Environmental Regulations, Green Marketing, and Consumers’ Green Product Purchasing Intention: Evidence from China
Abstract
:1. Introduction
2. Literature Review
2.1. The Relationship between Environmental Regulations and Consumers’ Green Product Purchasing Intention
2.2. The Relationship between Environmental Regulations and Green Marketing
2.3. The Relationship between Green Marketing and Consumers’ Green Product Purchasing Intention
3. Theoretical Framework and Research Hypotheses
3.1. The Influence of Environmental Regulation on Green Marketing
3.2. The Influence of Environmental Regulations on Consumers’ Green Product Purchasing Intention
3.3. The Impact of Green Marketing on Consumers’ Green Product Purchasing Intention
4. Research Design
4.1. Variables
4.2. Sample and Reliability Testing
4.2.1. Sample and Sampling Procedure
4.2.2. Reliability and Validity Testing
4.3. Empirical Model
4.3.1. Establishment of the Baseline Regression Model
4.3.2. Threshold Regression Model Construction
5. Results
5.1. Baseline Regression Analysis
5.2. Mediation Analysis
5.3. Analysis of Nonlinear Threshold Effects
5.4. Spatial Spillover Effect Analysis
5.5. Regional Heterogeneity Analysis
5.6. Robustness Testing
5.7. Endogeneity Testing
6. Conclusions, Implications, Contributions and Research Limitations
6.1. Conclusions
6.2. Implications
6.3. Contributions
6.4. Research Limitations and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.; Deng, L.; Dong, X.; Li, Q. Dual Environmental Regulations and Corporate Environmental Violations. Financ. Res. Lett. 2024, 62, 105230. [Google Scholar] [CrossRef]
- Zheng, T.L.; Zhu, J.L.; Wang, S.P.; Fang, J.Y. When will China achieve its carbon emission peak? Natl. Sci. Rev. 2016, 31, 8–12. [Google Scholar] [CrossRef]
- Ding, S.T.; Zhang, M.; Song, Y. Exploring China’s carbon emissions peak for different carbon tax scenarios. Energy Policy 2019, 129, 1245–1252. [Google Scholar] [CrossRef]
- Niu, Z.H.; Xiong, J.L.; Ding, X.S.; Wu, Y. Analysis of China’s Carbon Peak Achievement in 2025. Energies 2022, 15, 5041. [Google Scholar] [CrossRef]
- Xiong, B.; Wang, R.M. Effect of Environmental Regulation on Industrial Solid Waste Pollution in China: From the Perspective of Formal Environmental Regulation and Informal Environmental Regulation. Int. J. Environ. Res. Public Health 2020, 17, 7798. [Google Scholar] [CrossRef]
- Ruangkanjanases, A.; You, J.; Chien, S.; Ma, Y. Elucidating the Effect of Antecedents on Consumers’ Green Purchase Intention: An Extension of the Theory of Planned Behavior. Front. Psychol. 2020, 11, 1433. [Google Scholar] [CrossRef]
- Farias, C.; Almeida, F.; Silva, I. Production of green surfactants: Market prospects. Electron. J. Biotechnol. 2021, 51, 28–39. [Google Scholar] [CrossRef]
- Jager, W.; Janssen, M.; Cantner, U. Stimulating diffusion of green products. J. Evol. Econ. 2002, 12, 283–306. [Google Scholar]
- Tseng, S.; Hung, S. A framework identifying the gaps between customers’ expectations and their perceptions in green products. J. Clean. Prod. 2013, 59, 174–184. [Google Scholar] [CrossRef]
- Tomasin, L.; Pereira, G.; Borchardt, M. How can the sales of green products in the Brazilian supply chain be increased? J. Clean. Prod. 2013, 47, 274–282. [Google Scholar] [CrossRef]
- Mzoughi, H.; Ben, A.; Guesmi, K.; Benkraiem, R. Blockchain Markets, Green Finance Investments, and Environmental Impacts. Res. Int. Bus. Financ. 2024, 69, 102249. [Google Scholar] [CrossRef]
- Galvez-Gamboa, F.; Munoz-Henriquez, E.; Davila, E. Connectivity between the Volatility of Green and Non-Green Bond Markets with International Markets. Estud. Gerenciales 2024, 40, 2–12. [Google Scholar]
- Kiyak, D.; Grigoliene, R. Analysis of the Conceptual Frameworks of Green Marketing. Sustainability 2023, 15, 15630. [Google Scholar] [CrossRef]
- Ribeiro, C.; Cristiane, S.; Costa, M.; Maciel, R. Consumer Antecedents towards Green Product Purchase Intentions. J. Clean. Prod. 2021, 313, 127964. [Google Scholar]
- Hariadi, S.; Moengin, P.; Maulidya, R. Impact of green practices through green product and service innovation: Sustainable product-service system performance model. Int. J. Sustain. Eng. 2023, 16, 1–15. [Google Scholar] [CrossRef]
- Nguyen, T.; Nguyen, D.; Trinh, V.; Tran, T.; Cao, T. Factors Affecting Intention to Purchase Green Products in Vietnam. J. Asian Financ. Econ. Bus. 2020, 7, 205–211. [Google Scholar] [CrossRef]
- Cai, L.; Guo, L. Environmental Decentralization, Environmental Regulation and Environmental Pollution: Evidence From China. Pol. J. Environ. Stud. 2023, 32, 158906. [Google Scholar] [CrossRef]
- Mamun, A.; Nawi, N.; Hayat, N.; Zainol, N. Predicting the Purchase Intention and Behaviour towards Green Skincare Products among Malaysian Consumers. Sustainability 2020, 12, 10663. [Google Scholar] [CrossRef]
- Lee, Y. The Relationship between Green Country Image, Green Trust, and Purchase Intention of Korean Products: Focusing on Vietnamese Gen Z Consumers. Sustainability 2020, 12, 5098. [Google Scholar] [CrossRef]
- Dewi, W.; Avicenna, F.; Meideline, M. Environmentally Friendly Marketing Campaign: Results of a Survey of Instagram Followers of InnisfreeIndonesia. Asian J. Public Opin. Res. 2020, 8, 160–177. [Google Scholar]
- Wang, H.; Bai, R. How Does Green Product Knowledge Effectively Promote Green Purchase Intention? Sustainability 2019, 11, 1193. [Google Scholar] [CrossRef]
- Kashi, A. Green Purchase Intention: A Conceptual Model of Factors Influencing Green Purchase of Iranian Consumers. J. Islam. Mark. 2020, 11, 1389–1403. [Google Scholar] [CrossRef]
- Hong, Z.; Wang, H.; Gong, Y. Green product design considering functional-product reference. Int. J. Prod. Econ. 2019, 210, 155–168. [Google Scholar] [CrossRef]
- Rau, H.; Wu, J.; Procopio, K. Exploring green product design through TRIZ methodology and the use of green features. Comput. Ind. Eng. 2023, 180, 109252. [Google Scholar] [CrossRef]
- Teoh, C.; Khor, K.; Wider, W. Factors Influencing Consumers’ Purchase Intention towards Green Home Appliances. Front. Psychol. 2022, 13, 927327. [Google Scholar] [CrossRef]
- Miyamoto, T. Green product diffusion and innovation in supply chains. Environ. Econ. Policy Stud. 2023, 25, 331–353. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, S. Environmental Regulation, Public Environmental Concern, and Pollution Reduction. Manag. Decis. Econ. 2023, 9, 4011. [Google Scholar] [CrossRef]
- Yogananda, A.; Nair, P. Green Food Product Purchase Intention: Factors Influencing Malaysian Consumers. Pertanika J. Soc. Sci. Humanit. 2019, 27, 1131–1144. [Google Scholar]
- Nguyen, H.; Do, L.; Hoang, C.; Nguyen, P. Value Activation to Increase Consumers’ Intention to Purchase Green Apartments. Prop. Manag. 2023, 41, 505–523. [Google Scholar] [CrossRef]
- Khan, M.; Khan, N.; Tufail, M.; Ali, L. A Path Towards a Greener Future: Fostering Green Supply Chain, Green Marketing, and Environmental Sustainability. Logforum 2023, 19, 1–14. [Google Scholar] [CrossRef]
- Rehman, M.; Raheem, D.; Zeitun, R. Do Oil Shocks Affect the Green Bond Market? Energy Econ. 2022, 117, 106429. [Google Scholar] [CrossRef]
- Wang, X.; Gu, Y.; Xin, H.; Qiu, P.; Wang, J. The role of product cues and regulatory focus in the consumers’ response to green products: The mediation effects of green attitudes. Front. Psychol. 2022, 13, 918248. [Google Scholar] [CrossRef]
- Dietz, S. Green Monetary Policy Between Market Neutrality and Market Efficiency. Common Mark. Law Rev. 2022, 59, 395–432. [Google Scholar] [CrossRef]
- Choi, P.; Espinola-Arredondo, A.; Munoz-Garcia, F. Environmental Regulation under Sequential Competition. J. Econ. Behav. Organ. 2024, 221, 52–72. [Google Scholar] [CrossRef]
- Hamlyn, O. Economic Imaginaries and Environmental Regulation. Mod. Law Rev. 2024, 4, 12889. [Google Scholar] [CrossRef]
- Rajput, N.; Sharma, U.; Kaur, B.; Rani, P.; Tongkachok, K.; Dornadula, V. Current Global Green Marketing Standard: Changing Market and Company Branding. Int. J. Syst. Assur. Eng. Manag. 2022, 13, 727–735. [Google Scholar] [CrossRef]
- Bengtson, E.; Mossberg, O. On Tradition, Criticism, and Green Marketing. Res Rhetor. 2024, 11, 154–162. [Google Scholar] [CrossRef]
- Yan, X. Media Attention, Urban Environmental Regulation and Corporate Environmental Responsibility. Financ. Res. Lett. 2023, 58, 104532. [Google Scholar] [CrossRef]
- Zhang, Y.; Ong, T.; Kamarudin, F. Environmental Regulation and Corporate Environmental Performance: A Bibliometric Analysis. J. Infrastruct. Policy Dev. 2024, 8, 3149. [Google Scholar] [CrossRef]
- Wu, S.; Wang, H.; He, M.; Qin, C. Environmental Regulation, Environmental Policy Complexity and Technological Innovation Efficiency. Ecol. Chem. Eng. 2023, 30, 159–166. [Google Scholar] [CrossRef]
- Roman-Augusto, J.; Garrido-Lecca-Vera, C.; Lodeiros-Zubiria, M.; Mauricio-Andia, M. Green Marketing: Drivers in The Process of Buying Green Products-The Role of Green Satisfaction, Green Trust, Green Wom and Green Perceived Value. Sustainability 2022, 14, 10580. [Google Scholar] [CrossRef]
- Nguyen-Viet, B. The Impact of Green Marketing Mix Elements on Green Customer Based Brand Equity in an Emerging Market. Asia-Pac. J. Bus. Adm. 2023, 15, 96–116. [Google Scholar] [CrossRef]
- Martey, E.; Tornyi, I.; Mante, G.; Addo, P. Green Consumption Values and Consumer Purchase Intentions on P2P Platforms. Asian J. Bus. Account. 2023, 16, 271–298. [Google Scholar] [CrossRef]
- Mahmoud, M.; Seidu, A.; Tweneboah-Koduah, E.; Ahmed, A. Green Marketing Mix and Repurchase Intention: The Role of Green Knowledge. Afr. J. Econ. Manag. Stud. 2024, 137, 1108. [Google Scholar] [CrossRef]
- Rahman, M.; Lao, K.; Biswas, S.; Sultana, R.; Kennedyd, S. Consumers’ Intention to Purchase Green Skincare Products: Evidence from China. Indones. J. Sustain. Account. Manag. 2022, 6, 368–377. [Google Scholar] [CrossRef]
- Kar, P.; Mohanty, S.; Mohanty, A. Consumers’ Buying Behaviour Attitudes and Purchase Intention towards Green Food Products. Smart-J. Bus. Manag. Stud. 2024, 20, 5958. [Google Scholar] [CrossRef]
- Mai, T.; Linh, H.; Hung, V. Materialistic Values and Green Apparel Purchase Intention among Young Vietnamese Consumers. Young Consum. 2019, 20, 246–263. [Google Scholar]
- Naeem, M.; Karim, S.; Yarovaya, L.; Lucey, B. Systemic Risk Contagion of Green and Islamic Markets with Conventional Markets. Ann. Oper. Res. 2023, 4, 53305. [Google Scholar] [CrossRef]
- Nekmahmud, M.; Naz, F.; Ramkissoon, H.; Fekete-Farkas, M. Transforming Consumers’ Intention to Purchase Green Products: Role of Social Media. Technol. Forecast. Soc. Change 2022, 185, 122067. [Google Scholar] [CrossRef]
- Kaur, R.; Mishra, S.; Yadav, S.; Shaw, T. Analysing the Impact of Green Marketing Mix on Consumer Purchase Intention. Int. J. Indian Cult. Bus. Manag. 2022, 25, 403–425. [Google Scholar] [CrossRef]
- Mehraj, D.; Kaur, S. Green Process Innovations and Firm Marketing Performance in the Emerging Markets. Bus. Strategy Dev. 2022, 5, 424–436. [Google Scholar] [CrossRef]
- Trancoso, T.; Gomes, S. Green Shocks: The Spillover Effects of Green Equity Indices on Global Market Dynamics. Economies 2024, 12, 83. [Google Scholar] [CrossRef]
- Saetta, S.; Caldarelli, V. Technological Innovations for Green Production: The Green Foundry Case Study. Collab. Intell. Manuf. 2021, 3, 85–92. [Google Scholar] [CrossRef]
- Poudou, J.; Sand-Zantman, W. The Environmental Impact of Internet Regulation. Inf. Econ. Policy 2023, 65, 101060. [Google Scholar] [CrossRef]
- Hirose, K.; Matsumura, T. Green Transformation in Oligopoly Markets under Common Ownership. Energy Econ. 2023, 126, 106892. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, X. Intelligent Manufacturing, Green Technological Innovation and Environmental Pollution. J. Innov. Knowl. 2023, 8, 100384. [Google Scholar] [CrossRef]
- Liu, G.; Guo, L. How Does Mandatory Environmental Regulation Affect Corporate Environmental Information Disclosure Quality. Financ. Res. Lett. 2023, 54, 103702. [Google Scholar] [CrossRef]
- Hong, S.; Deng, Y.; Guang, F. Impacts of Environmental Regulation and Energy Misallocation on Energy Environmental Efficiency. Environ. Dev. Sustain. 2023, 23, s10668. [Google Scholar] [CrossRef]
- Li, G.; Wang, X.; Su, S.; Su, Y. How Green Technological Innovation Ability Influences Enterprise Competitiveness. Technol. Soc. 2019, 59, 101136. [Google Scholar] [CrossRef]
- Fenta, Y.; Singh, M.; Gautam, R. Antecedents of Consumers’ Green Product Purchase Intention: An Insight from Ethiopia. Cogent Bus. Manag. 2024, 11, 2361865. [Google Scholar] [CrossRef]
- Hasan, M.; Du, F. Nexus Between Green Financial Development, Green Technological Innovation and Environmental Regulation in China. Renew. Energy 2023, 204, 218–228. [Google Scholar] [CrossRef]
- Santos, S.; Macedo, T.; Santos, R. Green Marketing Communication Strategies for Reverse Logistics. Reun.-Rev. Adm. Contab. E Sustentabilidade 2023, 13, 1–11. [Google Scholar]
- Vilkaite-Vaitone, N.; Skackauskiene, I.; Diaz-Meneses, G. Measuring Green Marketing: Scale Development and Validation. Energies 2022, 15, 718. [Google Scholar] [CrossRef]
- Kruse, T.; Mohnen, M.; Sato, M. Do Financial Markets Respond to Green Opportunities? J. Assoc. Environ. Resour. Econ. 2024, 11, 549–576. [Google Scholar] [CrossRef]
- Mehraj, D.; Qureshi, I.H.; Singh, G.; Nazir, N.A.; Basheer, S.; Nissa, V.U. Green Marketing Practices and Green Consumer Behavior: Demographic Differences among Young Consumers. Bus. Strategy Dev. 2023, 6, 571–585. [Google Scholar] [CrossRef]
- Siddique, M.; Nobanee, H.; Karim, S.; Naz, F. Do Green Financial Markets Offset the Risk of Cryptocurrencies and Carbon Markets? Int. Rev. Econ. Financ. 2023, 86, 822–833. [Google Scholar] [CrossRef]
- Kumar, A.; Basu, R. Do Eco-Labels Trigger Green Product Purchase Intention among Emerging Market Consumers? J. Indian Bus. Res. 2023, 15, 466–492. [Google Scholar] [CrossRef]
- Witek, L.; Kuzniar, W. Green Purchase Behaviour Gap: The Effect of Past Behaviour on Green Food Product Purchase Intentions among Individual Consumers. Foods 2024, 13, 136. [Google Scholar] [CrossRef]
- Liu, J.; Uchida, K.; Bao, C. Environmental Regulation, Corporate Environmental Disclosure, and Firm Performance: Evidence from China. Pac.-Basin Financ. J. 2024, 85, 102367. [Google Scholar] [CrossRef]
- Correia, E.; Sousa, S.; Viseu, C.; Larguinho, M. Analysing the Influence of Green Marketing Communication in Consumers’ Green Purchase Behaviour. Int. J. Environ. Res. Public Health 2023, 20, 1356. [Google Scholar] [CrossRef]
- Soomro, B.; Moawad, N.; Saraih, U.; Abedelwahed, N. Going Green with the Green Market and Green Innovation: Building the Connection between Green Entrepreneurship and Sustainable Development. Kybernetes 2024, 53, 1484–1504. [Google Scholar] [CrossRef]
- Dewnarain, S.; Ramkissoon, H.; Mavondo, F. Social Customer Relationship Management: A Customer Perspective. J. Hosp. Mark. Manag. 2021, 30, 673–698. [Google Scholar] [CrossRef]
- Prohl-Schwenke, K.; Kleinaltenkamp, M. How Business Customers Judge Customer Success Management. Ind. Mark. Manag. 2021, 96, 197–212. [Google Scholar] [CrossRef]
- Agyei, J.; Sun, S.; Penney, E. Linking Customer and Customer Engagement: The Role of Customer-Brand Identification and Customer Satisfaction. Sage Open 2021, 11, 21582440211040113. [Google Scholar] [CrossRef]
- Kimura, M. Customer Segment Transition through the Customer Loyalty Program. Asia Pac. J. Mark. Logist. 2022, 34, 611–626. [Google Scholar] [CrossRef]
- Utama, I.; Purnamasari, D.; Suastika, I. Toward Improvement of Resistance Testing Reliability. J. Eng. Technol. Sci. 2021, 53, 210201. [Google Scholar] [CrossRef]
- Broecker, J. Testing The Reliability of Forecasting Systems. J. Appl. Stat. 2023, 50, 106–130. [Google Scholar] [CrossRef]
- Saulo, H.; Dasilva, A.; Leiva, V. Log-Symmetric Quantile Regression Models. Stat. Neerl. 2021, 76, 124–163. [Google Scholar] [CrossRef]
- Ferreira, A. Regression Models and Random Effects. Rev. Col. Bras. Cir. 2021, 48, e20213210. [Google Scholar] [CrossRef]
- Perez, L. Classification and Regression Models in Chuquicamata Copper Refinery. Miner. Process. Extr. Metall.-Trans. Inst. Min. Metall. 2022, 131, 187–193. [Google Scholar]
- Adulaimi, A.; Pradhan, B.; Chakraborty, S. Traffic Noise Modelling Using Land Use Regression Model based on Machine Learning, Statistical Regression. Energies 2021, 14, 5095. [Google Scholar] [CrossRef]
- Alshqaq, S.; Abuzaid, A.; Ahmadini, A. Robust Estimators for Circular Regression Models. J. King Saud Univ. Sci. 2021, 33, 101576. [Google Scholar] [CrossRef]
- Rennert, L.; Xie, S. Cox Regression Model under Dependent Truncation. Biometrics 2022, 78, 460–473. [Google Scholar] [CrossRef]
- Hamedi-Shahraki, S.; Rasekhi, A.; Eshraghian, M. Kumaraswamy Regression Modeling for Bounded Outcome Scores. Pak. J. Stat. Oper. Res. 2021, 17, 79–88. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, P.; Luo, L. How Does Environmental Regulation Affect Corporate Green Innovation: A Comparative Study between Voluntary and Mandatory Environmental Regulations. J. Comp. Policy Anal. 2024, 26, 130–158. [Google Scholar] [CrossRef]
- Dutta, B.; Hwang, H. Consumers Purchase Intentions of Green Electric Vehicles: The Influence of Consumers Technological and Environmental Considerations. Sustainability 2021, 13, 12025. [Google Scholar] [CrossRef]
Number | Questions |
---|---|
Y1 | You are concerned about the quality of green products. |
Y2 | You frequently purchase green commodities. |
Y3 | You are willing to pay extra for green goods. |
Y4 | Your acquaintance with green product brands is notably heightened. |
Y5 | You possess comprehensive understanding of green certification symbols. |
Y6 | You exhibit a profound level of trust in green certification symbols. |
Y7 | You have a thorough grasp of the advantages of green products. |
Y8 | Your capacity to seek information on green products is formidable. |
Y9 | You have influenced the green product purchasing behaviors of family members or friends. |
Y10 | You acknowledge the efficacy of green marketing strategies. |
Index | Number | Questions |
---|---|---|
Green brand image | C1 | The green brand embodies a green image. |
C2 | The impression of a green brand conveys qualities of sustainability and environmental consciousness. | |
C3 | The image of a green brand could actively embody the principles of sustainable development. | |
Green product | C4 | Green products are of superior quality. |
C5 | The after-sales service of green products is excellent. | |
C6 | The functional characteristics of green products meet your expectations. | |
Green advertising | C7 | The credibility of green advertisements for green products is substantial. |
C8 | Green advertisements have the potential to enhance your affinity towards the brand. | |
C9 | Green advertisements facilitate your comprehension of the characteristics of green products. | |
Green recycling | C10 | You are familiar with the recycling initiatives associated with green products. |
C11 | You consider the green recycling processes for green products to be clear and convenient. | |
C12 | Your satisfaction with the green recycling services for green products is high. |
Variables | Min. | Max. | Mean | Standard Deviation | |
---|---|---|---|---|---|
Explained variable | GPI | 1 | 5 | 2.1388 | 0.7932 |
Explanatory variable | ER | 0.8821 | 4.7922 | 2.7902 | 0.7861 |
Mediating variable | GB | 1 | 5 | 2.5917 | 0.8025 |
GP | 1 | 5 | 2.6209 | 0.8362 | |
GA | 1 | 5 | 2.5481 | 0.8174 | |
GR | 1 | 5 | 2.7809 | 0.7993 | |
Control variables | CI | 1 | 5 | 2.6731 | 0.7630 |
CA | 1 | 5 | 2.0483 | 0.8025 | |
CE | 1 | 5 | 3.1792 | 0.9144 | |
CP | 1 | 5 | 2.8403 | 0.8653 |
latent Variables | Number of Observed Variables | CR | Cronbach’s α Coefficient |
---|---|---|---|
GPI | 10 | 0.72 | 0.842 |
GB | 3 | 0.84 | 0.806 |
GP | 3 | 0.86 | 0.817 |
GA | 3 | 0.76 | 0.859 |
GR | 3 | 0.79 | 0.833 |
Variables | lnGPI | lnGPI | lnGM | lnGPI | ||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | |||||
LnGB | LnGP | LnGA | LnGR | |||||
LnER | 4.552 ** (0.061) | 5.832 ** (0.076) | 7.832 ** (0.055) | 8.817 ** (0.072) | 8.661 * (0.042) | 14.017 ** (0.083) | 2.317 *** (0.056) | |
LnGM | LnGB | 0.171 ** (0.273) | ||||||
LnGP | 0.254 *** (0.509) | |||||||
LnGA | 0.178 ** (0.832) | |||||||
LnGR | 0.173 *** (0.041) | |||||||
LnCI | 0.278 ** (0.033) | 0.380 ** (0.042) | 0.117 * (0.029) | 0.542 ** (0.037) | 0.719 *** (0.043) | 0.558 ** (0.064) | ||
LnCA | 0.3572 ** (0.049) | 0.4729 * (0.051) | 0.5226 ** (0.046) | 0.3924 ** (0.072) | 0.4192 * (0.083) | 0.9204 *** (0.036) | ||
LnCE | 0.845 * (0.026) | 0.193 ** (0.004) | 0.482 ** (0.029) | 0.588 *** (0.042) | 0.739 ** (0.061) | 0.947 *** (0.048) | ||
LnCP | −0.052 ** (0.029) | −2.36 *** (1.893) | −3.174 * (1.003) | −2.994 ** (1.172) | −3.438 ** (1.226) | −3.71 *** (1.3492) | ||
C | 4.2205 * (0.014) | 7.7321 ** (0.086) | 13.592 *** (0.259) | 12.591 * (0.372) | 11.732 ** (1.482) | 15.331 * (0.892) | 30.718 * (12.743) | |
Time | Control | Control | Control | Control | Control | Control | Control | |
Individual | Control | Control | Control | Control | Control | Control | Control | |
N | 14086 | 14086 | 14086 | 14086 | 14086 | 14086 | 14086 | |
R2 | 0.5209 | 0.4178 | 0.6322 | 0.6179 | 0.7324 | 0.5183 | 0.6703 |
Threshold Variables | Number of Thresholds | F | p | BS Frequency | Threshold Value | 1% | 5% | 10% |
---|---|---|---|---|---|---|---|---|
LnER | Single threshold | 15.306 | 0.0001 | 400 | 1.5936 | 18.0932 | 10.0335 | 7.1844 |
LnGM | Single threshold | 27.826 | 0.0001 | 400 | 7.2208 | 22.1746 | 24.9832 | 27.0239 |
Variable | Coefficients | Variable | Coefficients |
---|---|---|---|
Threshold value | 1.5936 | Threshold value | 7.2208 |
LnER × I (q ≤ 1.5936) | 1.2234 ** | LnGM × I (q ≤ 7.2208) | 1.9741 ** |
LnER × I (q > 1.5936) | 1.0032 * | LnGM × I (q > 7.2208) | 1.8862 * |
Control variables | Control | Control variables | Control |
N | 2809 | N | 2809 |
R2 | 0.6732 | R2 | 0.7588 |
Variables | Main | Wx | Spatial | Variance | Direct | Indirect |
---|---|---|---|---|---|---|
LnER | 0.284 ** (0.013) | −0.872 * (0.049) | 0.392 ** (0.021) | −5.082 ** (0.019) | ||
LnGM | 0.057 *** (0.036) | −0.163 ** (0.051) | 0.072 ** (0.015) | 0.096 (0.028) | ||
ρ | 0.558 ** (0.042) | |||||
σ2 | 0.294 * (0.025) | |||||
Control variable | Control | |||||
Obs | 4230 | 4230 | 4230 | 4230 | 4230 | 4230 |
N | 338 | 338 | 338 | 338 | 338 | 338 |
R2 | 0.552 | 0.703 | 0.471 | 0.492 | 0.284 | 0.227 |
Variable | Eastern Region | Central Region | Western Region |
---|---|---|---|
LnER | 4.299 * (0.571) | 2.894 *** (0.392) | 1.733 ** (0.185) |
LnGM | 0.541 ** (0.072) | 2.386 * (0.034) | 3.941 ** (0.052) |
LnCI | 0.832 ** (0.175) | 0.465 * (0.256) | 0.336 *** (0.149) |
LnCA | 0.264 ** (0.018) | 0.146 ** (0.024) | 0.392 * (0.071) |
LnCE | 0.172 *** (0.038) | 0.219 * (0.146) | 0.385 ** (0.172) |
LnCP | 0.046 ** (0.193) | 0.059 *** (0.137) | 2.873 * (0.092) |
C | 3.885 * (0.982) | 4.307 ** (1.925) | 3.044 ** (1.738) |
N | 583 | 583 | 583 |
R2 | 0.572 | 0.509 | 0.632 |
Variable | (1) | (2) | (3) | |
---|---|---|---|---|
LnER | 4.015 * (0.294) | 3.729 * (0.253) | 2.736 ** (0.188) | |
LnGM | LnGB | 0.472 * (0.073) | 0.199 *** (0.036) | 0.057 ** (0.072) |
LnGP | 0.392 *** (0.057) | 0.284 ** (0.033) | 0.182 * (0.016) | |
LnGA | 0.193 * (0.037) | 0.028 * (0.054) | 0.076 *** (0.039) | |
LnGR | 0.084 * (0.052) | 0.139 ** (0.029) | 0.226 * (0.073) | |
LnCI | 0.336 * (0.018) | 0.302 ** (0.024) | 0.677 * (0.059) | |
LnCA | 0.042 ** (0.061) | 0.284 * (0.047) | 0.371 *** (0.059) | |
LnCE | 1.702 *** (0.055) | 2.346 * (0.015) | 1.083 ** (0.039) | |
LnCP | −1.043 * (0.281) | −1.397 *** (0.346) | −1.926 ** (0.174) | |
C | 7.314 * (1.002) | 5.873 ** (0.094) | 5.712 ** (1.045) | |
N | 722 | 722 | 722 | |
R2 | 0.562 | 0.633 | 0.581 |
Variables | First | Second |
---|---|---|
ER | GPI | |
ER | 982.334 * (36.58) | |
Con_ | Yes | Yes |
z_1 | 0.003 * (0.0001) | |
z_2 | 0.003 * (0.0003) | |
z_3 | 0.0005 *** (0.0006) | |
F statistic | 48.925 | |
Sargan test | 0.23 | |
R2 | 0.472 | 0.589 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wang, C.; Li, D.; Yang, D.; Meng, F.; Huang, Y. Environmental Regulations, Green Marketing, and Consumers’ Green Product Purchasing Intention: Evidence from China. Sustainability 2024, 16, 8987. https://doi.org/10.3390/su16208987
Li X, Wang C, Li D, Yang D, Meng F, Huang Y. Environmental Regulations, Green Marketing, and Consumers’ Green Product Purchasing Intention: Evidence from China. Sustainability. 2024; 16(20):8987. https://doi.org/10.3390/su16208987
Chicago/Turabian StyleLi, Xiaohuan, Chenggang Wang, Dongrong Li, Dongxue Yang, Fan Meng, and Yuan Huang. 2024. "Environmental Regulations, Green Marketing, and Consumers’ Green Product Purchasing Intention: Evidence from China" Sustainability 16, no. 20: 8987. https://doi.org/10.3390/su16208987
APA StyleLi, X., Wang, C., Li, D., Yang, D., Meng, F., & Huang, Y. (2024). Environmental Regulations, Green Marketing, and Consumers’ Green Product Purchasing Intention: Evidence from China. Sustainability, 16(20), 8987. https://doi.org/10.3390/su16208987