Effects of Offshore Wind Farms: Environmental and Social Perspectives from Uruguay
Abstract
:1. Introduction
2. Background Context
2.1. Offshore Wind Farms
2.2. Global Overview of Offshore Wind Energy Production
3. Literature Analysis
3.1. Social and Environmental Impacts
Causes | Possible Effects | Possible Mitigation Actions |
---|---|---|
Noise from rotating parts emitted into the water | Interference with auditory system, foraging, communication, and migration [36] | Prohibit construction work that generates noise during breeding periods [27,37] |
Physiological stress [36] | ||
Accumulation of noise from ships and turbine | Avoidance of affected areas [27] | Avoid excavation of piles during periods when marine mammals are present in large numbers [27,37] |
Injuries to the auditory tissue [38] | ||
Pile installation | Reduction in hearing and echolocation capacities [38] | Use porpoise detectors or similar equipment [37] |
Avoid work during reproduction season and the birth of marine mammals [37] |
Causes | Possible Effects | Possible Mitigation Actions |
---|---|---|
Increased sediment concentrations | Reduced efficiency of the respiratory system [39,40] | Prefer foundation projects with the smallest possible surface area [37] |
Conduct detailed investigations of gravel distribution in the area before working [37] | ||
Underwater noise from turbine installation and operation | Avoidance of affected areas with the sound of 90 dB or more [39,41] | Use techniques such as bubble curtains or foam screens to reduce underwater noise during pile driving (it should not exceed 160 dB at 750 m from the site) [37,39] |
Group noisy activities together and limit the duration of their operation [37] | ||
Start with a low noise level to allow fish and marine mammals to move out of the area before noise levels increase [37] | ||
New hard-bottom habitats | Attraction of demersal, pelagic fish and large predators. Reduction in soft habitat species [27,40,41] | Minimize the introduction of artificial hard substrates to reduce the increase of non-native species. [37] |
Fill the foundation pits with as much sand as possible and of the same quality as the original sand [37] | ||
Electromagnetic fields around cables | Influences sense of direction and ability to move (perception varies with species between 20 and 75 µT) [27,39] | Select a placement depth sufficient to minimize electromagnetic fields [37,42] |
Causes | Possible Effects | Possible Mitigation Actions |
---|---|---|
Structures between 20 m and 200 m in height | Collisions in migratory traffic [27,40] | Use lighting that does not attract birds and equipment that can be turned off during the rainy season [37,40] |
Position offshore wind farms parallel to the predominant direction of flight and reserve corridors to reduce the risk of collisions [37,40] | ||
Reduce night lighting in combination with increased separation of turbines to limit the attraction of nocturnal migratory birds [37,43] | ||
Greater energy costs in order to avoid the farm area [27,40] | Shut down turbine activity during peak migration [37] | |
Select suitable locations to prevent or minimize habitat loss, such as resting and feeding areas [37] |
Affected Social Structure | Causes | Possible Effects | Possible Mitigation Actions |
---|---|---|---|
Fishing | Prohibition of fishing in security zones around the construction [27,44] | Moving fishing activities to different areas [27,44] | Allow fishing with static equipment within the offshore wind farm [37] |
Intensifies competition [26] | Divide construction into phases to limit exclusion zones [37] | ||
Increased transportation costs to less profitable areas [26] | Provide substitute income to fishermen, including their participation in the construction and operation of the offshore wind farm [37,44] | ||
Tourism | Implementation in maritime and coastal leisure activity areas [41] | Increased traffic [23] | Avoid periods of high tourist season for construction [37] |
Economic and social loss of seascapes as part of cultural marine goods [41] | Survey community views at key stages of the project life cycle [37] | ||
Select suitable locations far from the coast that are barely noticeable [37] | |||
Coastal areas | Changes in coastal infrastructure (assembly and operations ports 75–200 km close to the farm and substations) [45] | Complications in navigation [27] | Explore possible collaborations in the area, such as sharing supply ships [37] |
3.2. Technological Challenges to Offshore Wind Farm Development in Uruguay
3.3. Wind Resource Assessment
4. Characterization of the Uruguayan Coastline
4.1. Environmental Condition
4.2. Social Aspect
4.3. Economic Effects
4.4. Seasonal Weather Conditions for Offshore Wind Farm Development in Uruguay
4.5. Onshore Wind Farm Regulation in Uruguay
5. Studies Required for Offshore Environmental Licensing in Uruguay
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Instituto Geográfico Militar. Situación Geográfica de Uruguay. Available online: https://igm.gub.uy/situacion-geografica/ (accessed on 3 March 2024).
- Ministerio de Economía y Finanzas. Ubicación Geográfica de Uruguay. n.d. Available online: https://www.gub.uy/ministerio-economia-finanzas/institucional/uruguay/ubicacion-geografica (accessed on 8 September 2024).
- Instituto Nacional de Estadística. Población Preliminar: 3.444.263 Habitantes. n.d. Available online: https://www.gub.uy/instituto-nacional-estadistica/comunicacion/noticias/poblacion-preliminar-3444263-habitantes (accessed on 3 July 2024).
- Ritchie, H. Pablo Rosado and Max Roser (2023)—“Energy”. “Share of Electricity Generated by Wind Power”, Data Adapted from Ember, Energy Institute. Available online: https://ourworldindata.org/grapher/share-electricity-wind (accessed on 3 July 2024).
- Administración del Mercado Eléctrico—ADME. Informe Anual 2023. Available online: https://adme.com.uy/db-docs/Docs_secciones/nid_526/Informe_Anual_2023.pdf (accessed on 3 March 2024).
- Singh, R.; Krishna, B.B.; Kumar, J.; Bhaskar, T. Opportunities for utilization of non-conventional energy sources for biomass pretreatment. Bioresour. Technol. 2016, 199, 398–407. [Google Scholar] [CrossRef] [PubMed]
- MIEM (Ministerio de Industria, Energía y Minería). Balance de Energía Nacional Preliminar. MIEM 2024. Available online: https://ben.miem.gub.uy/preliminar.php (accessed on 3 July 2024).
- ANCAP. Ronda H2U Offshore. n.d. Available online: https://www.ancap.com.uy/17065/5/ronda-h2u-offshore.html (accessed on 10 August 2024).
- Ministerio de Industria, Energía y Minería de Uruguay. Hoja de Ruta del Hidrógeno Verde en Uruguay. n.d. Available online: https://www.gub.uy/ministerio-industria-energia-mineria/sites/ministerio-industria-energia-mineria/files/documentos/noticias/Hoja%20de%20ruta%20H2%20Uruguay_final.pdf (accessed on 10 August 2024).
- Fredershausen, S.; Meyer-Larsen, N.; Klumpp, M. Comprehensive Sustainability Evaluation Concept for Offshore Green Hydrogen from Wind Farms. In Dynamics in Logistics; Freitag, M., Kinra, A., Kotzab, H., Megow, N., Eds.; Lecture Notes in Logistics; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Díaz-Motta, A.; Díaz-González, F.; Villa-Arrieta, M. Energy sustainability assessment of offshore wind-powered ammonia. J. Clean. Prod. 2023, 420, 138419. [Google Scholar] [CrossRef]
- Díaz, H.; Guedes Soares, C. Review of the current status, technology and future trends of offshore wind farms. Ocean. Eng. 2020, 209, 107381. [Google Scholar] [CrossRef]
- Fernández-Guillamón, A.; Das, K.; Cutululis, N.; Molina-Garcia, A. Offshore Wind Power Integration into Future Power Systems: Overview and Trends. J. Mar. Sci. Eng. 2019, 7, 399. [Google Scholar] [CrossRef]
- Giebel, G.; Hasager, C. An Overview of Offshore Wind Farm Design. In MARE-WINT: New Materials and Reliability in Offshore Wind Turbine Technology; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Global Wind Energy Council. Global Offshore Wind Report 2023. Global Wind Energy Council. 2023. Available online: https://gwec.net/wp-content/uploads/2023/08/GWEC-Global-Offshore-Wind-Report-2023.pdf (accessed on 3 March 2024).
- Manzano-Agugliaro, F.; Sánchez-Calero, M.; Alcayde, A.; San-Antonio-Gómez, C.; Perea-Moreno, A.-J.; Salmeron-Manzano, E. Wind Turbines Offshore Foundations and Connections to Grid. Inventions 2020, 5, 8. [Google Scholar] [CrossRef]
- Rodrigues, S.; Restrepo, C.; Katsouris, G.; Teixeira Pinto, R.; Soleimanzadeh, M.; Bosman, P.; Bauer, P. A Multi-Objective Optimization Framework for Offshore Wind Farm Layouts and Electric Infrastructures. Energies 2016, 9, 216. [Google Scholar] [CrossRef]
- Global Wind Energy Council (GWEC). Global Wind Report; GWEC: Brussels, Belgium, 2024. [Google Scholar]
- Global Wind Energy Council (GWEC). Global Offshore Wind Report; GWEC: Brussels, Belgium, 2024. [Google Scholar]
- IRENA. Renewable Power Generation Costs in 2022; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2023. [Google Scholar]
- Shaw, W.J.; Berg, L.K.; Debnath, M.; Deskos, G.; Draxl, C.; Ghate, V.P.; Hasager, C.B.; Kotamarthi, R.; Mirocha, J.D.; Muradyan, P.; et al. Scientific challenges to characterizing the wind resource in the marine atmospheric boundary layer. Wind. Energy Sci. 2022, 7, 2307–2334. [Google Scholar] [CrossRef]
- Veers, P.; Dykes, K.; Basu, S.; Bianchini, A.; Clifton, A.; Green, P.; Holttinen, H.; Kitzing, L.; Kosovic, B.; Lundquist, J.K.; et al. Grand Challenges: Wind energy research needs for a global energy transition. Wind. Energy Sci. 2022, 7, 2491–2496. [Google Scholar] [CrossRef]
- Glasson, J.; Durning, B.; Welch, K.; Olorundami, T. The local socioeconomic impacts of offshore wind farms. Environ. Impact Assess. Rev. 2022, 95, 106783. [Google Scholar] [CrossRef]
- Galparsoro, I.; Menchaca, I.; Garmendia, J.M.; Borja, Á.; Maldonado, A.D.; Iglesias, G.; Bald, J. Reviewing the ecological impacts of offshore wind farms. npj Ocean. Sustain. 2022, 1, 1. [Google Scholar] [CrossRef]
- Kaldellis, J.K.; Apostolou, D.; Kapsali, M.; Kondili, E. Environmental and social footprint of offshore wind energy. Comparison with onshore counterpart. Renew. Energy 2016, 92, 543–556. [Google Scholar] [CrossRef]
- Gill, A.B.; Degraer, S.; Lipsky, A.; Mavraki, N.; Methratta, E.; Brabant, R. Setting the context for offshore wind development effects on fish and fisheries. Oceanography 2020, 33. Available online: https://tos.org/oceanography/assets/docs/33-4_gill.pdf (accessed on 20 March 2024). [CrossRef]
- Köller, J.; Köppel, J.; Peters, W. Offshore Wind Energy, Research on Environmental Impacts; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Danish Energy Agency. Benthic Fauna and Flora. March 2021. Available online: https://ens.dk/sites/ens.dk/files/Vindenergi/211_1_benthic_fauna_and_flora_march_2021.pdf (accessed on 6 March 2024).
- Ministerio de Ambiente. Informe del Estado del Ambiente 2024. n.d. Available online: https://www.ambiente.gub.uy/oan/documentos/INFORME-DEL-ESTADO-DEL-AMBIENTE-2024-1.21.pdf (accessed on 6 March 2024).
- Ministerio de Ambiente. Ficha 05-Peces. 2021. Available online: https://www.gub.uy/ministerio-ambiente/sites/ministerio-ambiente/files/documentos/publicaciones/ficha%2005%20-%20PECES.pdf (accessed on 2 February 2024).
- ANCAP. Uruguay margen continental. In Zona Editorial; ANCAP: Manuka, ACT, Australia, 2014. [Google Scholar]
- SEOBirdLife. Impacto de la Energía Eólica en las Aves. Available online: www.deisidro.com/eolica/docs/birdlife.pdf (accessed on 6 March 2024).
- DNETN MIEM. Impacto de Parques Eólicos Sobre Avifauna. Available online: www.energiaeolica.gub.uy/uploads/documentos/informes/Impacto%20parques%20eolicos%20sobre%20avifauna.pdf (accessed on 20 March 2024).
- Avaliação de Impacto de Eólicas Offshore No Brasil. Tempo do Mundo, Instituto de Pesquisa Econômica Aplicada (IPEA). Volume 32. Available online: http://repositorio.ipea.gov.br/bitstream/11058/13416/1/Tempo_Mundo_32_artigo10_avaliacao_de_impacto.pdf (accessed on 6 March 2024).
- Distribución, Abundancia, Interacciones Tróficas y Conservacion de los Principales Representantes de la Ornitofauna en el Area, Ministry of Environment. Available online: https://www.ambiente.gub.uy/oan/documentos/Aves-Informe_final_CD.pdf (accessed on 6 March 2024).
- Ørsted. Nysted Offshore Wind Farm Project Description and Environmental Assessment; Technical Report; Danish Energy Agency: Copenhagen, Denmark, 2023. [Google Scholar]
- IBAMA. Estudo de Impacto Ambiental e Relatório de Impacto Ambiental (EIA/RIMA); Technical Report Processo nº 02007.003499/2019-9; Direção de Licenças Ambientais-Dilic: Brasília, Brasil, 2019. [Google Scholar]
- Danish Energy Agency. Thor Offshore Wind Farm-Marine Mammals; Technical Report; Danish Energy Agency: Copenhagen, Denmark, 2021. [Google Scholar]
- Danish Energy Agency. Fish and Fish Populations. March 2021. Available online: https://ens.dk/sites/ens.dk/files/Vindenergi/215_1_fish_and_fish_populations_final_march_2021.pdf (accessed on 3 June 2024).
- Pacific Northwest National Laboratory. Seer: Herramienta para la Evaluación del Impacto Ambiental de Energías Marinas y Eólicas en Alta Mar (Versión en Español); Technical Report; Pacific Northwest National Laboratory: Richland, WA, USA, 2022. Available online: https://tethys.pnnl.gov/sites/default/files/summaries/SEER-Booklet-Spanish_revised.pdf (accessed on 3 June 2024).
- Lloret, J.; Turiel, A.; Solé, J.; Berdalet, E.; Sabatés, A.; Olivares, A.; Gili, J.-M.; Vila-Subirós, J.; Sardá, R. Unraveling the Ecological Impacts of Large-Scale Offshore Wind Farms in the Mediterranean Sea. Sci. Total Environ. 2022, 824, 153803. [Google Scholar] [CrossRef] [PubMed]
- Bureau of Ocean Energy Management. Electromagnetic Fields (EMF) from Offshore Wind Facilities; Technical Report; Bureau of Ocean Energy Management: Washington, DC, USA, 2023.
- Estébanez, R. Evaluación del Impacto Ambiental de un Parque Eólico Offshore. 2022. Available online: https://addi.ehu.es/handle/10810/59924 (accessed on 6 March 2024).
- Danish Energy Agency. Thor Owf Technical Report–Commercial Fisheries; Technical Report; Danish Energy Agency: Copenhagen, Denmark, 2021. [Google Scholar]
- Global Wind Energy Council (GWEC). The Power of Our Ocean; Global Wind Energy Council: Brussels, Belgium, 2020; pp. 1–24. Available online: https://gwec.net/wp-content/uploads/2020/12/OREAC-The-Power-of-Our-Ocean-Dec-2020-2.pdf (accessed on 8 March 2024).
- Odriozola Iribar, U. Diseño de un Parque Eólico Offshore. Trabajo de Fin de Máster, Universidad Politécnica de Cartagena, 2022. Available online: https://repositorio.upct.es/bitstreams/cc145ac0-3aa2-4730-9940-ae1ea9fa9e24/download (accessed on 8 March 2024).
- Badel, S.; de Diego, G.F. Análisis de Aplicabilidad de Ensayos Para Caracterización Geotécnico–Geológico de Suelos Marinos Enfocado al Diseño de Cimentaciones Para Torres Eólicas. Tesis de Grado, Universidad de Cartagena. 2022. Available online: https://repositorio.unicartagena.edu.co/server/api/core/bitstreams/26a8ad56-c270-449f-91ad-0755e605005d/content (accessed on 8 March 2024).
- Weisheimer, A.; Befort, D.J.; MacLeod, D.; Palmer, T.; O’Reilly, C.; Strømmen, K. Seasonal Forecasts of the Twentieth Century. Bull. Am. Meteorol. Soc. 2020, 101, E1413–E1426. [Google Scholar] [CrossRef]
- Davis, N.N.; Badger, J.; Hahmann, A.N.; Hansen, B.O.; Mortensen, N.G.; Kelly, M.; Larsén, X.G.; Olsen, B.T.; Floors, R.; Lizcano, G.; et al. The Global Wind Atlas: A high-resolution dataset of climatologies and associated web-based application. Bull. Am. Meteorol. Soc. 2023, 104, E1507–E1525. [Google Scholar] [CrossRef]
- Hahmann, A.N.; Sīle, T.; Witha, B.; Davis, N.N.; Dörenkämper, M.; Ezber, Y.; García-Bustamante, E.; González-Rouco, J.F.; Navarro, J.; Olsen, B.T.; et al. The making of the New European Wind Atlas—Part 1: Model sensitivity. Geosci. Model Dev. 2020, 13, 5053–5078. [Google Scholar] [CrossRef]
- Musial, W.; Heimiller, D.; Beiter, P.; Scott, G.; Draxl, C. Offshore Wind Energy Resource Assessment for the United States; National Renewable Energy Laboratory, NREL: Golden, CO, USA, 2016.
- European Centre for Medium-Range Weather Forecasts (ECMWF). Fact Sheet Reanalysis. 2020. Available online: https://www.ecmwf.int/en/about/media-centre/focus/2020/fact-sheet-reanalysis (accessed on 8 March 2024).
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Version 4; NCAR Tech. Note NCAR/TN-556+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2019; 145p. [Google Scholar] [CrossRef]
- WindPRO, Technical Note. EMD-WRF Global On-demand Mesoscale Services ERA5, ERA-Interim, MERRA2 and CFSR. 2018. Available online: https://help.emd.dk/knowledgebase/content/TechNotes/TechnicalNote6_EMD-WRF_On-Demand_20180116.pdf (accessed on 3 October 2024).
- Chang, T.-P.; Liu, F.-J.; Ko, H.-H.; Cheng, S.-P.; Sun, L.-C.; Kuo, S.-C. Comparative analysis on power curve models of wind turbine generator in estimating capacity factor. Energy 2014, 73, 88–95. [Google Scholar] [CrossRef]
- IRENA. Renewable Power Generation Costs in 2023; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2024. [Google Scholar]
- National Renewable Energy Laboratory (NREL). National Offshore Wind Energy Research and Development Consortium Roadmap 2024; Report No. NREL/TP-5000-90525; NREL: Golden, CO, USA, 2024. Available online: https://www.nrel.gov/docs/fy24osti/90525.pdf (accessed on 3 October 2024).
- Dias, M.P.; Martin, R.; Pearmain, E.J.; Burfield, I.J.; Small, C.; Phillips, R.A.; Yates, O.; Lascelles, B.; Borboroglu, P.G.; Croxall, J.P.; et al. Threats to seabirds: A global assessment. Biol. Conserv. 2019, 237, 525–537. [Google Scholar] [CrossRef]
- Food Agriculture Organisation of the United Nations. Perfiles de Países en Pesca y Acuicultura: Uruguay; Food and Agriculture Organisation of the United Nations: Rome, Italy, 2019. [Google Scholar]
- Uruguay. Dirección Nacional de Recursos Acuáticos. Boletín Estadístico Pesquero 2018; MGAP-DINARA: Montevideo, Uruguay, 2019; pp. 1–52. ISSN 0797-194X. [Google Scholar]
- Barreiro, M.; Arizmendi, F.; Trinchín, R. Variabilidad y Cambio Climático en Uruguay. Facultad de Ciencias, Universidad de la República, UdelaR, 2019. Available online: https://www.ambiente.gub.uy/oan/documentos/Variabilidad-y-cambio-clim%C3%A1tico-en-Uruguay.-Material-de-capacitaci%C3%B3n-dirigido-a-T%C3%A9cnicos-de-Instituciones-Nacionales1.pdf (accessed on 3 October 2024).
- World Meteorological Organization (WMO). OSCAR, Observing Systems Capability Analysis and Review Tool. Available online: https://oscar.wmo.int/surface/#/ (accessed on 3 October 2024).
- Google Earth. Available online: https://earth.google.com/ (accessed on 3 October 2024).
- Barreiro, M.; Arizmendi, F.; Díaz, N.; Trinchin, R. Análisis de las Variabilidad y Tendencias Observadas de los Vientos en Uruguay. Instituto de Ciencias de la Facultad de Ciencias de la Universidad de la República. Ministerio de Ambiente. 2021. Available online: https://www.gub.uy/ministerio-ambiente/sites/ministerio-ambiente/files/documentos/publicaciones/FCIEN_An%C3%A1lisis%20de%20las%20variabilidad%20y%20tendencias%20observadas%20de%20los%20vientos%20en%20Uruguay_c.pdf (accessed on 3 October 2024).
- Uruguay, Ministry of Environment. Guidelines for Environmental Impact Assessment of Wind Farms; Uruguay, Ministry of Environment: Montevideo, Uruguay, 2015; pp. 1–100. Available online: https://www.gub.uy/ministerio-ambiente/sites/ministerio-ambiente/files/documentos/publicaciones/GU-EIA-006-00_20150701_Guia_EIA_Parques_Eolicos_Version_Final-para_aprobacion.pdf (accessed on 13 August 2024).
- Reglamento de Evaluación del Impacto Ambiental, Decreto 435/1994. Imposición de Recursos, 1994. Available online: https://www.impo.com.uy/bases/decretos-reglamento/435-1994 (accessed on 3 October 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forastiero, M.; Gutiérrez, R.; Weschenfelder, F.; de Almeida, E.; Hernandez, J.C. Effects of Offshore Wind Farms: Environmental and Social Perspectives from Uruguay. Sustainability 2024, 16, 9057. https://doi.org/10.3390/su16209057
Forastiero M, Gutiérrez R, Weschenfelder F, de Almeida E, Hernandez JC. Effects of Offshore Wind Farms: Environmental and Social Perspectives from Uruguay. Sustainability. 2024; 16(20):9057. https://doi.org/10.3390/su16209057
Chicago/Turabian StyleForastiero, Milagros, Rodrigo Gutiérrez, Franciele Weschenfelder, Everton de Almeida, and Jesus C. Hernandez. 2024. "Effects of Offshore Wind Farms: Environmental and Social Perspectives from Uruguay" Sustainability 16, no. 20: 9057. https://doi.org/10.3390/su16209057
APA StyleForastiero, M., Gutiérrez, R., Weschenfelder, F., de Almeida, E., & Hernandez, J. C. (2024). Effects of Offshore Wind Farms: Environmental and Social Perspectives from Uruguay. Sustainability, 16(20), 9057. https://doi.org/10.3390/su16209057