Addition of Tannin-Containing Legumes to Native Grasslands: Effects on Enteric Methane Emissions, Nitrogen Losses and Animal Performance of Beef Cattle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Animals, Treatments, Design and Grassland Management
2.3. Herbage Mass and Botanical Composition
2.4. Forage Chemical Composition
2.5. Dry Matter Intake
2.6. Animal Average Daily Live Weight Gain
2.7. Determination of CH4 Emissions
Gas Analysis and Calculation
2.8. Fecal Nitrogen Excretion, Urine Production and Nitrogen Balance
2.9. Statistical Analyses
3. Results
3.1. Chemical Composition, Herbage Allowance, Canopy Height and Legume Proportion
3.2. Animal Performance and Enteric Methane Emissions
3.3. Nitrogen Excretion and Balance
4. Discussion
4.1. Chemical Composition and Forage Intake
4.2. Animal Performance
4.3. Enteric Methane Emissions
4.4. Nitrogen Balance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carvalho, P.C.D.; Batello, C. Access to land, livestock production and ecosystem conservation in the Brazilian Campos biome: The natural grasslands dilemma. Livest. Sci. 2009, 120, 158–162. [Google Scholar] [CrossRef]
- Picasso, V.D.; Modernel, P.D.; Becoña, G.; Salvo, L.; Gutiérrez, L.; Astigarraga, L. Sustainability of meat production beyond carbon footprint: A synthesis of case studies from grazing systems in Uruguay. Meat Sci. 2014, 98, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Palma, R.M.R.; Garicoïts, D.F.M.; Olivera, T.D.R.; Tomasina, C.G.S.; Lattanzi, F.A. Nutrient Addition to a Subtropical Rangeland: Effects on Animal Productivity, Trophic Efficiency, and Temporal Stability. Rangel. Ecol. Manag. 2024, 96, 72–82. [Google Scholar] [CrossRef]
- Tiecher, T.; Oliveira, L.B.; Rheinheimer, D.S.; Quadros, F.L.F.; Gatiboni, L.C.; Brunetto, G.; Kaminski, J. Phosphorus application and liming effects on forage production, floristic composition and soil chemical properties in the Campos biome, southern Brazil. Grass Forage Sci. 2014, 69, 567–579. [Google Scholar] [CrossRef]
- Jaurena, M.; Lezama, F.; Salvo, L.; Cardozo, G.; Ayala, W.; Terra, J.; Nabinger, C. The dilemma of improving native grasslands by overseeding legumes: Production intensification or diversity conservation. Rangel. Ecol. Manag. 2016, 69, 35–42. [Google Scholar] [CrossRef]
- Dini, Y.; Gere, J.I.; Cajarville, C.; Ciganda, V.S. Using highly nutritious pastures to mitigate enteric methane emissions from cattle grazing systems in South America. Anim. Prod. Sci. 2017, 58, 2329–2334. [Google Scholar] [CrossRef]
- Cezimbra, I.M.; de Albuquerque Nunes, P.A.; de Souza Filho, W.; Tischler, M.R.; Genro, T.C.M.; Bayer, C.; de Faccio Carvalho, P.C. Potential of grazing management to improve beef cattle production and mitigate methane emissions in native grasslands of the Pampa biome. Sci. Total. Environ. 2021, 780, 146582. [Google Scholar] [CrossRef]
- Cunha, L.L.; Bremm, C.; Savian, J.V.; Zubieta, A.S.; Rossetto, J.; de Carvalho, P.C.F. Relevance of sward structure and forage nutrient contents in explaining methane emissions from grazing beef cattle and sheep. Sci. Total. Environ. 2023, 869, 161695. [Google Scholar] [CrossRef]
- Costa, C.; Wollenberg, E.; Benitez Newman, R.; Gardner, N.; Bellone, F. Roadmap for achieving net-zero emissions in global food systems by 2050. Sci. Rep. 2022, 12, 15064. [Google Scholar] [CrossRef]
- Jaurena, M.; Durante, M.; Devincenzi, T.; Savian, J.V.; Bendersky, D.; Moojen, F.G.; Pereira, M.; Soca, P.; Quadros, F.L.F.; Pizzio, R.; et al. Native Grasslands at the Core: A New Paradigm of Intensification for the Campos of Southern South America to Increase Economic and Environmental Sustainability. Front. Sustain. Food Syst. 2021, 5, 547834. [Google Scholar] [CrossRef]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1994; Volume 476. [Google Scholar]
- Ribeiro, R.S.; Rodrigues, J.P.P.; Maurício, R.M.; Borges, A.L.C.C.; Reis e Silva, R.; Berchielli, T.T.; Valadares Filho, S.C.; Machado, F.S.; Campos, M.M.; Ferreira, A.L.; et al. Predicting enteric methane production from cattle in the tropics. Animal 2020, 14, s438–s452. [Google Scholar] [CrossRef] [PubMed]
- Fouts, J.Q.; Honan, M.C.; Roque, B.M.; Tricarico, J.M.; Kebreab, E. Enteric methane mitigation interventions. Transl. Anim. Sci. 2022, 6, txac041. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Xiong, B.; Zhao, X. Could propionate formation be used to reduce enteric methane emission in ruminants? Sci. Total Environ. 2023, 855, 158867. [Google Scholar] [CrossRef]
- Congio, G.F.d.S.; Bannink, A.; Mogollón, O.L.M.; Hristov, A.N.; Jaurena, G.; Gonda, H.; Gere, J.I.; Cerón-Cucchi, M.E.; Ortiz-Chura, A.; Tieri, M.P.; et al. Enteric methane mitigation strategies for ruminant livestock systems in the Latin America Caribbean region: A meta-analysis. J. Clean. Prod. 2021, 312, 127693. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Ungerfeld, E.M.; Eckard, R.J.; Wang, M. Review: Fifty years of research on rumen methanogenesis: Lessons learned and future challenges for mitigation. Animals 2020, 14, s2–s16. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Kreuzer, M.; O’Mara, F.; McAllister, T.A. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- MVOTMA (Ministerio de Vivienda Ordenamiento Territorial y Medio Ambiente). Tercer Informe Bienal de Actualización a la Conferencia de las Partes en la Convención Marco de las Naciones Unidas sobre el Cambio Climático. 2019. Available online: https://www.gub.uy/ministerio-ambiente/sites/ministerio-ambiente/files/documentos/noticias/20191231_URUGUAY_BUR3_ESP_1.pdf (accessed on 16 February 2023).
- Gere, J.I.; Bualó, R.A.; Perini, A.L.; Arias, R.D.; Ortega, F.M.; Wulff, A.E.; Berra, G. Methane emission factors for beef cows in Argentina: Effect of diet quality. N. Z. J. Agr. Res. 2019, 64, 260–268. [Google Scholar] [CrossRef]
- Orcasberro, M.S.; Loza, C.; Gere, J.; Soca, P.; Picasso, V.; Astigarraga, L. Seasonal Effect on Feed Intake and Methane Emissions of Cow–Calf Systems on Native Grassland with Variable Herbage Allowance. Animals 2021, 11, 882. [Google Scholar] [CrossRef]
- Alecrim, F.B.; Alves, B.J.R.; Rezende, C.D.P.; Boddey, R.M.; Nobrega, G.N.; Cesário, F.V.; Sobral, B.S.; Leite, F.F.G.D.; Pereira, C.R.; Rodrigues, R.D.A.R. The influence of tropical pasture improvement on animal performance, nitrogen cycling, and greenhouse gas emissions in the Brazilian Atlantic Forest. Aust. J. Crop Sci. 2023, 17, 392–399. [Google Scholar] [CrossRef]
- Lüscher, A.; Mueller-Harvey, I.; Soussana, J.F.; Rees, R.M.; Peyraud, J.L. Potential of legume-based grassland–livestock systems in Europe: A review. Grass Forage Sci. 2014, 69, 206–228. [Google Scholar] [CrossRef]
- Homem, B.G.C.; Lima, I.B.G.; Spasiani, P.P.; Borges, L.P.C.; Boddey, R.M.; Dubeux, J.C.B.; Bernardes, T.F.; Casagrande, D.R. Palisadegrass pastures with or without nitrogen or mixed with forage peanut grazed to a similar target canopy height. 2. Effects on animal performance, forage intake and digestion, and nitrogen metabolism. Grass Forage Sci. 2021, 76, 413–426. [Google Scholar] [CrossRef]
- Eugène, M.; Klumpp, K.; Sauvant, D. Methane mitigating options with forages fed to ruminants. Grass Forage Sci. 2021, 76, 196–204. [Google Scholar] [CrossRef]
- Boddey, R.M.; Casagrande, D.R.; Homem, B.G.C.; Alves, B.J.R. Forage legumes in grass pastures in tropical Brazil and likely impacts on greenhouse gas emissions: A review. Grass Forage Sci. 2022, 75, 357–371. [Google Scholar] [CrossRef]
- Monjardino, M.; Loi, A.; Thomas, D.T.; Revell, C.K.; Flohr, B.M.; Llewellyn, R.S.; Norman, H.C. Improved legume pastures increase economic value, resilience and sustainability of crop-livestock systems. Agric. Syst. 2022, 203, 103519. [Google Scholar] [CrossRef]
- MacAdam, J.W.; Pitcher, L.R.; Bolletta, A.I.; Guevara Ballesteros, R.D.; Beauchemin, K.A.; Dai, X.; Villalba, J.J. Increased Nitrogen Retention Reduced Methane Emissions of Beef Cattle Grazing Legume vs Grass Irrigated Pastures in the Mountain West USA. Agronomy 2022, 12, 304. [Google Scholar] [CrossRef]
- Abdulrazak, S.A.; Fujihara, T.; Ondiek, J.K.; Ørskov, E.R. Nutritive evaluation of some Acacia tree leaves from Kenya. Anim. Feed. Sci. Tech. 2000, 85, 89–98. [Google Scholar] [CrossRef]
- Stewart, E.K.; Beauchemin, K.A.; Dai, X.; MacAdam, J.W.; Christensen, R.G.; Villalba, J.J. Effect of tannin-containing hays on enteric methane emissions and nitrogen partitioning in beef cattle. J. Anim. Sci. 2019, 97, 3286–3299. [Google Scholar] [CrossRef]
- Tavendale, M.H.; Meagher, L.P.; Pacheco, D.; Walker, N.; Attwood, G.T.; Sivakumaran, S. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed. Sci. Tech. 2005, 123–124, 403–419. [Google Scholar] [CrossRef]
- Jayanegara, A.; Leiber, F.; Kreuzer, M. Meta-analysis of the relationship between dietary tannin level methane formation in ruminants from in vivo in vitro experiments. J. Anim. Physiol. Anim. Nutr. 2012, 96, 365–375. [Google Scholar] [CrossRef]
- Waghorn, G. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production—Progress and challenges. Anim. Feed Sci. Tech. 2008, 147, 116–139. [Google Scholar] [CrossRef]
- González, F.A.; Noemí Cosentino, V.R.; Loza, C.; Cerón-Cucchi, M.E.; Williams, K.E.; Bualó, R.; Costantini, A.; Gere, J.I. Inclusion of Lotus tenuis in beef cattle systems in the Argentinian flooding pampa as an enteric methane mitigation strategy. N. Z. J. Agric. Res. 2024, 3, 1–12. [Google Scholar] [CrossRef]
- Herremans, S.; Vanwindekens, F.; Decruyenaere, V.; Beckers, Y.; Froidmont, E. Effect of dietary tannins on milk yield composition nitrogen partitioning nitrogen use efficiency of lactating dairy cows: A meta-analysis. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1209–1218. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Bao, Y.; Zhao, G. Effects of dietary crude protein tannic acid on nitrogen excretion urinary nitrogenous composition urine nitrous oxide emissions in beef cattle. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1675–1683. [Google Scholar] [CrossRef] [PubMed]
- Belda, M.; Holtanová, E.; Halenka, T.; Kalvová, J. Climate classification revisited: From Köppen to Trewartha. Clim. Res. 2014, 59, 1–13. [Google Scholar] [CrossRef]
- Vicente Serrano, S.M.; Bidegain, M.; Tomas-Burguera, M.; Dominguez-Castro, F.; El Kenawy, A.M.; McVicar, T.R.; Azorin-Molina, C.; Lopez-Moreno, J.I.; Nieto, R.; Gimeno, L.; et al. A comparison of temporal variability of observed and model-based pan evaporation over Uruguay (1973–2014). Int. J. Climatol. 2018, 38, 337–350. [Google Scholar] [CrossRef]
- Rodríguez, C.; Leoni, E.; Lezama, F.; Altesor, A. Temporal trends in species composition and plant traits in natural grasslands of Uruguay. J. Veg. Sci. 2003, 14, 433–440. [Google Scholar] [CrossRef]
- Maroso, R.P.; Carneiro, C.M.; Scheffer-Basso, S.M.; Favero, D. Morphological and anatomical aspects of birdsfoot trefoil and big trefoil. Rev. Bras. Zootec. 2009, 38, 1663–1667. [Google Scholar] [CrossRef]
- Pinares-Patiño, C.; Baumont, R.; Martin, C. Methane emissions by Charolais cows grazing a monospecific pasture of timothy at four stages of maturity. Can. J. Anim. Sci. 2003, 83, 769–777. [Google Scholar] [CrossRef]
- Sollenberger, L.E.; Kohmann, M.M.; Dubeux, J.C.B.; Silveira, M.L. Grassland management affects delivery of regulating and supporting ecosystem services. Crop Sci. 2019, 59, 441–459. [Google Scholar] [CrossRef]
- Barthram, G.T. Experimental techniques: The HFRO sward stick. In BiennialReport of the Hill Farming Research Organization; Alcock, M.M., Ed.; HFRO Publishing: Midlothian, UK, 1985; pp. 29–30. [Google Scholar]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber neutral detergent fiber non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Porter, L.J.; Hrstich, L.N.; Chan, B.G. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 1986, 25, 223–230. [Google Scholar] [CrossRef]
- Titgemeyer, E.C.; Armendariz, C.K.; Bindel, D.J.; Greenwood, R.H.; Löest, C.A. Evaluation of titanium dioxide as a digestibility marker for cattle. J. Anim. Sci. 2001, 79, 1059–1063. [Google Scholar] [CrossRef] [PubMed]
- Myers, W.D.; Ludden, P.A.; Nayigihugu, V. Technical Note: A procedure for the preparation and quantitative analysis of samples for titanium dioxide. J. Anim. Sci. 2004, 82, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Lithourgidis, A.S.; Vasilakoglou, I.B.; Dhima, K.V.; Dordas, C.A.; Yiakoulaki, M.D. Forage yield and quality of common vetch mixtures with oat and triticale in two seeding ratios. Field Crop. Res. 2006, 99, 106–113. [Google Scholar] [CrossRef]
- Ferreira, M.D.A.; Valadares Filho, S.D.C.; Marcondes, M.I.; Paixão, M.L.; Paulino, M.F.; Valadares, R.F.D. Avaliação de indicadores em estudos com ruminantes: Digestibilidade. Rev. Bras. Zootecn. 2009, 38, 1568–1573. [Google Scholar] [CrossRef]
- Johnson, K.; Huyler, M.; Westberg, H.; Lamb, B.; Zimmerman, P. Measurement of methane emissions from ruminant livestock using a sulfur hexafluoride tracer technique. Environ. Sci. Technol. 1994, 28, 359–362. [Google Scholar] [CrossRef]
- Gere, J.I.; Gratton, R. Simple, low-cost flow controllers for time averaged atmospheric sampling and other applications. Lat. Am. Appl. Res. 2010, 40, 377–381. [Google Scholar]
- IPCC. Guidelines for National Greenhouse Inventories: A Primer, Prepared by the National Greenhouse Gas Inventories Programme; IPCC: Kyoto, Japan, 2006; p. 20. [Google Scholar]
- Chizzotti, M.L.; Valadares Filho, S.d.C.; Valadares, R.F.D.; Chizzotti, F.H.M.; Tedeschi, L.O. Determination of creatinine excretion and evaluation of spot urine sampling in Holstein cattle. Livest. Sci. 2008, 113, 218–225. [Google Scholar] [CrossRef]
- Chen, X.B.; Grubic, G.; Orskov, E.R.; Osuji, P. Effect of feeding frequency on diurnal variation in plasma and urinary purine derivatives in steers. Anim. Prod. 1992, 55, 185–191. [Google Scholar] [CrossRef]
- Valadares, R.F.D.; Broderick, G.A.; Valadares Filho, S.C.; Clayton, M.K. Effect of replacing alfalfa silage with high moisture corn on ruminal protein synthesis estimated from excretion of total purine derivatives. J. Dairy Sci. 1999, 82, 2686–2696. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.r-project.org/ (accessed on 9 March 2022).
- Dos Santos, C.A.; Monteiro, R.C.; Homem, B.G.C.; Salgado, L.S.; Casagrande, D.R.; Pereira, J.M.; de Paula Rezende, C.; Alves, B.J.R.; Boddey, R.M. Productivity of beef cattle grazing Brachiaria brizantha cv. Marandu with and without nitrogen fertilizer application or mixed pastures with the legume Desmodium ovalifolium. Grass Forage Sci. 2023, 78, 147–160. [Google Scholar] [CrossRef]
- Lagrange, S.; MacAdam, J.W.; Stegelmeier, B.; Villalba, J.J. Grazing diverse combinations of tanniferous and nontanniferous legumes: Implications for foraging behavior, performance, and hair cortisol in beef cattle. J. Anim. Sci. 2021, 99, skab291. [Google Scholar] [CrossRef]
- Faverin, C.; Bilotto, F.; Fernández Rosso, C.; Machado, C. Productive, economic and greenhouse gases modelling of typical beef cow-calf systems in the flooding pampas. Chil. J. Agric. Anim. Sci. 2019, 35, 14–25. [Google Scholar]
- Boddey, R.M.; Macedo, R.; Tarré, R.M.; Ferreira, E.; De Oliveira, O.C.; Rezende, C.D.P.; Cantarutti, R.B.; Pereira, J.M.; Alves, B.J.R.; Urquiaga, S. Nitrogen cycling in Brachiaria pastures: The key to understanding the process of pasture decline. Agric. Ecosyst. Environ. 2004, 103, 389–403. [Google Scholar] [CrossRef]
- Del Pino, A.; Rodríguez, T.; Andión, J. Production improvement through phosphorus fertilization and legume introduction in grazed native pastures of Uruguay. J. Agric. Sci. 2016, 154, 347–358. [Google Scholar] [CrossRef]
- Marriott, C.A.; Hood, K.; Fisher, J.M.; Pakeman, R.J. Long-term impacts of extensive grazing and abandonment on the species composition, richness, diversity and productivity of agricultural grassland. Agric. Ecosyst. Environ. 2009, 134, 190–200. [Google Scholar] [CrossRef]
- De Vries, M.F.; Daleboudt, C. Foraging strategy of cattle in patchy grassland. Oecologia 1994, 100, 98–106. [Google Scholar] [CrossRef]
- Gaviria-Uribe, X.; Bolivar, D.M.; Rosenstock, T.S.; Molina-Botero, I.C.; Chirinda, N.; Barahona, R.; Arango, J. Nutritional quality, voluntary intake and enteric methane emissions of diets based on novel Cayman grass and its associations with two Leucaena shrub legumes. Front. Vet. Sci. 2020, 7, 579189. [Google Scholar] [CrossRef]
- Berça, A.S.; Cardoso, A.D.S.; Longhini, V.Z.; Tedeschi, L.O.; Boddey, R.M.; Berndt, A.; Ruggieri, A.C. Methane production nitrogen balance of dairy heifers grazing palisade grass cv Marandu alone or with forage peanut. J. Anim. Sci. 2019, 97, 4625–4634. [Google Scholar] [CrossRef]
- Shain, D.H.; Stock, R.A.; Klopfenstein, T.J.; Herold, D.W. Effect of degradable intake protein level on finishing cattle performance ruminal metabolism. J. Anim. Sci. 1998, 76, 242–248. [Google Scholar] [CrossRef] [PubMed]
- NRC—National Research Council. Nutrient Requirements of Beef Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 1996; 242p. [Google Scholar]
- Lagrange, S.; Beauchemin, K.A.; MacAdam, J.; Villalba, J.J. Grazing diverse combinations of tanniferous and non-tanniferous legumes: Implications for beef cattle performance and environmental impact. Sci. Total. Environ. 2020, 746, 140788. [Google Scholar] [CrossRef] [PubMed]
- McCaughey, W.P.; Wittenberg, K.; Corrigan, G. Impact of pasture type on methane production by lactating beef cows. Can. J. Anim. Sci. 1999, 79, 221–226. [Google Scholar] [CrossRef]
- Santander, D.; Clariget, J.; Banchero, G.; Alecrim, F.; Simon Zinno, C.; Mariotta, J.; Gere, J.; Ciganda, V.S. Beef Steers and Enteric Methane: Reducing Emissions by Managing Forage Diet Fiber Content. Animals 2023, 13, 1177. [Google Scholar] [CrossRef]
- Richmond, A.S.; Wylie, A.R.; Laidlaw, A.S.; Lively, F.O. Methane emissions from beef cattle grazing on semi-natural upland and improved lowland grasslands. Animal 2015, 9, 130–137. [Google Scholar] [CrossRef]
- Verma, S.; Taube, F.; Malisch, C.S. Examining the variables leading to apparent incongruity between antimethanogenic potential of tannins and their observed effects in ruminants—A review. Sustainability 2021, 13, 2743. [Google Scholar] [CrossRef]
- Brutti, D.D.; Canozzi, M.E.A.; Sartori, E.D.; Colombatto, D.; Barcellos, J.O.J. Effects of the use of tannins on the ruminal fermentation of cattle: A meta-analysis and meta-regression. Anim. Feed. Sci. Technol. 2023, 306, 115806. [Google Scholar] [CrossRef]
- Hristov, A.N.; Kebreab, E.; Niu, M.; Oh, J.; Bannink, A.; Bayat, A.R.; Boland, T.M.; Brito, A.F.; Casper, D.P.; Crompton, L.A.; et al. Symposium review: Uncertainties in enteric methane inventories, measurement techniques, and prediction models. J. Dairy Sci. 2018, 101, 6655–6674. [Google Scholar] [CrossRef]
- Blaxter, K.L.; Clapperton, J.L. Prediction of the amount of methane produced by ruminants. Br. J. Nutr. 1965, 19, 511–522. [Google Scholar] [CrossRef]
- Ebert, P.J.; Bailey, E.A.; Shreck, A.L.; Jennings, J.S.; Cole, N.A. Effect of condensed tannin extract supplementation on growth performance, nitrogen balance, gas emissions, and energetic losses of beef steers. J. Anim. Sci. 2017, 95, 1345–1355. [Google Scholar] [CrossRef]
- Angelidis, A.E.; Rempelos, L.; Crompton, L.; Misselbrook, T.; Yan, T.; Reynolds, C.K.; Stergiadis, S. A redundancy analysis of the relative impact of different feedstuffs on nitrogen use efficiency and excretion partitioning in beef cattle fed diets with contrasting protein concentrations. Anim. Feed. Sci. Technol. 2021, 277, 114961. [Google Scholar] [CrossRef]
- Castillo, A.R.; Kebreab, E.; Beever, D.E.; Barbi, J.H.; Sutton, J.D.; Kirby, H.C.; France, J. The effect of protein supplementation on nitrogen utilization in lactating dairy cows fed grass silage diets. J. Anim. Sci. 2001, 79, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Getachew, G.; Depeters, E.J.; Pittroff, W.; Putnam, D.H.; Dandekar, A.M. Does protein in alfalfa need protection from rumen microbes? Prof. Anim. Sci. 2006, 22, 364–373. [Google Scholar] [CrossRef]
- Martello, H.F.; De Paula, N.F.; Teobaldo, R.W.; Zervoudakis, J.T.; Fonseca, M.A.; Cabral, L.S.; Rocha, J.K.L.; Mundim, A.T.; Moraes, E.H.B.K. Interaction between tannin and urea on nitrogen utilization by beef cattle grazing during the dry season. Livest. Sci. 2020, 234, 103988. [Google Scholar] [CrossRef]
- Ngwa, A.T.; Nsahlai, I.V.; Iji, P.A. Effect of supplementing veld hay with a dry meal or silage from pods of Acacia sieberiana with or without wheat bran on voluntary intake, digestibility, excretion of purine derivatives, nitrogen utilization, and weight gain in South African Merino sheep. Livest. Prod. Sci. 2002, 77, 253–264. [Google Scholar] [CrossRef]
- Makkar, H.P.S. Effects and fate of tannins in ruminant animals, adaptation to tannins, and680 strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Rumin. Res. 2003, 49, 241–256. [Google Scholar] [CrossRef]
Treatment | |||||
---|---|---|---|---|---|
NG | NG+L | ||||
Chemical Composition | Pre-Grazing | Post-Grazing | Pre-Grazing | Postg-Razing | s.e.m. (n = 4) |
Organic matter (g/kg DM) | 908 | 906 | 911 | 918 | 10 |
Ash (g/kg DM) | 92 | 94 | 89 | 82 | 5 |
NDF (g/kg DM) | 587 | 612 | 539 | 612 | 10 |
ADF (g/kg DM) | 361 | 382 | 356 | 379 | 10 |
Crude protein (g/kg DM) | 88 | 83 | 101 | 83 | 4 |
Condensed tannin total (g/kg DM) | 13 | 4 | 22 | 12 | 1 |
Dry matter digestibility (%) | 61.0 | 59.2 | 65.2 | 59.4 | 0.5 |
NDF digestibility (g/kg DM) | 620 | - | 640 | - | 30 |
Gross energy (MJ/kg) | 17.0 | 18.1 | 17.0 | 17.7 | 2.9 |
NG | NG+L | ||||||
---|---|---|---|---|---|---|---|
Forage Composition | Pre-Grazing | Post-Grazing | Pre-Grazing | Post-Grazing | s.e.m. | Treatment | Pre and Post Grazing |
Herbage allowance (kg DM/100 kg of LW) | 6.1 | - | 6.5 | - | 0.7 | 0.361 | - |
Canopy height (cm) | 11.5 | 8.0 | 14.5 | 12.0 | 1 | <0.001 | <0.001 |
Total herbage mass (kg DM/ha) | 1387 | 971 | 2372 | 1866 | 112 | <0.001 | 0.043 |
Legume mass (kg DM/ha) | 73 | 64 | 500 | 225 | 6 | 0.016 | 0.037 |
N total (kg/ha) | 19 | 13 | 35 | 23 | 3 | <0.001 | 0.051 |
Legume proportion (%) | 6.5 | 5.7 | 24.6 | 13.7 | 1.5 | 0.031 | 0.005 |
N from legume (kg/ha) | 2 | 2 | 13 | 6 | 1 | 0.004 | 0.055 |
NDF total in forage (kg/ha) | 814 | 594 | 1280 | 1141 | 62 | <0.001 | <0.001 |
Condensed tannins (kg/ha) | 19 | 5 | 51 | 28 | 4 | <0.001 | <0.001 |
Treatment | ||||
---|---|---|---|---|
NG | NG+L | s.e.m. | p Value | |
DMI (kg/animal/day) | 6.35 | 6.67 | 0.47 | 0.314 |
DMI (% LW) | 3.1 | 3.3 | 0.2 | 0.435 |
ADG (g/animal/day) | 235 | 581 | 100 | 0.003 |
CH4 (g/animal/day) | 139 | 148 | 6.1 | 0.113 |
CH4 (g/kg DMI) | 21.5 | 21.1 | 1.3 | 0.854 |
CH4 (g/kg ADG) | 0.58 | 0.25 | 0.10 | 0.007 |
CH4 (g/g N intake) | 1.40 | 1.23 | 0.07 | 0.052 |
Ym (%) | 7.5 | 7.0 | 0.4 | 0.813 |
Treatment | ||||
---|---|---|---|---|
NG | NG+L | s.e.m. | p Value | |
N intake (g/animal/day) | 89.5 | 106.8 | 5.7 | <0.001 |
Fecal production (kg DM/animal/day) | 2.48 | 2.34 | 0.5 | 0.361 |
N concentration in feces (%) | 1.88 | 2.30 | 0.1 | <0.001 |
Fecal N excretion (g/animal/day) | 45.7 | 53.2 | 2.4 | 0.054 |
Urine N excretion (g/animal/day) | 23.4 | 19.3 | 2.7 | 0.457 |
N retention (g/animal/day) * | 23.1 | 31.6 | 3.4 | <0.001 |
N use efficiency (%) ** | 22.8 | 32.3 | 1.8 | <0.001 |
Treatment | ||||
---|---|---|---|---|
NG | NG+L | s.e.m. | p Value | |
Urinary volume (L/animal/day) | 8.01 | 7.37 | 0.85 | 0.538 |
N total (g/L) | 2.93 | 2.62 | 0.22 | 0.517 |
Urea (g/L) | 0.87 | 0.89 | 0.11 | 0.649 |
Creatinine (g/L) | 0.97 | 0.79 | 0.10 | 0.281 |
Uric acid (g/L) | 0.25 | 0.24 | 0.02 | 0.998 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alecrim, F.B.; Devincenzi, T.; Reyno, R.; Mederos, A.; Simón Zinno, C.; Mariotta, J.; Lattanzi, F.A.; Nóbrega, G.N.; Santander, D.; Gere, J.I.; et al. Addition of Tannin-Containing Legumes to Native Grasslands: Effects on Enteric Methane Emissions, Nitrogen Losses and Animal Performance of Beef Cattle. Sustainability 2024, 16, 9135. https://doi.org/10.3390/su16209135
Alecrim FB, Devincenzi T, Reyno R, Mederos A, Simón Zinno C, Mariotta J, Lattanzi FA, Nóbrega GN, Santander D, Gere JI, et al. Addition of Tannin-Containing Legumes to Native Grasslands: Effects on Enteric Methane Emissions, Nitrogen Losses and Animal Performance of Beef Cattle. Sustainability. 2024; 16(20):9135. https://doi.org/10.3390/su16209135
Chicago/Turabian StyleAlecrim, Fabiano Barbosa, Thais Devincenzi, Rafael Reyno, América Mederos, Claudia Simón Zinno, Julieta Mariotta, Fernando A. Lattanzi, Gabriel Nuto Nóbrega, Daniel Santander, José Ignacio Gere, and et al. 2024. "Addition of Tannin-Containing Legumes to Native Grasslands: Effects on Enteric Methane Emissions, Nitrogen Losses and Animal Performance of Beef Cattle" Sustainability 16, no. 20: 9135. https://doi.org/10.3390/su16209135
APA StyleAlecrim, F. B., Devincenzi, T., Reyno, R., Mederos, A., Simón Zinno, C., Mariotta, J., Lattanzi, F. A., Nóbrega, G. N., Santander, D., Gere, J. I., Irigoyen, L., & Ciganda, V. S. (2024). Addition of Tannin-Containing Legumes to Native Grasslands: Effects on Enteric Methane Emissions, Nitrogen Losses and Animal Performance of Beef Cattle. Sustainability, 16(20), 9135. https://doi.org/10.3390/su16209135