In Vivo Study of the Effect of Sugarcane Bagasse Lignin Supplementation on Broiler Chicken Diet as a Step to Validate the Established Chicken Gastrointestinal Tract In Vitro Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sugarcane Bagasse Lignin
2.2. Animal In Vivo Assay
2.2.1. Experiment Location and Ethics Statement
2.2.2. Basal Diet Composition
2.2.3. Experimental Design and Sample Collection Protocol
2.2.4. Ileum Sample Collection
2.2.5. Cecum Content Collection
2.3. In Vitro Model Protocol
2.3.1. Preparation of Cecal Inoculum
2.3.2. Chicken Gastrointestinal Tract Simulation Model
2.4. Bacterial Enumeration
2.4.1. Bacterial Enumeration by Culture-Dependent Methods
2.4.2. Bacterial Enumeration by Culture-Independent Methods
2.5. Determination of Volatile Fatty Acids in the Cecum Contents
2.6. Determination of Organic Acids Produced during In Vitro Fermentation
2.7. Measurement of Total Ammonia Nitrogen Concentration
2.8. Statistical Analysis
3. Results
3.1. Animal In Vivo Assay
3.1.1. Animal Performances
3.1.2. Carcass Yield and Digestive Tube Development
3.1.3. Bacterial Cell Numbers
3.1.4. Short-Chain Fatty Acid and Branched-Chain Fatty Acid Concentrations
3.2. In Vitro Model Protocol
3.2.1. Bacterial Profile in Fermentations
3.2.2. Organic Acids Profile of Cecal Fermentations
3.2.3. Total Ammonia Nitrogen Profile
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Younis, K.; Yousuf, O.; Qadri, O.S.; Jahan, K.; Osama, K.; Islam, R.U. Incorporation of Soluble Dietary Fiber in Comminuted Meat Products: Special Emphasis on Changes in Textural Properties. Bioact. Carbohydr. Diet. Fibre 2022, 27, 100288. [Google Scholar] [CrossRef]
- Alagawany, M.; Elnesr, S.S.; Farag, M.R.; Abd El-Hack, M.E.; Barkat, R.A.; Gabr, A.A.; Foda, M.A.; Noreldin, A.E.; Khafaga, A.F.; El-Sabrout, K.; et al. Potential Role of Important Nutraceuticals in Poultry Performance and Health—A Comprehensive Review. Res. Vet. Sci. 2021, 137, 9–29. [Google Scholar] [CrossRef]
- Kikusato, M. Phytobiotics to Improve Health and Production of Broiler Chickens: Functions beyond the Antioxidant Activity. Anim. Biosci. 2021, 34, 345–353. [Google Scholar] [CrossRef]
- Reuben, R.C.; Sarkar, S.L.; Roy, P.C.; Anwar, A.; Hossain, M.A.; Jahid, I.K. Prebiotics, Probiotics and Postbiotics for Sustainable Poultry Production. World’s Poult. Sci. J. 2021, 77, 825–882. [Google Scholar] [CrossRef]
- Sosnówka-Czajka, E.; Skomorucha, I.; Obremski, K.; Wojtacha, P. Performance and Meat Quality of Broiler Chickens Fed with the Addition of Dried Fruit Pomace. Poult. Sci. 2023, 102, 102631. [Google Scholar] [CrossRef]
- Golden, C.E.; Rothrock, M.J., Jr.; Mishra, A. Mapping Foodborne Pathogen Contamination throughout the Conventional and Alternative Poultry Supply Chains. Poult. Sci. 2021, 100, 101157. [Google Scholar] [CrossRef] [PubMed]
- Fangueiro, J.F.; de Carvalho, N.M.; Antunes, F.; Mota, I.F.; Pintado, M.E.; Madureira, A.R.; Costa, P.S. Lignin from Sugarcane Bagasse as a Prebiotic Additive for Poultry Feed. Int. J. Biol. Macromol. 2023, 239, 124262. [Google Scholar] [CrossRef] [PubMed]
- Milanovic, S. Literature Review on the Influence of Milling and Pelleting on Nutritional Quality, Physical Characteristics, and Production Cost of Pelleted Poultry Feed. Master’s Thesis, Norwegian University of Life Sciences, As, Norway, 2018. [Google Scholar]
- Raza, A.; Bashir, S.; Tabassum, R. An Update on Carbohydrases: Growth Performance and Intestinal Health of Poultry. Heliyon 2019, 5, e01437. [Google Scholar] [CrossRef]
- Biesek, J.; Banaszak, M.; Wlaźlak, S.; Adamski, M. The Effect of Partial Replacement of Milled Finisher Feed with Wheat Grains on the Production Efficiency and Meat Quality in Broiler Chickens. Poult. Sci. 2022, 101, 101817. [Google Scholar] [CrossRef]
- Forssten, S.D.; Morovic, W.; Nurminen, P. An in Vitro Model of the Chicken Gastrointestinal Tract with Special Emphasis to the Cecal Microbiota. Poult. Sci. 2023, 102, 102654. [Google Scholar] [CrossRef]
- Dixit, Y.; Kanojiya, K.; Bhingardeve, N.; Ahire, J.J.; Saroj, D. In Vitro Human Gastrointestinal Tract Simulation Systems: A Panoramic Review. Probiotics Antimicrob. Proteins 2023, 16, 501–518. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, N.M.; Costa, C.M.; Castro, C.; Saleh, M.A.D.; Pintado, M.E.; Oliveira, D.L.; Madureira, A.R. Development of a Chicken Gastrointestinal Tract (GIT) Simulation Model: Impact of Cecal Inoculum Storage Preservation Conditions. Appl. Microbiol. 2023, 3, 968–992. [Google Scholar] [CrossRef]
- Han, H.; Zhou, Y.; Liu, Q.; Wang, G.; Feng, J.; Zhang, M. Effects of Ammonia on Gut Microbiota and Growth Performance of Broiler Chickens. Animals 2021, 11, 1716. [Google Scholar] [CrossRef] [PubMed]
- Mesa, D.; Lammel, D.R.; Balsanelli, E.; Sena, C.; Noseda, M.D.; Caron, L.F.; Cruz, L.M.; Pedrosa, F.O.; Souza, E.M. Cecal Microbiota in Broilers Fed with Prebiotics. Front. Genet. 2017, 8, 153. [Google Scholar] [CrossRef]
- Leeson, S.; Summers, J.D. Commercial Poultry Nutrition, 3rd ed.; University Books: Guelph, ON, Canada, 2000. [Google Scholar]
- Iji, P.A.; Saki, A.A.; Tivey, D.R. Intestinal Structure and Function of Broiler Chickens on Diets Supplemented with a Mannan Oligosaccharide. J. Sci. Food Agric. 2001, 81, 1186–1192. [Google Scholar] [CrossRef]
- Scortichini, S.; Boarelli, M.C.; Silvi, S.; Fiorini, D. Development and Validation of a GC-FID Method for the Analysis of Short Chain Fatty Acids in Rat and Human Faeces and in Fermentation Fluids. J. Chromatogr. B 2020, 1143, 121972. [Google Scholar] [CrossRef]
- Iqbal, Y.; Cottrell, J.J.; Suleria, H.A.R.; Dunshea, F.R. Gut Microbiota-Polyphenol Interactions in Chicken: A Review. Animals 2020, 10, 1391. [Google Scholar] [CrossRef]
- Yi, Z.; Li, X.; Luo, W.; Xu, Z.; Ji, C.; Zhang, Y.; Nie, Q.; Zhang, D.; Zhang, X. Feed Conversion Ratio, Residual Feed Intake and Cholecystokinin Type A Receptor Gene Polymorphisms Are Associated with Feed Intake and Average Daily Gain in a Chinese Local Chicken Population. J. Anim. Sci. Biotechnol. 2018, 9, 1–9. [Google Scholar] [CrossRef]
- Yerpes, M.; Llonch, P.; Manteca, X. Factors Associated with Cumulative First-Week Mortality in Broiler Chicks. Animals 2020, 10, 310. [Google Scholar] [CrossRef]
- Ravindran, V.; Reza Abdollahi, M. Nutrition and Digestive Physiology of the Broiler Chick: State of the Art and Outlook. Animals 2021, 11, 2795. [Google Scholar] [CrossRef]
- Van Limbergen, T.; Sarrazin, S.; Chantziaras, I.; Dewulf, J.; Ducatelle, R.; Kyriazakis, I.; McMullin, P.; Méndez, J.; Niemi, J.K.; Papasolomontos, S.; et al. Risk Factors for Poor Health and Performance in European Broiler Production Systems. BMC Vet. Res. 2020, 16, 287. [Google Scholar] [CrossRef] [PubMed]
- Dibner, J.J.; Richards, J.D. The Digestive System: Challenges and Opportunities. J. Appl. Poult. Res. 2004, 13, 86–93. [Google Scholar] [CrossRef]
- Marchewka, J.; Sztandarski, P.; Zdanowska-Sąsiadek, Ż.; Adamek-Urbańska, D.; Damaziak, K.; Wojciechowski, F.; Riber, A.B.; Gunnarsson, S. Gastrointestinal Tract Morphometrics and Content of Commercial and Indigenous Chicken Breeds with Differing Ranging Profiles. Animals 2021, 11, 1881. [Google Scholar] [CrossRef] [PubMed]
- Röhe, I.; Zentek, J. Lignocellulose as an Insoluble Fiber Source in Poultry Nutrition: A Review. J. Anim. Sci. Biotechnol. 2021, 12, 1–15. [Google Scholar] [CrossRef]
- Alyileili, S.R.; El-Tarabily, K.A.; Belal, I.E.H.; Ibrahim, W.H.; Sulaiman, M.; Hussein, A.S. Intestinal Development and Histomorphometry of Broiler Chickens Fed Trichoderma Reesei Degraded Date Seed Diets. Front. Vet. Sci. 2020, 7, 540756. [Google Scholar] [CrossRef]
- Wang, J.; Wang, D.; Li, K.; Xia, L.; Wang, Y.; Jiang, L.; Heng, C.; Guo, X.; Liu, W.; Zhan, X. Effects of First Feed Administration on Small Intestinal Development and Plasma Hormones in Broiler Chicks. Animals 2020, 10, 1568. [Google Scholar] [CrossRef] [PubMed]
- Fries-Craft, K.; Arsenault, R.J.; Bobeck, E.A. Basal Diet Composition Contributes to Differential Performance, Intestinal Health, and Immunological Responses to a Microalgae-Based Feed Ingredient in Broiler Chickens. Poult. Sci. 2023, 102, 102235. [Google Scholar] [CrossRef]
- Ducatelle, R.; Goossens, E.; De Meyer, F.; Eeckhaut, V.; Antonissen, G.; Haesebrouck, F.; Van Immerseel, F. Biomarkers for Monitoring Intestinal Health in Poultry: Present Status and Future Perspectives. Vet. Res. 2018, 49, 43. [Google Scholar] [CrossRef]
- Leite, B.G.d.S.; Granghelli, C.A.; Roque, F.d.A.; Carvalho, R.S.B.; Lopes, M.H.S.; Pelissari, P.H.; Dias, M.T.; Araújo, C.S.d.S.; Araújo, L.F. Evaluation of Dietary Lignin on Broiler Performance, Nutrient Digestibility, Cholesterol and Triglycerides Concentrations, Gut Morphometry, and Lipid Oxidation. Poult. Sci. 2024, 103, 103518. [Google Scholar] [CrossRef]
- Dai, F.; Lin, T.; Cheng, L.; Wang, J.; Zuo, J.; Feng, D. Effects of Micronized Bamboo Powder on Growth Performance, Serum Biochemical Indexes, Cecal Chyme Microflora and Metabolism of Broilers Aged 1-22 Days. Trop. Anim. Health Prod. 2022, 54, 166. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, M.; Liu, Y.; Yang, X.; Wei, F.; Jin, X.; Liu, D.; Guo, Y.; Hu, Y. Quantitative Microbiome Profiling Reveals the Developmental Trajectory of the Chicken Gut Microbiota and Its Connection to Host Metabolism. iMeta 2023, 2, e105. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Jha, R. Strategies to Modulate the Intestinal Microbiota and Their Effects on Nutrient Utilization, Performance, and Health of Poultry. J. Anim. Sci. Biotechnol. 2019, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, J.M.D.; Casanova, N.A.; Miyakawa, M.E.F. Microbiota, Gut Health and Chicken Productivity: What Is the Connection? Microorganisms 2019, 7, 374. [Google Scholar] [CrossRef] [PubMed]
- Duggett, N. High-Throughput Sequencing of the Chicken Gut Microbiome. Ph.D. Thesis, University of Birmingham, Birmingham, UK, 2016. [Google Scholar]
- Kers, J.G.; Velkers, F.C.; Fischer, E.A.J.; Hermes, G.D.A.; Stegeman, J.A.; Smidt, H. Host and Environmental Factors Affecting the Intestinal Microbiota in Chickens. Front. Microbiol. 2018, 9, 235. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Ortiz, G.; Olukosi, O.A.; Jurgens, G.; Apajalahti, J.; Bedford, M.R. Short-Chain Fatty Acids and Ceca Microbiota Profiles in Broilers and Turkeys in Response to Diets Supplemented with Phytase at Varying Concentrations, with or without Xylanase. Poult. Sci. 2020, 99, 2068–2077. [Google Scholar] [CrossRef]
- Meimandipour, A.; Soleimanifarjam, A.; Azhar, K.; Hair-Bejo, M.; Shuhaimi, M.; Nateghi, L.; Yazid, A.M. Age Effects on Short Chain Fatty Acids Concentrations and PH Values in the Gastrointestinal Tract of Broiler Chickens. Arch. Geflügelkunde 2011, 75, 164–168. [Google Scholar]
- Adewole, D. Effect of Dietary Supplementation with Coarse or Extruded Oat Hulls on Growth Performance, Blood Biochemical Parameters, Ceca Microbiota and Short Chain Fatty Acids in Broiler Chickens. Animals 2020, 10, 1429. [Google Scholar] [CrossRef]
- Isenring, J.; Bircher, L.; Geirnaert, A.; Lacroix, C. In Vitro Human Gut Microbiota Fermentation Models: Opportunities, Challenges, and Pitfalls. Microbiome Res. Rep. 2023, 2, 2. [Google Scholar] [CrossRef]
- de Carvalho, N.M.; Oliveira, D.L.; Saleh, M.A.D.; Pintado, M.; Madureira, A.R. Preservation of Human Gut Microbiota Inoculums for In Vitro Fermentations Studies. Fermentation 2021, 7, 14. [Google Scholar] [CrossRef]
- Louis, P.; Duncan, S.H.; Sheridan, P.O.; Walker, A.W.; Flint, H.J. Microbial Lactate Utilisation and the Stability of the Gut Microbiome. Gut Microbiome 2022, 3, e3. [Google Scholar] [CrossRef]
1st Phase Starter | 2nd Phase Grower | 3rd Phase Finisher | ||
---|---|---|---|---|
Time of Consumption (days) | 1 to 12 | 12 to 21 | 21 to 36 | |
Feed Presentation | Mash | |||
Ingredients (g/kg) | Corn Plus | 365.30 | 407.10 | 448.90 |
Soybean meal 44 | 329.10 | 306.30 | 283.40 | |
Wheat Plus | 150.00 | 150.00 | 150.00 | |
Extruded whole soybean | 50.00 | 40.20 | 30.30 | |
Soy oil | 31.60 | 35.80 | 40.00 | |
Soy protein concentrate Hp300 | 25.00 | 12.50 | --- | |
Calcium carbonate powder | 13.10 | 12.40 | 11.70 | |
Arbocel Rc Fine | 5.50 | 7.20 | 8.90 | |
Monocalcium phosphate | 8.80 | 8.00 | 7.30 | |
Avi Plus Broiler Nn 0.5 Phase 1 | 5.00 | 5.00 | 5.00 | |
Novipel Sp | 3.00 | 3.00 | 3.00 | |
Dl-methionine | 3.10 | 2.70 | 2.30 | |
L-Lysine | 2.40 | 2.10 | 1.80 | |
Salt | 2.30 | 2.40 | 2.40 | |
Molistar L | 1.50 | 1.50 | 1.50 | |
Sodium bicarbonate | 1.30 | 1.20 | 1.00 | |
Mycofix Plus 5.E | 1.00 | 1.00 | 1.00 | |
Sodium butyrate | 1.00 | 1.00 | 1.00 | |
L-threonine | 0.70 | 0.50 | 0.30 | |
L-tryptophan | 0.10 | 0.10 | 0.10 | |
L-valine | 0.30 | 0.20 | --- | |
Estimated nutritional value | Dry matter (%) | 88.00 | 87.90 | 87.80 |
Organic matter (%) | 82.10 | 82.40 | 82.60 | |
Apparent metabolizable energy (Kcal/kg) | 3000.00 | 3050.00 | 3100.00 | |
Crude protein (%) | 22.20 | 20.40 | 18.60 | |
Methionine (%) | 0.60 | 0.60 | 0.50 | |
Methionine + Cystine (%) | 1.00 | 0.90 | 0.80 | |
Lysine (%) | 1.40 | 1.20 | 1.10 | |
Threonine (%) | 0.90 | 0.80 | 0.70 | |
Tryptophan (%) | 0.30 | 0.30 | 0.20 | |
Arginine (%) | 1.50 | 1.40 | 1.20 | |
Crude fat (%) | 6.20 | 6.50 | 6.80 | |
Starches (%) | 33.60 | 36.20 | 38.80 | |
Sugars (%) | 4.80 | 4.40 | 4.00 | |
Total phosphorus | 0.60 | 0.60 | 0.50 | |
Calcium (%) | 0.90 | 0.90 | 0.80 | |
Phytic calcium (%) | 1.00 | 1.00 | 0.90 | |
Crude fiber (%) | 4.10 | 4.00 | 4.00 | |
Neutral detergent fiber (%) | 11.50 | 11.60 | 11.70 |
Period (Days) | |||
---|---|---|---|
Treatment | 1 to 12 | 12 to 21 | 21 to 36 |
BD | 54 | 54 | 30 |
BD + 1% SCB lignin | 54 | 54 | 30 |
Total number of animals | 108 | 108 | 60 |
Animal per park | 3 | 3 | 3 |
Number of parks per treatment | 18 | 18 | 10 |
Treatment | Age (Days) | |||
---|---|---|---|---|
1 | 12 | 21 | 36 | |
Average Body Weight (g) | ||||
BD | 43.52 ± 1.69 | 225.96 ± 21.58 | 651.03 ± 51.69 | 1904.60 ± 87.55 |
BD + 1% SCB lignin | 43.46 ± 1.64 | 217.15 ± 23.11 | 638.26 ± 43.23 | 1814.37 ± 143.70 |
Number of replicates per treatment (parks) | 18 | 18 | 18 | 10 |
Treatment | Period (Days) | |||
---|---|---|---|---|
1 to 12 | 12 to 21 | 21 to 36 | 1 to 36 | |
ADG per park (g/day) | ||||
BD | 15.20 ± 1.79 | 47.23 ± 4.20 | 82.72 ± 4.59 | 51.67 ± 2.43 |
BD + 1% SCB lignin | 14.47 ± 1.95 | 46.79 ± 3.23 | 78.72 ± 7.44 | 49.18 ± 4.00 |
Feed intake per park (g/day) | ||||
BD | 25.38 ± 3.72 | 62.83 ± 4.97 | 127.43 ± 5.61 | 77.91 ± 2.80 |
BD + 1% SCB lignin | 25.82 ± 4.13 | 62.63 ± 4.09 | 124.65 ± 10.11 | 75.90 ± 5.14 |
FCR | ||||
BD | 1.77 ± 0.20 | 1.33 ± 0.05 | 1.54 ± 0.04 | 1.51 ± 0.03 |
BD + 1% SCB lignin | 1.99 ± 0.40 | 1.34 ± 0.06 | 1.59 ± 0.07 | 1.55 ± 0.05 |
Number of replicates per treatment (parks) | 18 | 18 | 10 | 10 |
Treatment | Carcass Yield | Duodenum-Jejunum | Ileum | Cecum | Rectum |
---|---|---|---|---|---|
(%) | cm | ||||
BD | 72.98 ± 0.03 a | 96.97 ± 5.21 b | 72.25 ± 7.16 b | 16.59 ± 1.67 a | 8.84 ± 0.82 a |
BD + 1% SCB lignin | 73.85 ± 0.02 a | 92.44 ± 6.01 a | 65.88 ± 5.52 a | 15.94 ± 1.69 a | 8.44 ± 0.70 a |
cm/kg | |||||
BD | 51.91 ± 4.03 a | 38.57 ± 3.30 a | 8.90 ± 1.14 a | 4.75 ± 0.67 a | |
BD + 1% SCB lignin | 53.58 ± 7.11 a | 38.20 ± 5.39 a | 9.22 ± 1.33 a | 4.87 ± 0.55 a |
Treatment | Height | Width | Depth | Absorption Area | Height/Width | Depth/Width |
---|---|---|---|---|---|---|
(µm) | (mm2) | |||||
BD | 973.55 ± 182.07 | 111.39 ± 9.49 | 154.15 ± 21.64 | 0.34 ± 0.07 | 8.77 ± 1.62 | 1.39 ± 0.18 |
BD + 1% SCB lignin | 1119.20 ± 171.02 | 117.49 ± 9.20 | 160.90 ± 18.65 | 0.41 ± 0.08 | 9.57 ± 1.51 | 1.37 ± 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Carvalho, N.M.; Souza, C.G.d.; Costa, C.M.; Castro, C.; Fangueiro, J.F.; Horta, B.; Outor-Monteiro, D.; Teixeira, J.; Mourão, J.L.; Pinheiro, V.; et al. In Vivo Study of the Effect of Sugarcane Bagasse Lignin Supplementation on Broiler Chicken Diet as a Step to Validate the Established Chicken Gastrointestinal Tract In Vitro Model. Sustainability 2024, 16, 8946. https://doi.org/10.3390/su16208946
de Carvalho NM, Souza CGd, Costa CM, Castro C, Fangueiro JF, Horta B, Outor-Monteiro D, Teixeira J, Mourão JL, Pinheiro V, et al. In Vivo Study of the Effect of Sugarcane Bagasse Lignin Supplementation on Broiler Chicken Diet as a Step to Validate the Established Chicken Gastrointestinal Tract In Vitro Model. Sustainability. 2024; 16(20):8946. https://doi.org/10.3390/su16208946
Chicago/Turabian Stylede Carvalho, Nelson Mota, Carla Giselly de Souza, Célia Maria Costa, Cláudia Castro, Joana F. Fangueiro, Bruno Horta, Divanildo Outor-Monteiro, José Teixeira, José Luís Mourão, Victor Pinheiro, and et al. 2024. "In Vivo Study of the Effect of Sugarcane Bagasse Lignin Supplementation on Broiler Chicken Diet as a Step to Validate the Established Chicken Gastrointestinal Tract In Vitro Model" Sustainability 16, no. 20: 8946. https://doi.org/10.3390/su16208946
APA Stylede Carvalho, N. M., Souza, C. G. d., Costa, C. M., Castro, C., Fangueiro, J. F., Horta, B., Outor-Monteiro, D., Teixeira, J., Mourão, J. L., Pinheiro, V., Amaro, A. L., Costa, P. S., Oliveira, C. S. S., Pintado, M. E., Oliveira, D. L., & Madureira, A. R. (2024). In Vivo Study of the Effect of Sugarcane Bagasse Lignin Supplementation on Broiler Chicken Diet as a Step to Validate the Established Chicken Gastrointestinal Tract In Vitro Model. Sustainability, 16(20), 8946. https://doi.org/10.3390/su16208946