Circular Economy in the Agri-Food System at the Country Level—Evidence from European Countries
Abstract
:1. Introduction
2. Literature Background and Hypotheses Development
2.1. Circular Economy and Business Models
2.2. Recycling, Agro-Food Industry, and CBMs
2.3. Renewable Energy and Waste Emission in Food Production
3. Materials and Methods
3.1. Data Preparation
3.2. Data Analysis
4. Results
4.1. Data Description
4.2. Panel Data Analysis
4.3. Hierarchical Clustering
5. Discussion
5.1. Circular Economy Implementation Level in the Agri-Food System in European Countries
5.2. Fostering the Circular Economy Implementation in Agri-Food in European Countries
- Enhancing durability of agri-food products [EP].
- 2.
- Innovative transport tracking and service management [IP].
- 3.
- Digitalization to generate end-of-life packing process [DP].
- 4.
- Biodegradable materials in agri-food packing [RP].
- 5.
- Cascading reuse to organic feedstock farms [EW].
- 6.
- Advanced system for handling agri-food waste [IW].
- 7.
- Consumer education and demand rationalization [DW].
- 8.
- Zero-waste bio-refinery process [RW].
- 9.
- Refurbishing and retrofitting bio-fuel plants [EE].
- 10.
- Retailing energy from the agri-food system [IE].
- 11.
- Technologies to create marketable renewable energy [DE].
- 12.
- Integrating biomass, bio-fuel, biomaterials, and bio-energy cycles [RE].
6. Implications
6.1. Theoretical Implications
6.2. Managerial Implications
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huho, J.M.; Kosonei, R.C.; Musyimi, P.K. Sociodemographic Determinants of Households’ Food Wastein Garissa Sub County, Kenya. Bp. Int. Res. Crit. Inst. J. 2020, 3, 932–946. [Google Scholar]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Ferrario, F.M.; Tubiello, F.N.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- FAO. The Future of Food and Agriculture—Trends and Challenges; UN Food and Agriculture Organization: Rome, Italy, 2017. [Google Scholar]
- Esposito, M.; Tse, T.; Soufani, K. Introducing a circular economy: New thinking with new managerial and policy implications. Calif. Manag. Rev. 2018, 60, 5–19. [Google Scholar] [CrossRef]
- Bruins, M.E.; Sanders, J.P. Small-scale processing of biomass for biorefinery. Biofuels Bioprod. Biorefin. 2012, 6, 135–145. [Google Scholar] [CrossRef]
- Barakat, A.; de Vries, H.; Rouau, X. Dry fractionation process as an important step in current and future lignocellulose biorefineries: A review. Bioresour. Technol. 2013, 134, 362–373. [Google Scholar] [CrossRef]
- Verstraete, W.; Clauwaert, P.; Vlaeminck, S.E. Used water and nutrients: Recovery perspectives in a “pantarhei” context. Bioresour. Technol. 2016, 215, 199–208. [Google Scholar] [CrossRef]
- Zucchella, A.; Previtali, P. Circular business models for sustainable development: A “waste is food” restorative ecosystem. Bus. Strategy Environ. 2018, 28, 274–285. [Google Scholar] [CrossRef]
- Donner, M.; Gohier, R.; de Vries, H. A new circular business model typology for creating value from agro-waste. Sci. Total Environ. 2020, 716, 137065. [Google Scholar] [CrossRef]
- Hamam, M.; Chinnici, G.; Di Vita, G.; Pappalardo, G.; Pecorino, B.; Maesano, G.; D’Amico, M. Circular Economy Models in Agro-Food Systems: A Review. Sustainability 2021, 13, 3453. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Pieroni, M.P.P.; Pigosso, D.C.A.; Soufani, K. Circular business models: A review. J. Clean. Prod. 2020, 277, 123741. [Google Scholar] [CrossRef]
- Urbinati, A.; Franzò, S.; Chiaroni, D. Enablers and Barriers for Circular Business Models: An empirical analysis in the Italian automotive industry. Sustain. Prod. Consum. 2021, 27, 551–566. [Google Scholar] [CrossRef]
- Henry, R.C.; Engström, K.; Olin, S.; Alexander, P.; Arneth, A.; Rounsevell, M.D.A. Food supply and bioenergy production within the global cropland planetary boundary. PLoS ONE 2018, 13, e0194695. [Google Scholar] [CrossRef] [PubMed]
- Esposito, B.; Sessa, M.; Sica, R.D.; Malandrino, O. Towards Circular Economy in the Agri-Food Sector. A Systematic Literature Review. Sustainability 2020, 12, 7401. [Google Scholar] [CrossRef]
- Moktadir, M.A.; Kumar, A.; Ali, S.M.; Paul, S.K.; Sultana, R.; Rezaei, J. Critical success factors for a circular economy: Implications for business strategy and the environment. Bus. Strategy Environ. 2020, 29, 3611–3635. [Google Scholar] [CrossRef]
- Bocken, N.M.; Ritala, P. Six ways to build circular business models. J. Bus. Strategy 2021, 43, 184–192. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Vladimirova, D.; Evans, S. Sustainable business model innovation: A review. J. Clean. Prod. 2018, 198, 401–416. [Google Scholar] [CrossRef]
- Fraccascia, L.; Giannoccaro, I.; Albino, V. Business models for industrial symbiosis: A taxonomy focused on the form of governance. Resour. Conserv. Recycl. 2019, 146, 114–126. [Google Scholar] [CrossRef]
- Kanda, W.; Geissdoerfer, M.; Hjelm, O. From circular business models to circular business ecosystems. Bus. Strategy Environ. 2021, 30, 2814–2829. [Google Scholar] [CrossRef]
- Bocken, N.M.; de Pauw, I.; Bakker, C.; van der Grinten, B. Product design and business model strategies for a circular economy. J. Ind. Prod. Eng. 2016, 33, 308–320. [Google Scholar] [CrossRef]
- Lewandowski, M. Designing the business models for circular economy—Towards the conceptual framework. Sustainability 2016, 8, 43. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Morioka, S.N.; de Carvalho, M.M.; Evans, S. Business models and supply chains for the circular economy. J. Clean. Prod. 2018, 190, 712–721. [Google Scholar] [CrossRef]
- Richardson, J. The business model: An integrative framework for strategy execution. Strat. Chang. 2008, 17, 133–144. [Google Scholar] [CrossRef]
- Potting, J.; Hekkert, M.; Worrell, E.; Hanemaaijer, A. Circular Economy: Measuring Innovation in the Product Chain; Policy Report of Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2017. [Google Scholar]
- Kyriakopoulos, G.L.; Kapsalis, V.C.; Aravossis, K.G.; Zamparas, M.; Mitsikas, A. Evaluating circular economy under a multi parametric approach: A technological review. Sustainability 2019, 11, 6139. [Google Scholar] [CrossRef]
- Muradin, M.; Joachimiak-Lechman, K.; Foltynowicz, Z. Evaluation of Eco-Efficiency of Two Alternative Agricultural Biogas Plants. Appl. Sci. 2018, 8, 2083. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Jafari, S.M.; Salehabadi, A.; Nafchi, A.M.; Uthaya, U.S.; Khalil, H.P.S.A. Biodegradable green packaging with antimicrobial functions based on the bioactive compounds from tropical plants and their by-products. Trends Food Sci. Technol. 2020, 100, 262–277. [Google Scholar] [CrossRef]
- Poponi, S.; Arcese, G.; Pacchera, F.; Martucci, O. Evaluating the transition to the circular economy in the agri-food sector: Selection of indicators. Resour. Conserv. Recycl. 2022, 176, 105916. [Google Scholar] [CrossRef]
- Tariq Majeed, M.; Luni, T. Renewable Energy, Circular Economy Indicators and Environmental Quality: A Global Evidence of 131 Countries with Heterogeneous Income Groups. Pak. J. Commer. Soc. Sci. 2022, 14, 866–912. [Google Scholar]
- Chiaraluce, G.; Bentivoglio, D.; Finco, A. Circular Economy for a Sustainable Agri-Food Supply Chain: A Review for Current Trends and Future Pathways. Sustainability 2021, 13, 9294. [Google Scholar] [CrossRef]
- Tonini, D.; Albizzati, P.F.; Astrup, T.F. Environmental impacts of food waste: Learnings and challenges from a case study on UK. Waste Manag. 2018, 76, 744–766. [Google Scholar] [CrossRef]
- Popp, J.; Lakner, Z.; Rákos, M.; Fári, M. The effect of bioenergy expansion: Food, energy, and environment. Renew. Sustain. Energy Rev. 2014, 32, 559–578. [Google Scholar] [CrossRef]
- Dora, M. Collaboration in a circular economy: Learning from the farmers to reduce food waste. J. Enterp. Inf. Manag. 2019, 33, 769–789. [Google Scholar]
- Jafari-sadeghi, V.; Garcia-perez, A.; Candelo, E.; Couturier, J. Exploring the impact of digital transformation on technology entrepreneurship and technological market expansion: The role of technology readiness, exploration and exploitation. J. Bus. Res. 2021, 124, 100–111. [Google Scholar] [CrossRef]
- Kostakis, I.; Tsagarakis, K. The role of entrepreneurship, innovation and socioeconomic development on circularity rate: Empirical evidence from selected European countries. J. Clean. Prod. 2022, 348, 131267. [Google Scholar] [CrossRef]
- World Bank. World Development Indicators Archived by Online Public Web Resource of World Data Dank. 2020. Available online: https://databank.worldbank.org/source/world-development-indicators (accessed on 2 October 2024).
- European Commission. European Agri-Food Data Archived by European Commission. 2021. Available online: https://agridata.ec.europa.eu/extensions/DataPortal/home.html (accessed on 2 October 2024).
- Zuin, V.G.; Ramin, L.Z. Review: Green and sustainable separation of natural products from agro-industrial waste: Challenges, potentialities, and perspectives on emerging. Top. Curr. Chem. 2018, 376, 3. [Google Scholar] [CrossRef]
- Sewpersadh, N.S. An examination of CEO power with board vigilance as a catalyst for firm growth in South Africa. Meas. Bus. Excell. 2019, 23, 377–395. [Google Scholar] [CrossRef]
- Corrado, S.; Sala, S. Food waste accounting along global and European food supply chains: State of the art and outlook. Waste Manag. 2018, 79, 120–131. [Google Scholar] [CrossRef]
- Luttenberger, L.R. Waste management challenges in transition to circular economy—Case of Croatia. J. Clean. Prod. 2020, 256, 120495. [Google Scholar] [CrossRef]
- Khatami, F.; Scuotto, V.; Krueger, N.; Cantino, V. The influence of the entrepreneurial ecosystem model on sustainable innovation from a macro-level lens. Int. Entrep. Manag. J. 2021, 18, 1419–1451. [Google Scholar] [CrossRef]
- Lüdeke-Freund, F.; Gold, S.; Bocken, N.M. A review and typology of circular economy business model patterns. J. Ind. Ecol. 2019, 23, 36–61. [Google Scholar] [CrossRef]
- Vermeulen, W. Self governance for sustainable global supply chains: Can it deliver the impacts needed? Bus. Strategy Environ. 2015, 24, 73–85. [Google Scholar] [CrossRef]
- Sarstedt, M.; Ringle, C.M.; Smith, D.; Reams, H.; Hair, J.F., Jr. Partial least squares structural equation modeling (PLS-SEM): A useful tool for family business researchers. J. Fam. Bus. Strategy 2014, 5, 105–115. [Google Scholar] [CrossRef]
- Dogan, E.; Chishti, M.Z.; Alavijeh, N.K.; Tzeremes, P. The roles of technology and Kyoto Protocol in energy transition towards COP26 targets: Evidence from the novel GMM-PVAR approach for G-7 countries. Technol. Forecast. Soc. Chang. 2022, 181, 121756. [Google Scholar] [CrossRef]
- Baltagi, B.H. Panel Data and Difference-in-Differences Estimation. In Encyclopedia of Health Economics; Elsevier: Amsterdam, The Netherlands, 2014; pp. 425–433. [Google Scholar] [CrossRef]
- Ratner, B. The correlation coefficient: Its values range between +1/−1, or do they? J. Target. Meas. Anal. Mark. 2009, 17, 139–142. [Google Scholar] [CrossRef]
- Andrade, E.P.; Bonmati, A.; Esteller, L.J.; Brunn, S.; Jensen, L.S.; Meers, E.; Anton, A. Selection and application of agri-environmental indicators to assess potential technologies for nutrient recovery in agriculture. Ecol. Indic. 2022, 134, 108471. [Google Scholar] [CrossRef]
- Christensen, C. The Innovator’s Dilemma. When New Technologies Cause Great Firms to Fail; Harvard Business Review Press: Brighton, MA, USA, 2016. [Google Scholar]
- Hofmann, F.; Erben, M.J. Organizational transition management of circular business model innovations. Bus. Strategy Environ. 2019, 29, 2770–2788. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2019. Moving Forward on Food Loss and Waste Reduction; UN Food and Agriculture Organization: Rome, Italy, 2019; Available online: https://www.fao.org/3/ca6030en/ca6030en.pdf (accessed on 2 October 2024).
- Bressanelli, G.; Adrodegari, F.; Perona, M.; Saccani, N. Exploring how usage-focused business models enable circular economy through digital technologies. Sustainability 2018, 10, 639. [Google Scholar] [CrossRef]
- Ingemarsdotter, E.; Jamsin, E.; Balkenende, R. Opportunities and challenges in IoT-enabled circular business model implementation—A case study. Resour. Conserv. Recycl. 2020, 16, 105047. [Google Scholar] [CrossRef]
- Parida, V.; Sjödin, D.; Reim, W. Reviewing literature on digitalization, business model innovation, and sustainable industry: Past achievements and future promises. Sustainability 2019, 11, 391. [Google Scholar] [CrossRef]
- Reike, D.; Vermeulen, W.J.V.; Witjes, S. The circular economy: New or Refurbished as CE 3.0?—Exploring Controversies in the Conceptualization of the Circular Economy through a Focus on History and Resource Value Retention Options. Resour. Conserv. Recycl. 2018, 135, 246–264. [Google Scholar] [CrossRef]
- Uçar, E.; Le Dain, M.A.; Joly, I. Digital Technologies in Circular Economy Transition: Evidence from Case Studies. Procedia CIRP 2020, 90, 133–136. [Google Scholar] [CrossRef]
- Rabnawaz, M.; Wyman, I.; Auras, R.; Cheng, S. A roadmap towards green packaging: The current status and future outlook for polyesters in the packaging industry. Green Chem. 2017, 19, 4737–4753. [Google Scholar] [CrossRef]
- Weerawardena, J.; McDonald, R.E.; Sullivan Mort, G. Sustainability of nonprofit organizations: An empirical investigation. J. World Bus. 2010, 45, 346–356. [Google Scholar] [CrossRef]
- Perito, M.A.; Di Fonzo, A.; Sansone, M.; Russo, C. Consumer acceptance of food obtained from olive by-products: A survey of Italian consumers. Br. Food J. 2019, 122, 212–226. [Google Scholar] [CrossRef]
- Palmié, M.; Boehm, J.; Lekkas, C.-K.; Parida, V.; Wincent, J.; Gassmann, O. Circular business model implementation: Design choices, orchestration strategies, and transition pathways for resource-sharing solutions. J. Clean. Prod. 2021, 280, 124399. [Google Scholar] [CrossRef]
Variable Country | Production of Meat (K Tons) | Production of Oil Crops (K Tons) | Production of Vegetable Oils (K Tons) | Total Waste Emission (K Tons) | Renewable Energy Sharing (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
2014 | 2018 | 2014 | 2018 | 2014 | 2018 | 2014 | 2018 | 2014 | 2018 | |
Austria | 900 | 910 | 390 | 387 | 219 | 255 | 185.95 | 186.16 | 33.55 | 33.81 |
Belgium | 1814 | 1825 | 66 | 54 | 989 | 1205 | 116.33 | 116.39 | 8.04 | 9.48 |
Bulgaria | 206 | 233 | 2547 | 2411 | 398 | 536 | 6.92 | 6.96 | 18.05 | 20.59 |
Croatia | 210 | 231 | 315 | 548 | 54 | 54 | 65.58 | 65.73 | 27.82 | 28.05 |
Czech | 519 | 515 | 1644 | 1511 | 463 | 592 | 28.34 | 28.52 | 15.07 | 15.14 |
Denmark | 1889 | 1876 | 709 | 489 | 221 | 249 | 13.41 | 13.41 | 29.32 | 35.41 |
Estonia | 71 | 75 | 167 | 114 | 57 | 58 | 47.29 | 47.57 | 26.14 | 29.99 |
Finland | 384 | 393 | 62 | 71 | 111 | 76 | 22.38 | 22.39 | 38.78 | 41.16 |
France | 5520 | 5551 | 7486 | 6829 | 2878 | 2721 | 984.03 | 983.25 | 14.42 | 16.44 |
Germany | 8351 | 8189 | 6329 | 3778 | 4521 | 4145 | 1823.34 | 1824.39 | 14.39 | 16.67 |
Greece | 428 | 446 | 3278 | 3461 | 488 | 605 | 174.81 | 174.25 | 15.68 | 18.05 |
Hungary | 888 | 1032 | 2440 | 3039 | 625 | 848 | 44.33 | 44.53 | 14.62 | 12.54 |
Iceland | 32 | 34 | 0 | 0 | 0 | 0 | 0.25 | 0.26 | 73.08 | 76.69 |
Ireland | 1024 | 1165 | 34 | 41 | 25 | 40 | 26.32 | 26.72 | 8.57 | 10.89 |
Italy | 3378 | 3661 | 3591 | 3633 | 1139 | 1154 | 627.44 | 626.68 | 17.08 | 17.80 |
Latvia | 85 | 92 | 187 | 238 | 65 | 59 | 29.46 | 29.57 | 38.63 | 40.03 |
Lithuania | 227 | 251 | 506 | 444 | 83 | 89 | 17.45 | 17.52 | 23.59 | 24.70 |
Luxembourg | 21 | 24 | 16 | 11 | 0 | 0 | 18.63 | 18.68 | 4.47 | 8.97 |
Malta | 13 | 12 | 0 | 0 | 0 | 0 | 0.17 | 0.17 | 4.74 | 7.97 |
The Netherlands | 2800 | 3012 | 161 | 65 | 1790 | 1765 | 592.21 | 592.77 | 5.42 | 7.34 |
Norway | 345 | 359 | 10 | 7 | 89 | 93 | 12.43 | 12.37 | 68.21 | 71.80 |
Poland | 4197 | 5260 | 3326 | 2170 | 1202 | 1278 | 188.62 | 189.14 | 11.61 | 11.48 |
Portugal | 791 | 852 | 496 | 781 | 396 | 451 | 106.83 | 107.03 | 29.51 | 30.21 |
Romania | 1054 | 1152 | 3476 | 5161 | 755 | 810 | 23.25 | 23.42 | 24.85 | 23.88 |
Slovakia | 138 | 151 | 739 | 795 | 99 | 118 | 25.72 | 25.76 | 11.71 | 11.90 |
Slovenia | 123 | 137 | 22 | 21 | 5 | 3 | 19.35 | 19.41 | 22.46 | 21.38 |
Spain | 5722 | 7028 | 5728 | 11,066 | 2228 | 3363 | 290.28 | 290.65 | 16.16 | 17.45 |
Sweden | 530 | 570 | 334 | 222 | 129 | 146 | 98.97 | 98.80 | 51.82 | 54.65 |
United Kingdom | 3694 | 4086 | 2504 | 2061 | 1017 | 1048 | 935.41 | 933.18 | 6.74 | 11.14 |
Variables | PM | PO | PV |
---|---|---|---|
Renewable energy sharing: RE | −5.33 | −23.87 | 7.95 |
10.83 | 18.55 | 12.18 | |
Energy use in agriculture: EN | 0.02 * | 0.01 | 0.00 |
0.00 | 0.01 | 0.00 | |
Electricity use in agriculture: EL | 0.04 * | 0.03 | 0.00 |
0.01 | 0.04 | 0.02 | |
Renewable bio-fuels from food industry: R from F | 0.04 | −0.02 | −0.06 * |
0.03 | 0.08 | 0.03 | |
Renewable bio-fuel for food industry: R for F | 0.07 | 0.17 | 0.11 |
0.07 | 0.19 | 0.08 | |
Tests | |||
R2 | 0.81 | 0.46 | 0.07 |
F-test | 0.00 | 0.00 | 0.49 |
p value | 0.00 | 1.44 | 0.00 |
Hausman test | (Fixed) | (Random) | (Fixed) |
Observations | 145 | 145 | 145 |
Groups | 29 | 29 | 29 |
Variables | PM | PO | PV |
---|---|---|---|
Total waste emission: WE | 1.56 * | 1.15 | 1.60 * |
0.51 | 1.28 | 0.35 | |
Energy use in agriculture: EN | 0.02 * | 0.01 * | 0.01 * |
0.00 | 0.01 | 0.00 | |
Electricity use in agriculture: EL | 0.03 * | 0.02 | 0.01 |
0.01 | 0.04 | 0.01 | |
Renewable bio-fuels from food industry: R from F | 0.05 * | −0.07 | −0.02 |
0.02 | 0.08 | 0.02 | |
Renewable bio-fuel for food industry: R for F | 0.02 | 0.19 | 0.05 |
0.06 | 0.19 | 0.05 | |
Tests | |||
R2 | 0.85 | 0.41 | 0.80 |
F-test | 0.00 | 0.00 | 0.00 |
p value | 1.11 | 1.57 | 1.15 |
Hausman test | (Random) | (Random) | (Random) |
Observations | 145 | 145 | 145 |
Groups | 29 | 29 | 29 |
Country Name | Value |
---|---|
Austria | 3.55 |
Belgium | 3.91 |
Bulgaria | 3.42 |
Croatia | 3.64 |
Czech | 3.61 |
Denmark | 3.58 |
Estonia | 3.81 |
Finland | 4.56 |
France | 12.06 |
Germany | 26.61 |
Greece | 3.22 |
Hungary | 3.57 |
Iceland | 12.35 |
Ireland | 4.27 |
Italy | 5.07 |
Latvia | 4.45 |
Lithuania | 3.68 |
Luxembourg | 5.00 |
Malta | 5.03 |
The Netherlands | 4.95 |
Norway | 10.79 |
Poland | 4.40 |
Portugal | 3.38 |
Romania | 3.40 |
Slovakia | 4.11 |
Slovenia | 3.87 |
Spain | 10.08 |
Sweden | 6.36 |
United Kingdom | 7.29 |
Aspects Strategies | Production Process [P] | Waste Emission [W] | Renewable Energy Sharing [E] |
---|---|---|---|
Extending [E] | EP: Enhancing durability of the agri-food products | EW: Cascading reuse to organic feedstock farms | EE: Refurbishing and retrofitting bio-fuel plants |
Intensifying [I] | IP: Innovative transport tracking and service management | IW: Advanced system for handling agri-food waste | IE: Retailing energy from agri-food system |
Dematerializing [D] | DP: Digital capabilities to generate end-of-life packing process | DW: Consumer education and demand rationalization | DE: Technologies to create marketable renewable energy |
Recycling [R] | RP: Biodegradable materials in agri-food packing | RW: Zero-waste bio-refineries processing | RE: Integrating biomass, bio-fuel, biomaterials, and bio-energy cycles |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khatami, F.; Cagno, E.; Khatami, R. Circular Economy in the Agri-Food System at the Country Level—Evidence from European Countries. Sustainability 2024, 16, 9497. https://doi.org/10.3390/su16219497
Khatami F, Cagno E, Khatami R. Circular Economy in the Agri-Food System at the Country Level—Evidence from European Countries. Sustainability. 2024; 16(21):9497. https://doi.org/10.3390/su16219497
Chicago/Turabian StyleKhatami, Fahimeh, Enrico Cagno, and Rayeheh Khatami. 2024. "Circular Economy in the Agri-Food System at the Country Level—Evidence from European Countries" Sustainability 16, no. 21: 9497. https://doi.org/10.3390/su16219497
APA StyleKhatami, F., Cagno, E., & Khatami, R. (2024). Circular Economy in the Agri-Food System at the Country Level—Evidence from European Countries. Sustainability, 16(21), 9497. https://doi.org/10.3390/su16219497