%) | Exponential | 0.01 | 5.20 | 5.21 | 0.25 | Strong | −0.03 | 1.01 |
EC (dS m−1) | Circular | 0.14 | 0.07 | 0.21 | 68.62 | Moderate | 0.00 | 1.00 |
T.I.N (kg ha−1) | Stable | 198.54 | 74.96 | 273.50 | 72.59 | Moderate | −0.13 | 1.01 |
P (kg ha−1) | Spherical | 458.92 | 231.19 | 690.11 | 66.50 | Moderate | −0.30 | 1.03 |
K (kg ha−1) | Spherical | 4069.4 | 6413.7 | 10,483.1 | 38.82 | Moderate | −0.61 | 1.00 |
Ca (kg ha−1) | K-Bessel | 0.00 | 2.95 | 2.95 | 0.00 | Strong | −0.01 | 1.02 |
Mg (kg ha−1) | K-Bessel | 0.67 | 0.39 | 1.06 | 63.08 | Moderate | 0.00 | 1.06 |
Zn (kg ha−1) | Stable | 1.41 | 0.27 | 1.68 | 83.91 | Weak | −0.02 | 1.01 |
Fe (kg ha−1) | Exponential | 3.80 | 5.61 | 9.41 | 40.38 | Moderate | 0.01 | 0.97 |
Mn (kg ha−1) | Stable | 2.39 | 1.25 | 3.64 | 65.74 | Moderate | 0.00 | 1.03 |
Cu (kg ha−1) | Exponential | 0.02 | 0.07 | 0.08 | 19.78 | Strong | 0.00 | 1.01 |
B (kg ha−1) | Spherical | 0.04 | 0.09 | 0.13 | 29.28 | Moderate | −0.01 | 1.02 |
Soil Properties | Model | Nugget | Partial Sill | Sill | Nugget/ Sill (%) | SDC | ME | RMSSE |
---|---|---|---|---|---|---|---|---|
OM (%) | Exponential | 0.00 | 0.03 | 0.03 | 0.02 | Strong | 0.00 | 0.96 |
pH | Stable | 0.00 | 0.01 | 0.01 | 0.00 | Strong | 0.00 | 1.00 |
CEC (meq 100 g−1) | Exponential | 0.00 | 9.17 | 9.18 | 0.05 | Strong | 0.00 | 0.91 |
Excess lime (%) | Exponential | 0.00 | 3.67 | 3.67 | 0.00 | Strong | 0.00 | 0.96 |
EC (dS m−1) | Exponential | 0.01 | 0.19 | 0.20 | 2.79 | Strong | 0.00 | 0.98 |
T.I.N (kg ha−1) | K-Bessel | 0.00 | 12.46 | 12.46 | 0.00 | Strong | −0.01 | 1.03 |
P (kg ha−1) | Exponential | 0.03 | 34.56 | 34.59 | 0.10 | Strong | −0.18 | 0.91 |
K (kg ha−1) | Exponential | 0.00 | 2447.6 | 2447.6 | 0.00 | Strong | −1.08 | 0.97 |
Ca (kg ha−1) | Exponential | 0.00 | 6.61 | 6.61 | 0.00 | Strong | 0.00 | 0.76 |
Mg (kg ha−1) | Exponential | 0.00 | 1.05 | 1.05 | 0.00 | Strong | 0.01 | 0.82 |
Zn (kg ha−1) | Exponential | 0.00 | 0.39 | 0.39 | 0.00 | Strong | 0.00 | 0.79 |
Fe (kg ha−1) | Exponential | 0.00 | 1.56 | 1.56 | 0.00 | Strong | 0.01 | 1.01 |
Mn (kg ha−1) | Exponential | 0.00 | 0.57 | 0.57 | 0.00 | Strong | 0.00 | 1.01 |
Cu (kg ha−1) | Exponential | 0.00 | 0.05 | 0.05 | 0.00 | Strong | 0.00 | 0.98 |
B (kg ha−1) | Exponential | 0.00 | 0.17 | 0.17 | 0.00 | Strong | 0.00 | 0.89 |
PCs | PC1 | PC2 | PC3 | PC4 | PC5 |
---|---|---|---|---|---|
Eigenvalue | 4.34 | 3.09 | 2.06 | 1.37 | 1.17 |
Variance (%) | 28.93 | 20.62 | 13.75 | 9.11 | 7.82 |
Cumulative variability (%) | 28.93 | 49.55 | 63.30 | 72.41 | 80.23 |
Principal component loading for each variable | |||||
OM (%) | 0.07 | 0.09 | −0.01 | −0.05 | 0.96 |
pH | −0.77 | −0.09 | 0.42 | −0.16 | −0.03 |
CEC (meq 100 g−1) | −0.15 | 0.12 | 0.85 | 0.47 | 0.00 |
Excess lime (%) | −0.82 | 0.07 | −0.01 | −0.03 | 0.31 |
EC (dS m−1) | −0.33 | 0.78 | 0.01 | 0.09 | 0.16 |
T.I.N (kg ha−1) | −0.10 | 0.84 | 0.12 | 0.08 | 0.13 |
P (kg ha−1) | 0.30 | 0.83 | −0.05 | −0.13 | −0.12 |
K (kg ha−1) | 0.67 | 0.44 | 0.03 | −0.18 | 0.17 |
Ca (kg ha−1) | −0.19 | 0.10 | 0.95 | 0.01 | 0.00 |
Mg (kg ha−1) | −0.04 | −0.09 | 0.20 | 0.94 | −0.06 |
Zn (kg ha−1) | 0.28 | 0.73 | 0.23 | −0.21 | −0.05 |
Fe (kg ha−1) | 0.84 | 0.09 | −0.17 | −0.02 | −0.04 |
Mn (kg ha−1) | 0.61 | 0.49 | −0.20 | 0.28 | 0.04 |
Cu (kg ha−1) | 0.89 | −0.02 | 0.01 | −0.16 | 0.18 |
B (kg ha−1) | −0.63 | 0.28 | 0.28 | 0.18 | −0.18 |
PCs | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
Eigenvalue | 4.56 | 2.35 | 1.94 | 1.83 |
Variance (%) | 30.42 | 15.64 | 12.90 | 12.20 |
Cumulative variability (%) | 30.42 | 46.06 | 58.96 | 71.15 |
Principal component loading for each variable | ||||
OM (%) | 0.14 | 0.31 | 0.06 | 0.59 |
pH | −0.01 | 0.78 | −0.09 | 0.09 |
CEC (meq 100 g−1) | 0.94 | 0.10 | 0.18 | 0.18 |
Excess lime (%) | −0.02 | 0.77 | 0.16 | 0.10 |
EC (dS m−1) | 0.14 | 0.23 | 0.87 | 0.15 |
T.I.N (kg ha−1) | 0.08 | −0.06 | 0.89 | 0.07 |
P (kg ha−1) | −0.28 | −0.46 | 0.06 | 0.72 |
K (kg ha−1) | 0.64 | −0.31 | −0.06 | 0.49 |
Ca (kg ha−1) | 0.95 | 0.08 | 0.12 | 0.14 |
Mg (kg ha−1) | 0.90 | 0.15 | 0.25 | 0.04 |
Zn (kg ha−1) | 0.27 | 0.08 | 0.19 | 0.74 |
Fe (kg ha−1) | 0.16 | -.047 | −0.12 | 0.09 |
Mn (kg ha−1) | 0.77 | −0.36 | −0.06 | −0.08 |
Cu (kg ha−1) | 0.62 | −0.41 | −0.05 | 0.21 |
B (kg ha−1) | −0.62 | 0.35 | 0.42 | 0.12 |
SE Field | SW Field | ||||
---|---|---|---|---|---|
Management Zones | Zone 1 | Zone 2 | Management Zones | Zone 1 | Zone 2 |
n | 102 | 85 | n | 118 | 62 |
Area (%) | 51.8 | 48.2 | Area (%) | 72.4 | 27.6 |
Soil properties | Soil properties | ||||
OM (%) | 2.14 ± 0.19 | 2.06 ± 0.19 | pH | 8.08 ± 0.10 | 8.14 ± 0.12 |
Excess lime (%) | 2.51 ± 1.98 | 3.28 ± 2.56 | CEC (meq 100 g−1) | 18.67 ± 1.4 | 15.01 ± 3.6 |
T.I.N (kg ha−1) | 48.96 ± 15.7 | 37.96 ± 13.9 | Excess lime (%) | 3.71 ± 1.5 | 4.65 ± 2.1 |
P (kg ha−1) | 75.19 ± 30.3 | 61.25 ± 18.3 | EC (dS m−1) | 1.58 ± 0.43 | 1.59 ± 0.48 |
Ca (kg ha−1) | 20.37 ± 1.46 | 19.51 ± 1.80 | T.I.N (kg ha−1) | 16.51 ± 3.9 | 15.50 ± 3.0 |
Mg (kg ha−1) | 7.68 ± 0.81 | 7.49 ± 1.12 | Ca (kg ha−1) | 16.04 ± 1.2 | 12.85 ± 3.0 |
Fe (kg ha−1) | 9.18 ± 3.45 | 7.69 ± 2.51 | Mg (kg ha−1) | 5.86 ± 0.52 | 4.77 ± 1.3 |
Cu (kg ha−1) | 1.53 ± 0.33 | 1.38 ± 0.26 | Zn (kg ha−1) | 2.39 ± 0.75 | 1.98 ± 0.41 |
Crop yields (ton ha−1) | Crop yields (ton ha−1) | ||||
Barley grain | 6.14 ± 0.66 | 5.43 ± 1.6 | Barley grain | 6.27 ± 1.1 | 5.78 ± 1.4 |
Barley biomass * | 17.19 ± 2.8 | 16.40 ± 4.5 | Barley biomass * | 18.39 ± 2.9 | 16.69 ± 2.5 |
Sugar beet root | 89.01 ± 12.3 | 84.23 ± 21.3 | Sugar beet root | 88.98 ± 31.9 | 77.43 ± 14.7 |
Sugar beet biomass * | 36.68 ± 13.5 | 28.94 ± 10.8 | Sugar beet biomass * | 32.95 ± 12.3 | 30.92 ± 18.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salem, H.M.; Schott, L.R.; Piaskowski, J.; Chapagain, A.; Yost, J.L.; Brooks, E.; Kahl, K.; Johnson-Maynard, J. Evaluating Intra-Field Spatial Variability for Nutrient Management Zone Delineation through Geospatial Techniques and Multivariate Analysis. Sustainability 2024, 16, 645. https://doi.org/10.3390/su16020645
Salem HM, Schott LR, Piaskowski J, Chapagain A, Yost JL, Brooks E, Kahl K, Johnson-Maynard J. Evaluating Intra-Field Spatial Variability for Nutrient Management Zone Delineation through Geospatial Techniques and Multivariate Analysis. Sustainability. 2024; 16(2):645. https://doi.org/10.3390/su16020645
Chicago/Turabian StyleSalem, Haytham Mohamed, Linda R. Schott, Julia Piaskowski, Asmita Chapagain, Jenifer L. Yost, Erin Brooks, Kendall Kahl, and Jodi Johnson-Maynard. 2024. "Evaluating Intra-Field Spatial Variability for Nutrient Management Zone Delineation through Geospatial Techniques and Multivariate Analysis" Sustainability 16, no. 2: 645. https://doi.org/10.3390/su16020645
APA StyleSalem, H. M., Schott, L. R., Piaskowski, J., Chapagain, A., Yost, J. L., Brooks, E., Kahl, K., & Johnson-Maynard, J. (2024). Evaluating Intra-Field Spatial Variability for Nutrient Management Zone Delineation through Geospatial Techniques and Multivariate Analysis. Sustainability, 16(2), 645. https://doi.org/10.3390/su16020645