Measuring Hotel Service Productivity Using Two-Stage Network DEA
Abstract
:1. Introduction
2. Literature Review
2.1. Service Quality and Service Productivity
2.2. Measuring Service Quality from Consumer’s Feedback
3. Methodology
3.1. Framework of Research
3.2. Probability-Frequency Weighted Measurement
3.3. Network Data Envelopment Analysis (DEA) and Malmquist Productivity Index (MPI)
3.4. Data and Variables
4. Results
4.1. Descriptive Results
4.2. Productivity Score Comparison by Class of Hotels
4.3. MPI by Class of Hotels
5. Discussion
5.1. Main Results
5.2. Contributions, Limitations, and Future Research Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schwab, K. The Fourth Industrial Revolution, 1st ed.; Crown Business: New York, NY, USA, 2017; pp. 6–13. [Google Scholar]
- Schwartz, B. The paradox of choice. In Positive Psychology in Practive: Promoting Human Flourishing in Work, Health, Education, and Every Life; Joseph, S., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 121–138. [Google Scholar]
- Desmet, K.; Greif, A.; Parente, S.L. Spatial competition, innovation and institutions: The Industrial Revolution and the Great Divergence. J. Econ. Growth 2020, 25, 1–35. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. Ser. A Gen. 1957, 120, 253–281. [Google Scholar] [CrossRef]
- Shepard, R.W. Theory of Cost and Production Functions; Princeton University Press: Princeton, NJ, USA, 1970; pp. 13–17. [Google Scholar]
- Kotler, P.; Keller, K.L. A Framework for Marketing Image Management, 6th ed.; Pearson Education Limited: Essex, UK, 2016; pp. 184–185. [Google Scholar]
- Parasuraman, A. Service quality and productivity: A synergistic perspective. Manag. Serv. Qual. Int. J. 2002, 12, 6–9. [Google Scholar] [CrossRef]
- Al-Shammari, M. A multi-criteria data envelopment analysis model for measuring the productive efficiency of hospitals. Int. J. Oper. Prod. Manag. 1999, 19, 879–891. [Google Scholar] [CrossRef]
- Goodwin, C. “I can do it myself.” training the service consumer to contribute to service productivity. J. Serv. Mark. 1988, 2, 71–78. [Google Scholar] [CrossRef]
- McLaughlin, C.P.; Coffey, C. Measuring productivity in services. Int. J. Serv. Ind. Manag. 1990, 1, 46–64. [Google Scholar] [CrossRef]
- Dean, E.R.; Kunze, K. Bureau of labor statistics productivity measures for service industries. In The Service Productivity and Quality Challenge; Harket, P.T., Ed.; Springer: Dordrecht, The Netherlands, 1995; Volume 5, pp. 11–42. [Google Scholar]
- Kao, C.; Hwang, S.-N. Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. Eur. J. Oper. Res. 2008, 185, 418–429. [Google Scholar] [CrossRef]
- Fathi, A.; Karimi, B.; Saen, R.F. Sustainability assessment of supply chains by a novel robust two-stage network DEA model: A case study in the transport industry. Soft Comput. 2022, 26, 6101–6118. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, J.F.; Pei, R.M.; Yi, B.W.; Yang, G.L. Assessing the technological innovation efficiency of China’s high-tech industries with a two-stage network DEA approach. Socio Econ. Plan. Sci. 2020, 71, 100810. [Google Scholar] [CrossRef]
- Yang, G.L.; Fukuyama, H.; Song, Y.Y. Measuring the inefficiency of Chinese research universities based on a two-stage network DEA model. J. Informetr. 2018, 12, 10–30. [Google Scholar] [CrossRef]
- Zhu, J. Airlines performance via two-stage network DEA approach. J. Cent. Cathedra Bus. Econ. Res. J. 2011, 4, 260–269. [Google Scholar] [CrossRef]
- Kao, C. Network Data Envelopment Analysis: Foundations and Extensions; Springer International Publishing: Cham, Switzerland, 2017; p. 214. [Google Scholar]
- El Kadiri Boutchich, D. Tourism performance evaluation and analysis from composite index and slack based method. Opsearch 2024, 61, 501–523. [Google Scholar] [CrossRef]
- Shi, X.; Wang, L.; Emrouznejad, A. Performance evaluation of Chinese commercial banks by an improved slacks-based DEA model. Socio Econ. Plan. Sci. 2023, 90, 101702. [Google Scholar] [CrossRef]
- Tayebi, A.; Lila, A.; Cheikh, S.; Lutfi, B. Technical efficiency measurement in insurance companies by using the slack-based measure (SBM-DEA) with undesirable outputs: Analysis case study. Compet. Rev. An. Int. Bus. J. 2023, 34, 229–243. [Google Scholar] [CrossRef]
- Bala, M.M.; Singh, S.; Gautam, D.K. Stochastic frontier approach to efficiency analysis of health facilities in providing services for non-communicable diseases in eight LMICs. Int. Health 2023, 15, 512–525. [Google Scholar] [CrossRef]
- Bourjade, S.; Muller-vibes, C. Optimal leasing and airline’s cost efficiencies: A stochastic frontier analysis. Transp. Res. Part A 2023, 176, 103804. [Google Scholar]
- Shen, B.; Perfilev, A.A.; Bufetova, L.P.; Li, X. Bank profitability analysis in China: Stochastic frontier approach. J. Risk Financ. Manag. 2023, 16, 243. [Google Scholar] [CrossRef]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Dobrovič, J.; Čabinová, V.; Gallo, P.; Partlová, P.; Váchal, J.; Balogová, B.; Orgonáš, J. Application of the DEA model in tourism SMEs: An empirical study from Slovakia in the context of business sustainability. Sustainability 2021, 13, 7422. [Google Scholar] [CrossRef]
- Higuerey, A.; Viñan-Merecí, C.; Malo-Montoya, Z.; Martínez-Fernández, V.A. Data envelopment analysis (DEA) for measuring the efficiency of the hotel industry in Ecuador. Sustainability 2020, 12, 1590. [Google Scholar] [CrossRef]
- Karakitsiou, A.; Kourgiantakis, M.; Mavrommati, A.; Migdalas, A. Regional efficiency evaluation by input-oriented data envelopment analysis of hotel and restaurant sector. Oper. Res. 2020, 20, 2041–2058. [Google Scholar] [CrossRef]
- Tan, Y.; Despotis, D. Investigation of efficiency in the UK hotel industry: A network data envelopment analysis approach. Int. J. Contemp. Hosp. Manag. 2021, 33, 1080–1104. [Google Scholar] [CrossRef]
- Gummesson, E. Quality, service-dominant logic and many-to-many marketing. TQM J. 2008, 20, 143–153. [Google Scholar] [CrossRef]
- Parasuraman, A.; Zeithaml, V.A.; Berry, L.L. A conceptual model of service quality and its implications for future research. J. Mark. 1985, 49, 41–50. [Google Scholar] [CrossRef]
- Zeithaml, V.A. Consumer perceptions of price, quality, and value: A means-end model and synthesis of evidence. J. Mark. 1988, 52, 2–22. [Google Scholar] [CrossRef]
- Parasuraman, A. Customer-oriented corporate cultures are crucial to services marketing success. J. Serv. Mark. 1987, 1, 39–46. [Google Scholar] [CrossRef]
- Grönroos, C. An applied service marketing theory. Eur. J. Mark. 1982, 16, 30–41. [Google Scholar] [CrossRef]
- Parasuraman, A.; Zeithaml, V.A.; Berry, L.L. Reassessment of expectations as a comparison standard in measuring service quality: Implications for further research. J. Mark. 1994, 58, 111–124. [Google Scholar] [CrossRef]
- Cronin, J.J., Jr.; Taylor, S.A. Measuring service quality: A reexamination and extension. J. Mark. 1992, 56, 55–68. [Google Scholar] [CrossRef]
- Rust, R.T.; Oliver, R.L. Service Quality: New Directions in Theory and Practice; Sage Publications, Inc.: Thousand Oaks, CA, USA, 1994; pp. 6–8. [Google Scholar]
- Dabholkar, P.A.; Thorpe, D.I.; Rentz, J.O. A measure of service quality for retail stores: Scale development and validation. J. Acad. Mark. Sci. 1996, 24, 3–16. [Google Scholar] [CrossRef]
- Brady, M.K.; Cronin, J.J., Jr. Some new thoughts on conceptualizing perceived service quality: A hierarchical approach. J. Mark. 2001, 65, 34–49. [Google Scholar] [CrossRef]
- Parasuraman, A.; Zeithaml, V.A.; Berry, L.L. SERVQUAL: A multiple-item scale for measuring consumer perceptions of service quality. J. Retail. 1988, 64, 12–40. [Google Scholar]
- Ladhari, R. A review of twenty years of SERVQUAL research. Int. J. Qual. Serv. Sci. 2009, 1, 172–198. [Google Scholar] [CrossRef]
- Pun, L.B. Customer satisfaction, revisit intention and word-of-mouth in the restaurant business. Butwal Campus J. 2022, 5, 26–42. [Google Scholar] [CrossRef]
- Raza, M.A.; Siddiquei, A.N.; Awan, H.M.; Bukhari, K. Relationship between service quality, perceived value, satisfaction and revisit intention in hotel industry. Interdiscip. J. Contemp. Res. Bus. 2012, 4, 788–805. [Google Scholar]
- Ojasalo, J. Managing customer expectations in professional services. Manag. Serv. Qual. An. Int. J. 2001, 11, 200–212. [Google Scholar] [CrossRef]
- Grönroos, C.; Ojasalo, K. Service productivity: Towards a conceptualization of the transformation of inputs into economic results in services. J. Bus. Res. 2004, 57, 414–423. [Google Scholar] [CrossRef]
- Maroto-Sánchez, A. Productivity in the services sector: Conventional and current explanations. Serv. Ind. J. 2012, 32, 719–746. [Google Scholar] [CrossRef]
- Calabrese, A. Service productivity and service quality: A necessary trade-off? Int. J. Prod. Econ. 2012, 135, 800–812. [Google Scholar] [CrossRef]
- Balci, B.; Hollmann, A.; Rosenkranz, C. Service productivity: A literature review and research agenda. In Proceedings of the XXI International RESER (European Association for REsearch on SERvices) Conference, Hamburg, Germany, 8–10 September 2011. [Google Scholar]
- Van Doorn, J.; Lemon, K.N.; Mittal, V.; Nass, S.; Pick, D.; Pirner, P.; Vernhoef, P.C. Customer engagement behavior: Theoretical foundations and research directions. J. Serv. Res. 2010, 13, 253–266. [Google Scholar] [CrossRef]
- Setiawan, J. Using text mining to analyze mobile phone provider service quality (Case study: Social media Twitter). Int. J. Mach. Learn. Comput. 2014, 4, 106–109. [Google Scholar]
- Miranda, M.D.; Sassi, R.J. Using sentiment analysis to assess customer satisfaction in an online job search company. In Business Information Systems Workshops; Abramowicz, W., Kokkinaki, A., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 17–27. [Google Scholar]
- Kim, B.; Kim, S.; Heo, C.Y. Analysis of satisfiers and dissatisfiers in online hotel reviews on social media. Int. J. Contemp. Hosp. Manag. 2016, 28, 1915–1936. [Google Scholar] [CrossRef]
- Song, B.; Lee, C.; Yoon, B.; Park, Y. Diagnosing service quality using customer reviews: An index approach based on sentiment and gap analyses. Serv. Bus. 2016, 10, 775–798. [Google Scholar] [CrossRef]
- Palese, B.; Piccoli, G. Online reviews as a measure of service quality. In Proceedings of the 2016 Pre-ICIS SIGDSA/IFIP WG8.3 Symposium: Innovations in Data Analytics, Dublin, Ireland, 11 December 2016. [Google Scholar]
- Bang, D.; Choi, K.; Kim, A.J. Does Michelin effect exist? An empirical study on the effects of Michelin stars. Int. J. Contemp. Hosp. Manag. 2022, 34, 2298–2319. [Google Scholar] [CrossRef]
- Lovell, C.K. Measuring the macroeconomic performance of the Taiwanese economy. Int. J. Prod. Econ. 1995, 39, 165–178. [Google Scholar] [CrossRef]
- Portela, M.S.; Thanassoulis, E.; Simpson, G. Negative data in DEA: A directional distance approach applied to bank branches. J. Oper. Res. Soc. 2004, 55, 1111–1121. [Google Scholar] [CrossRef]
- López, F.J.; Ho, J.C.; Ruiz-Torres, A.J. A computational analysis of the impact of correlation and data translation on DEA efficiency scores. J. Ind. Prod. Eng. 2016, 33, 192–204. [Google Scholar] [CrossRef]
- Emrouznejad, A.; Anouze, A.L.; Thanassoulis, E. A semi-oriented radial measure for measuring the efficiency of decision making units with negative data, using DEA. Eur. J. Oper. Res. 2010, 200, 297–304. [Google Scholar] [CrossRef]
- Zhu, J.; Cook, W.D. Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis; Springer Science + Business Media, LLC: New York, NY, USA, 2007; pp. 66–70. [Google Scholar]
- Kao, C.; Hwang, S.-N. Decomposition of technical and scale efficiencies in two-stage production systems. Eur. J. Oper. Res. 2011, 211, 515–519. [Google Scholar] [CrossRef]
- Kao, C.; Hwang, S.-N. Multi-period efficiency and Malmquist productivity index in two-stage production systems. Eur. J. Oper. Res. 2014, 232, 512–521. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Norris, M. Productivity growth, technical progress, and efficiency change in industrialized countries. Am. Econ. Rev. 1994, 84, 66–83. [Google Scholar]
- Pastor, J.T.; Lovell, C.K. Circularity of the Malmquist productivity index. Econ. Theory 2007, 33, 591–599. [Google Scholar] [CrossRef]
- Haryanto, T. Editorial: COVID-19 pandemic international tourism demand. J. Dev. Econ. 2020, 5, 1–5. [Google Scholar] [CrossRef]
- Kalnaovakul, K.; Promsivapallop, P. Hotel service quality dimensions and attributes: An analysis of online hotel customer reviews. Tour. Hosp. Res. 2023, 23, 420–440. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Ku, C.-H.; Chen, C.-H. Social media analytics: Extracting and visualizing Hilton hotel ratings and reviews from TripAdvisor. Int. J. Inf. Manag. 2019, 48, 263–279. [Google Scholar] [CrossRef]
- Calheiros, A.C.; Moro, S.; Rita, P. Sentiment classification of consumer-generated online reviews using topic modeling. J. Hosp. Mark. Manag. 2017, 26, 675–693. [Google Scholar] [CrossRef]
- Mehraliyev, F.; Chan, I.C.C.; Kirilenko, A.P. Sentiment analysis in hospitality and tourism: A thematic and methodological review. Int. J. Contemp. Hosp. Manag. 2022, 34, 46–77. [Google Scholar] [CrossRef]
- Taecharungroj, V.; Mathayomchan, B. Analysing TripAdvisor reviews of tourist attractions in Phuket, Thailand. Tour. Manag. 2019, 75, 550–568. [Google Scholar] [CrossRef]
- Anderson, R.I.; Fok, R.; Scott, J. Hotel industry efficiency: An advanced linear programming examination. Am. Bus. Rev. 2000, 18, 40–48. [Google Scholar]
- Barros, C.P. Measuring efficiency in the hotel sector. Ann. Tour. Res. 2005, 32, 456–477. [Google Scholar]
- Hwang, S.-N.; Chang, T.-Y. Using data envelopment analysis to measure hotel managerial efficiency change in Taiwan. Tour. Manag. 2003, 24, 357–369. [Google Scholar]
- Johns, N.; Howcroft, B.; Drake, L. The use of data envelopment analysis to monitor hotel productivity. Progress. Tour. Hosp. Res. 1997, 3, 119–127. [Google Scholar]
- Pulina, M.; Santoni, V. A two-stage DEA approach to analyse the efficiency of the hospitality sector. Tour. Econ. 2018, 24, 352–365. [Google Scholar]
- Sigala, M. Using data envelopment analysis for measuring and benchmarking productivity in the hotel sector. J. Travel Tour. Mark. 2004, 16, 39–60. [Google Scholar] [CrossRef]
- Tarim, Ş.; Dener, H.I.; Tarim, Ş.A. Efficiency measurement in the hotel industry: Output factor constrained DEA application. Anatolia 2000, 11, 111–123. [Google Scholar] [CrossRef]
- Sengupta, J.K. A dynamic efficiency model using data envelopment analysis. Int. J. Prod. Econ. 1999, 62, 209–218. [Google Scholar] [CrossRef]
- Smriti, T.N.; Khan, H.R. Efficiency analysis of manufacturing firms using data envelopment analysis technique. J. Data Sci. 2018, 18, 69–78. [Google Scholar] [CrossRef]
- Souza, A.A.; Moreira, D.R.; Avelar, E.A.; de Faria Marques, A.M.; Lara, A.L. Data envelopment analysis of efficiency in hospital organisations. Int. J. Bus. Innov. Res. 2014, 8, 316–332. [Google Scholar] [CrossRef]
- Abd Aziz, N.A.; Janor, R.M.; Mahadi, R. Comparative departmental efficiency analysis within a university: A DEA approach. Procedia Soc. Behav. Sci. 2013, 90, 540–548. [Google Scholar] [CrossRef]
- Liu, X.; Wu, X.; Zhang, W. A new DEA model and its application in performance evaluation of scientific research activities in the universities of China’s double first-class initiative. Socio Econ. Plan. Sci. 2024, 92, 101839. [Google Scholar] [CrossRef]
- Merkert, R.; Hensher, D.A. The impact of strategic management and fleet planning on airline efficiency—A random effects Tobit model based on DEA efficiency scores. Transp. Res. Part A Policy Pract. 2011, 45, 686–695. [Google Scholar] [CrossRef]
- Standfuss, T.; Hirte, G.; Schultz, M. How to Benchmark Air Navigation Service Providers? In Proceedings of the International Transportation Economics Association (ITEA) Conference, Toulouse, France, 15–17 June 2022. [Google Scholar]
- Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Wilcoxon, F. Individual comparisons by ranking methods. Biom. Bull. 1945, 1, 80–83. [Google Scholar] [CrossRef]
- Atris, A.M. Assessment of oil refinery performance: Application of data envelopment analysis-discriminant analysis. Resour. Policy 2020, 65, 101543. [Google Scholar] [CrossRef]
- Mohamed Shahwan, T.; Mohammed Hassan, Y. Efficiency analysis of UAE banks using data envelopment analysis. J. Econ. Adm. Sci. 2013, 29, 4–20. [Google Scholar] [CrossRef]
- Agušaj, B.; Bazdan, V.; Lujak, Đ. The relationship between online rating, hotel star category and room pricing power. Ekon. Misao Praksa 2017, 26, 189–204. [Google Scholar]
Service Dimensions | Examples of Words with High Distribution Prob. |
---|---|
Convenience | airport, bus, station, stop, shuttle, subway, easy, train, convenient, floor, small, luggage, street, side, road, room, location, shopping, food, mall, city, center, restaurants, walking, distance, area, shops, close, walk, minutes |
Facilities | access, amazing, apartment, beautiful, buffet, clean, club, common, executive, facilities, guesthouse, gym, hostel, included, internet, kitchen, laundry, lounge, park, place, pool, property, selection, spa, tea, variety, view, washing machine, western, wifi |
Room Conditions | room(s), bathroom, shower, water, toilet, provided, bed, towels, hot, bath, night, sleep, open, window, cold, problem, door, noise, work(ing), comfortable, large, nice, spacious, floor, amenities, big, size, clean, beds, space |
Human Services | check, day, arrived, early, asked, booked, checked, time, morning, told, staff(s), service, front, desk, excellent, concierge, helpful, special, professional, English, find, speak, Korean, taxi, clean, nice, friendly, comfortable, recommend, super |
Categories | Variable Name | Definition |
---|---|---|
Input Variables | Number of Rooms (NROOMS) | Number of rooms held by the DMU hotels (unit: number) |
Tangible Assets (TA) | Tangible assets on the statement of financial position (unit: KRW million) | |
Labor Expense (LABOR) | Labor costs on the income statement (unit: KRW million) | |
Other Expenses (EXP) | Selling and administrative expenses excluding labor costs in the income statement (unit: KRW million) | |
Intermediate Variable | Service Quality (SQ) | Each DMU’s service score which is calculated via probability–frequency weighted measurement (unit: score) |
Output Variable | Sales (SALES) | Natural logarithmic value of sales (KRW million) on the income statement |
Category | Variable | Statistic | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|---|---|
Input Variables | NROOMS 1 | Mean | 205.8 | ||||
SD | 104.0 | ||||||
Min. | 29.0 | ||||||
Max. | 430.0 | ||||||
TA | Mean | 62,708.5 | 60,940.0 | 60,848.7 | 62,093.7 | 63,017.9 | |
SD | 88,251.2 | 87,121.8 | 86,757.2 | 90,463.5 | 91,479.9 | ||
Min. | 1116.0 | 745.0 | 378.0 | 34.0 | 43.0 | ||
Max. | 423,669.0 | 417,758.0 | 416,964.0 | 411,106.0 | 403,101.0 | ||
LABOR | Mean | 2031.5 | 2044.2 | 2088.4 | 2157.0 | 2230.9 | |
SD | 1961.4 | 2015.2 | 2087.9 | 2102.5 | 2205.1 | ||
Min. | 33.8 | 29.5 | 31.1 | 34.5 | 44.6 | ||
Max. | 10,241.8 | 11,858.8 | 13,023.6 | 13,087.9 | 13,470.0 | ||
EXP | Mean | 3419.6 | 3795.1 | 4069.1 | 4360.9 | 5151.4 | |
SD | 3750.8 | 4818.3 | 6823.8 | 7572.4 | 11,307.3 | ||
Min. | 71.8 | 35.4 | 60.8 | 37.1 | 22.2 | ||
Max. | 25,328.7 | 34,347.2 | 49,412.1 | 55,166.6 | 84,559.9 | ||
Inter- mediate Variables 2 | SQ_CONV | Mean | 11.6 | 11.2 | 11.2 | 10.8 | 10.9 |
SD | 2.5 | 2.4 | 3.1 | 2.7 | 3.3 | ||
Min. | 5.9 | 7.1 | 4.3 | 4.4 | 2.8 | ||
Max. | 18.1 | 19.2 | 19.3 | 17.5 | 20.3 | ||
SQ_FAC | Mean | 27.9 | 27.0 | 27.3 | 26.9 | 26.2 | |
SD | 3.3 | 2.7 | 3.2 | 3.5 | 5.2 | ||
Min. | 19.2 | 19.4 | 19.4 | 18.0 | 3.7 | ||
Max. | 39.9 | 32.6 | 36.7 | 36.2 | 36.0 | ||
SQ_ROOM | Mean | 33.0 | 32.3 | 32.6 | 31.6 | 31.5 | |
SD | 6.7 | 5.3 | 5.6 | 6.9 | 7.4 | ||
Min. | 14.7 | 17.1 | 13.7 | 9.0 | 6.4 | ||
Max. | 57.2 | 43.6 | 48.8 | 45.3 | 50.7 | ||
SQ_SERV | Mean | 35.1 | 35.2 | 35.2 | 34.7 | 34.2 | |
SD | 3.3 | 3.2 | 3.8 | 4.0 | 6.4 | ||
Min. | 24.2 | 26.0 | 15.8 | 22.4 | 4.3 | ||
Max. | 42.3 | 41.3 | 41.4 | 43.0 | 45.5 | ||
Output Variable | SALES | Mean | 9.1 | 9.3 | 9.2 | 9.3 | 9.3 |
SD | 1.0 | 0.8 | 0.9 | 0.9 | 0.9 | ||
Min. | 5.6 | 7.8 | 7.5 | 7.7 | 7.8 | ||
Max. | 11.2 | 11.2 | 11.3 | 11.3 | 11.4 |
Category | Statistic | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|---|
DEA_VRS | Average_Class1 | 0.7549 | 0.6713 | 0.6858 | 0.6576 | 0.6429 |
Average_Class2 | 0.7921 | 0.7388 | 0.7282 | 0.6998 | 0.6991 | |
Wilcoxon’s W | 594 | 582 | 592 | 594.5 | 588.5 | |
p-value | 0.799 | 0.650 | 0.774 | 0.808 | 0.730 | |
Network DEA_total system | Average_Class1 | 0.4724 | 0.4393 | 0.4700 | 0.4805 | 0.5251 |
Average_Class2 | 0.3783 | 0.3428 | 0.3628 | 0.3539 | 0.3772 | |
Wilcoxon’s W | 926 | 917 | 918 | 901 | 886 | |
p-value | 0.051 | 0.036 ** | 0.037 ** | 0.018 ** | 0.009 *** | |
Network DEA_1st stage | Average_Class1 | 0.6466 | 0.5767 | 0.6132 | 0.6313 | 0.6719 |
Average_Class2 | 0.4736 | 0.4233 | 0.4475 | 0.4360 | 0.4512 | |
Wilcoxon’s W | 909 | 902 | 896 | 897 | 873.5 | |
p-value | 0.025 ** | 0.019 ** | 0.014 ** | 0.015 ** | 0.005 *** | |
Network DEA_2nd stage | Average_Class1 | 0.7539 | 0.7780 | 0.7815 | 0.7757 | 0.8002 |
Average_Class2 | 0.8249 | 0.8353 | 0.8355 | 0.8425 | 0.8563 | |
Wilcoxon’s W | 427 | 426 | 451 | 420 | 460 | |
p-value | 0.003 *** | 0.002 *** | 0.009 *** | 0.002 *** | 0.014 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, K.; Kim, J. Measuring Hotel Service Productivity Using Two-Stage Network DEA. Sustainability 2024, 16, 8995. https://doi.org/10.3390/su16208995
Choi K, Kim J. Measuring Hotel Service Productivity Using Two-Stage Network DEA. Sustainability. 2024; 16(20):8995. https://doi.org/10.3390/su16208995
Chicago/Turabian StyleChoi, Kyuwan, and Jinkwon Kim. 2024. "Measuring Hotel Service Productivity Using Two-Stage Network DEA" Sustainability 16, no. 20: 8995. https://doi.org/10.3390/su16208995
APA StyleChoi, K., & Kim, J. (2024). Measuring Hotel Service Productivity Using Two-Stage Network DEA. Sustainability, 16(20), 8995. https://doi.org/10.3390/su16208995