The Impact of Enterprise Digital Transformation on Audit Fees—An Intermediary Role Based on Information Asymmetry
Abstract
:1. Introduction
2. Literature Review and Hypothesis Development
2.1. Auditing in the Context of Digital Transformation
2.2. Asymmetry Information Theory
2.3. Quality of Internal Control, Corporate Governance, and Discretionary Accruals
2.4. Hypotheses
2.4.1. The Digital Transformation and Auditing Fees
2.4.2. Digital Transformation, Financial Information Asymmetry and Auditing Fees
2.4.3. Digital Transformation, Governance Information Asymmetry and Auditing Fees
2.4.4. Digital Transformation, Income Information Asymmetry and Auditing Fees
3. Research Design
3.1. Sample Selection
3.2. Research Model
3.2.1. Digital Transformation and Audit Fees
3.2.2. Mediating Effect
4. Results
4.1. Descriptive Statistics
4.2. Base Regression
4.3. Results: Mediating Effects
4.3.1. Internal Control
4.3.2. Corporate Governance
4.3.3. Discretionary Accruals
4.4. Bootstrap Test
4.5. Robustness Check
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hess, T.; Matt, C.; Benlian, A.; Wiesböck, F. Options for formulating a digital transformation strategy. MIS Q. Exec. 2016, 15, 123–139. [Google Scholar]
- Butschan, J.; Heidenreich, S.; Weber, B.; Kraemer, T. Tackling hurdles to digital transformation—The role of competencies for successful industrial internet of things (IIoT) implementation. Int. J. Innov. Manag. 2019, 23, 1950036. [Google Scholar] [CrossRef]
- Wu, L.; Hitt, L.; Lou, B. Data analytics, innovation, and firm productivity. Manag. Sci. 2020, 66, 2017–2039. [Google Scholar] [CrossRef]
- Schallmo, D.; Williams, C.A.; Boardman, L. Digital transformation of business models—Best practice, enablers, and roadmap. Int. J. Innov. Manag. 2017, 21, 1740014. [Google Scholar] [CrossRef]
- Gao, F.; Lin, C.; Zhai, H. Digital transformation, corporate innovation, and international strategy: Empirical evidence from listed companies in China. Sustainability 2022, 14, 8137. [Google Scholar] [CrossRef]
- Guo, X.; Song, X.; Dou, B.; Wang, A.; Hu, H. Can digital transformation of the enterprise break the monopoly? Pers. Ubiquitous Comput. 2023, 27, 1629–1642. [Google Scholar] [CrossRef]
- Peng, Y.; Tao, C. Can digital transformation promote enterprise performance? From the perspective of public policy and innovation. J. Innov. Knowl. 2022, 7, 100198. [Google Scholar] [CrossRef]
- Ivaninskiy, I.; Ivashkovskaya, I. Are blockchain-based digital transformation and ecosystem-based business models mutually reinforcing? The principal-agent conflict perspective. Eurasian Bus. Rev. 2022, 12, 643–670. [Google Scholar] [CrossRef]
- Meng, S.; Su, H.; Yu, J. Digital transformation and corporate social performance: How do board independence and institutional ownership matter? Front. Psychol. 2022, 13, 915583. [Google Scholar] [CrossRef]
- Majeed, M.A.; Yan, C. Financial statement comparability, state ownership, and the cost of debt: Evidence from China. Res. Int. Bus. Financ. 2021, 58, 101497. [Google Scholar] [CrossRef]
- Burke, J.J.; Hoitash, R.; Hoitash, U. Auditor response to negative media coverage of client environmental, social, and governance practices. Account. Horiz. 2019, 33, 1–23. [Google Scholar] [CrossRef]
- Kane, G. The technology fallacy: People are the real key to digital transformation. Res. Technol. Manag. 2019, 62, 44–49. [Google Scholar] [CrossRef]
- Montes, G.A.; Goertzel, B. Distributed, decentralized, and democratized artificial intelligence. Technol. Forecast. Soc. Chang. 2019, 141, 354–358. [Google Scholar] [CrossRef]
- Manita, R.; Elommal, N.; Baudier, P.; Hikkerova, L. The digital transformation of external audit and its impact on corporate governance. Technol. Forecast. Soc. Chang. 2020, 150, 119751. [Google Scholar] [CrossRef]
- van den Broek, T.; van Veenstra, A.F. Governance of big data collaborations: How to balance regulatory compliance and disruptive innovation. Technol. Forecast. Soc. Chang. 2018, 129, 330–338. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, X.; Appelbaum, D. Toward effective big data analysis in continuous auditing. Account. Horiz. 2015, 29, 469–476. [Google Scholar] [CrossRef]
- Fan, R.; Song, J. Research and Application of Analysis System in Material Field by Digital Audit and Artificial Intelligence. J. Phys. Conf. Ser. 2021, 1982, 012016. [Google Scholar] [CrossRef]
- Qiao, G. Application Research of Big Data Technology in Audit Field. Theor. Econ. Lett. 2020, 10, 1093–1102. [Google Scholar] [CrossRef]
- Ramlukan, R. HOW BIG DATA AND ANALYTICS ARE TRANSFORMING THE AUDIT. Financ. Exec. 2015, 31, 14. [Google Scholar]
- Sun, T.; Vasarhelyi, M.A. Deep Learning and the Future of Auditing: How an Evolving Technology Could Transform Analysis and Improve Judgment. CPA J. 2017, 87, 24. [Google Scholar]
- Akerlof, G.A. The market for “lemons”: Quality uncertainty and the market mechanism. In Uncertainty in Economics; Elsevier: Amsterdam, The Netherlands, 1978; pp. 235–251. [Google Scholar]
- Pope, P.F. Information asymmetries in participative budgeting: A bargaining approach. J. Bus. Financ. Account. 1984, 11, 41–59. [Google Scholar] [CrossRef]
- Smith, C. Adam Smith’s “Collateral” inquiry: Fashion and morality in the theory of moral sentiments and the wealth of nations. Hist. Political Econ. 2013, 45, 505–522. [Google Scholar] [CrossRef]
- Doyle, J.T.; Ge, W.; McVay, S. Accruals quality and internal control over financial reporting. Account. Rev. 2007, 82, 1141–1170. [Google Scholar] [CrossRef]
- Feng, M.; Li, C.; McVay, S. Internal control and management guidance. J. Account. Econ. 2009, 48, 190–209. [Google Scholar] [CrossRef]
- Jennings, J.N.; Seo, H.; Tanlu, L. The effect of organizational complexity on earnings forecasting behavior. Eur. Account. Rev. 2013. [Google Scholar] [CrossRef]
- Watts, R.L.; Zimmerman, J.L. Agency problems, auditing, and the theory of the firm: Some evidence. J. Law Econ. 1983, 26, 613–633. [Google Scholar] [CrossRef]
- Anggraini, L.D.; Faradillah. Fraud Detection: Application of COSO on Auditing Accounting Information Systems in Plantation Companies. J. Account. Sci. 2022, 6, 8. [Google Scholar] [CrossRef]
- Patterson, E.R.; Smith, J.R. The effects of Sarbanes-Oxley on auditing and internal control strength. Account. Rev. 2007, 82, 427–455. [Google Scholar] [CrossRef]
- Ettredge, M.L.; Li, C.; Sun, L. The impact of SOX Section 404 internal control quality assessment on audit delay in the SOX era. Audit. J. Pract. Theory 2006, 25, 1–23. [Google Scholar] [CrossRef]
- Cohen, J.R.; Hanno, D.M. Auditors’ consideration of corporate governance and management control philosophy in preplanning and planning judgments. Audit. J. Pract. Theory 2000, 19, 133–146. [Google Scholar] [CrossRef]
- Carcello, J.V.; Hermanson, D.R.; Neal, T.L.; Riley Jr, R.A. Board characteristics and audit fees. Contemp. Account. Res. 2002, 19, 365–384. [Google Scholar]
- Griffin, P.A.; Lont, D.H.; Sun, Y. Corporate governance and audit fees: Evidence of countervailing relations. J. Contemp. Account. Econ. 2008, 4, 18–49. [Google Scholar] [CrossRef]
- Watts, R.L.; Zimmerman, J.L. Positive Accounting Theory; Prentice-Hall: Englewood Cliffs, NJ, USA, 1986. [Google Scholar]
- Bedard, J.C.; Johnstone, K.M. Earnings manipulation risk, corporate governance risk, and auditors’ planning and pricing decisions. Account. Rev. 2004, 79, 277–304. [Google Scholar] [CrossRef]
- Singh, A.; Hess, T. How chief digital officers promote the digital transformation of their companies. In Strategic Information Management; Routledge: Abingdon, UK, 2020; pp. 202–220. [Google Scholar]
- Goldfarb, A.; Tucker, C. Digital economics. J. Econ. Lit. 2019, 57, 3–43. [Google Scholar] [CrossRef]
- Hacioglu, U.; Aksoy, T. Financial Ecosystem and Strategy in the Digital Era: Global Approaches and New Opportunities; Springer: New York, NY, USA, 2021. [Google Scholar]
- Obwegeser, N.; Yokoi, T.; Wade, M.; Voskes, T. 7 key principles to govern digital initiatives. MIT Sloan Manag. Rev. 2020, 61, 1–9. [Google Scholar]
- Rodríguez-Pérez, G.; Van Hemmen, S. Debt, diversification and earnings management. J. Account. Public Policy 2010, 29, 138–159. [Google Scholar] [CrossRef]
- Brazel, J.F.; Agoglia, C.P. An examination of auditor planning judgements in a complex accounting information system environment. Contemp. Account. Res. 2007, 24, 1059–1083. [Google Scholar] [CrossRef]
- Han, S.; Rezaee, Z.; Xue, L.; Zhang, J.H. The association between information technology investments and audit risk. J. Inf. Syst. 2016, 30, 93–116. [Google Scholar] [CrossRef]
- Chen, Y.; Smith, A.L.; Cao, J.; Xia, W. Information technology capability, internal control effectiveness, and audit fees and delays. J. Inf. Syst 2014, 28, 149–180. [Google Scholar] [CrossRef]
- Masli, A.; Peters, G.F.; Richardson, V.J.; Sanchez, J.M. Examining the potential benefits of internal control monitoring technology. Account. Rev. 2010, 85, 1001–1034. [Google Scholar] [CrossRef]
- Dorantes, C.A.; Li, C.; Peters, G.F.; Richardson, V.J. The Effect of Enterprise Systems Implementation on the Firm Information Environment. Contemp. Account. Res. 2013, 30, 1427–1461. [Google Scholar] [CrossRef]
- Frynas, J.G.; Mol, M.J.; Mellahi, K. Management innovation made in China: Haier’s Rendanheyi. Calif. Manag. Rev. 2018, 61, 71–93. [Google Scholar] [CrossRef]
- Liu, D.Y.; Chen, S.W.; Chou, T.C. Resource fit in digital transformation: Lessons learned from the CBC Bank global e-banking project. Manag. Decis. 2011, 49, 1728–1742. [Google Scholar] [CrossRef]
- Rickling, M.; Rama, D.V.; Raghunandan, K. Repeatedly meeting-beating analyst forecasts and audit fees. Int. J. Bus. 2013, 18, 119. [Google Scholar]
- Raghunandan, K.; Rama, D.V. SOX Section 404 material weakness disclosures and audit fees. Audit. J. Pract. Theory 2006, 25, 99–114. [Google Scholar] [CrossRef]
- Bae, G.S.; Choi, S.U.; Lamoreaux, P.T.; Lee, J.E. Auditors’ Fee Premiums and Low-Quality Internal Controls. Contemp. Account. Res. 2021, 38, 586–620. [Google Scholar] [CrossRef]
- Hogan, C.E.; Wilkins, M.S. Evidence on the audit risk model: Do auditors increase audit fees in the presence of internal control deficiencies? Contemp. Account. Res. 2008, 25, 219–242. [Google Scholar] [CrossRef]
- Elder, R.J.; Yebba, A.A. The Introduction of State Regulation and Auditor Retendering in School Districts: Local Audit Market Structure, Audit Pricing, and Internal Controls Reporting. Audit. J. Pract. Theory 2020, 39, 81–115. [Google Scholar] [CrossRef]
- Felix, J.; William, L.; Gramling, A.A.; Maletta, M.J. The contribution of internal audit as a determinant of external audit fees and factors influencing this contribution. J. Account. Res. 2001, 39, 513–534. [Google Scholar] [CrossRef]
- Fukukawa, H.; Mock, T.J.; Wright, A. Client Risk Factors and Audit Resource Allocation Decisions. Abacus J. Account. Financ. Bus. Stud. 2011, 47, 85–108. [Google Scholar] [CrossRef]
- Blankley, A.I.; Hurtt, D.N.; MacGregor, J.E. Abnormal Audit Fees and Restatements. Audit. J. Pract. Theory 2012, 31, 79–96. [Google Scholar] [CrossRef]
- Hoitash, R.; Hoitash, U.; Bedard, J.C. Internal control quality and audit pricing under the Sarbanes-Oxley Act. Audit. J. Pract. Theory 2008, 27, 105–126. [Google Scholar] [CrossRef]
- Jensen, M.C.; Meckling, W.H. Theory of the firm: Managerial behavior, agency costs and ownership structure. J. Financ. Econ. 1976, 3, 305–360. [Google Scholar] [CrossRef]
- Christensen, C.M.; Bartman, T.; Bever, D.v. The Hard Truth About Business Model Innovation; MIT Sloan School of Management: Cambridge, MA, USA, 2016. [Google Scholar]
- Francis, J.R. The effect of audit firm size on audit prices: A study of the Australian market. J. Account. Econ. 1984, 6, 133–151. [Google Scholar] [CrossRef]
- Jordan, C.E.; Clark, S.J.; Hames, C.C. The impact of audit quality on earnings management to achieve user reference points in EPS. J. Appl. Bus. Res. 2010, 26. [Google Scholar] [CrossRef]
- Simunic, D.A. The pricing of audit services: Theory and evidence. J. Account. Res. 1980, 18, 161–190. [Google Scholar] [CrossRef]
- Lin, C.C.; Kunnathur, A. Strategic orientations, developmental culture, and big data capability. J. Bus. Res. 2019, 105, 49–60. [Google Scholar] [CrossRef]
- Eccles, R.G.; Ioannou, I.; Serafeim, G. The Impact of Corporate Sustainability on Organizational Processes and Performance. Manag. Sci. 2014, 60, 2835–2857. [Google Scholar] [CrossRef]
- Yin, J. Related Transactions, Executive’s Salary Gap and Audit Fees. In Proceedings of the 2017 5th International Education, Economics, Social Science, Arts, Sports and Management Engineering Conference (IEESASM 2017), Qingdao, China, 3 September 2017. [Google Scholar]
- Cassell, C.A.; Huang, S.X.; Sanchez, J.M.; Stuart, M.D. Seeking safety: The relation between CEO inside debt holdings and the riskiness of firm investment and financial policies. J. Financ. Econ. 2012, 103, 588–610. [Google Scholar] [CrossRef]
- Jizi, M.; Nehme, R. Board monitoring and audit fees: The moderating role of CEO/chair dual roles. Manag. Audit. J. 2018, 33, 217–243. [Google Scholar] [CrossRef]
- Heltzer, W.; Shelton, S.W. The book–tax divide: Perceptions from the field. Res. Account. Regul. 2011, 23, 130–137. [Google Scholar] [CrossRef]
- Brazel, J.F.; Dang, L. The effect of ERP system implementations on the management of earnings and earnings release dates. J. Inf. Syst. 2008, 22, 1–21. [Google Scholar] [CrossRef]
- Donohoe, M.P.; Robert Knechel, W. Does corporate tax aggressiveness influence audit pricing? Contemp. Account. Res. 2014, 31, 284–308. [Google Scholar] [CrossRef]
- Hanlon, M.; Krishnan, G.V.; Mills, L.F. Audit fees and book-tax differences. J. Am. Tax. Assoc. 2012, 34, 55–86. [Google Scholar] [CrossRef]
- Krishnan, J.; Rama, D.; Zhang, Y. Costs to comply with SOX Section 404. Audit. J. Pract. Theory 2008, 27, 169–186. [Google Scholar] [CrossRef]
- Tang, T.Y.; Firth, M. Earnings persistence and stock market reactions to the different information in book-tax differences: Evidence from China. Int. J. Account. 2012, 47, 369–397. [Google Scholar] [CrossRef]
- Moore, J.A.; Xu, L. Book-tax differences and costs of private debt. Adv. Account. 2018, 42, 70–82. [Google Scholar] [CrossRef]
- Healy, P. The impact of bonus schemes on the selection of accounting principles. J. Account. Econ. 1985, 7, 85–107. [Google Scholar] [CrossRef]
- Hitt, L.M.; Wu, D.; Zhou, X. Investment in enterprise resource planning: Business impact and productivity measures. J. Manag. Inf. Syst. 2002, 19, 71–98. [Google Scholar] [CrossRef]
- Morris, J.J. The impact of enterprise resource planning (ERP) systems on the effectiveness of internal controls over financial reporting. J. Inf. Syst. 2011, 25, 129–157. [Google Scholar] [CrossRef]
- O’Leary, D.E. Enterprise resource planning (ERP) systems: An empirical analysis of benefits. J. Emerg. Technol. Account. 2004, 1, 63–72. [Google Scholar] [CrossRef]
- Morris, J.J.; Laksmana, I. Measuring the impact of enterprise resource planning (ERP) systems on earnings management. J. Emerg. Technol. Account. 2010, 7, 47–71. [Google Scholar] [CrossRef]
- Wu, F.; Hu, H.; Lin, H.; Ren, X. Enterprise Digital Transformation and Capital Market Performance: Empirical Evidence from Stock Liquidity. J. Manag. World 2021, 37, 130–144+10. [Google Scholar]
- Clarkson, P.M.; Li, Y.; Richardson, G.D.; Vasvari, F.P. Revisiting the relation between environmental performance and environmental disclosure: An empirical analysis. Account. Organ. Soc. 2008, 33, 303–327. [Google Scholar] [CrossRef]
- Kamaruzaman, S.A.; Ali, M.M.; Ghani, E.K.; Gunardi, A. Ownership structure, corporate risk disclosure and firm value: A Malaysian perspective. Int. J. Manag. Financ. Account. 2019, 11, 113–131. [Google Scholar] [CrossRef]
Obs. | Mean | Std. Dev. | Min. | Max. | |
---|---|---|---|---|---|
FEEit | 12,279 | 1,423,226 | 1,544,383 | 300,000 | 1.10 × 107 |
AIit | 12,279 | 2.245 | 9.377 | 0 | 256 |
CCit | 12,279 | 4.823 | 13.629 | 0 | 229 |
BDit | 12,279 | 0.575 | 3.790 | 0 | 157 |
BCit | 12,279 | 0.059 | 0.564 | 0 | 19 |
DCGit | 12,279 | 7.947 | 16.714 | 0 | 422 |
ICit | 12,279 | 658.092 | 78.957 | 8.97 | 835.8 |
CGit | 11,767 | 0.0999 | 1.042 | −1.568 | 2.930 |
DAit | 12,279 | 0.002 | 0.138 | −3.642 | 2.341 |
ROAit | 12,279 | 0.039 | 0.062 | −0.320 | 0.205 |
SIZEit | 12,279 | 22.284 | 1.269 | 19.835 | 26.087 |
RGit | 12,279 | 0.307 | 4.637 | −0.952 | 363.068 |
AGEit | 12,279 | 10.963 | 7.213 | 2 | 31 |
LEVit | 12,279 | 0.412 | 0.195 | 0.051 | 0.884 |
TOPHOLDit | 12,279 | 0.586 | 0.144 | 0.241 | 0.902 |
M1 FEEit (1) | M2 FEEit (2) | M3 FEEit (3) | M4 FEEit (4) | |
---|---|---|---|---|
Testing Variables | ||||
AIit | 0.116 *** | 0.099 *** | 0.088 *** | 0.088 *** |
(0.021) | (0.021) | (0.022) | (0.022) | |
AIit2 | −0.011 *** | −0.009 ** | −0.009 ** | −0.009 ** |
(0.004) | (0.004) | (0.004) | (0.004) | |
CCit | 0.078 *** | 0.072 *** | 0.072 *** | |
(0.021) | (0.021) | (0.021) | ||
CCit2 | −0.014 *** | −0.013 *** | −0.013 *** | |
(0.004) | (0.004) | (0.004) | ||
BDit | 0.074 *** | 0.073 *** | ||
(0.022) | (0.022) | |||
BDit2 | −0.008 ** | −0.008 ** | ||
(0.004) | (0.004) | |||
BCit | 0.006 | |||
(0.016) | ||||
BCit2 | −0.001 | |||
(0.001) | ||||
Controls | ||||
ROAit | 0.030 *** | 0.030 *** | 0.030 *** | 0.030 *** |
(0.008) | (0.008) | (0.008) | (0.008) | |
SIZEit | −2.630 *** | −2.606 *** | −2.613 *** | −2.614 *** |
(0.610) | (0.610) | (0.609) | (0.609) | |
RGit | 0.014 * | 0.013 * | 0.013 * | 0.013 * |
(0.008) | (0.008) | (0.008) | (0.008) | |
AGEit | 0.187 *** | 0.187 *** | 0.188 *** | 0.188 *** |
(0.010) | (0.009) | (0.009) | (0.009) | |
LEVit | 2.903 *** | 2.878 *** | 2.884 *** | 2.885 *** |
(0.610) | (0.610) | (0.609) | (0.609) | |
TOPHOLDit | 0.217 *** | 0.217 *** | 0.218 *** | 0.218 *** |
(0.009) | (0.009) | (0.009) | (0.009) | |
Period-fixed | Y | Y | Y | Y |
Industry-fixed | Y | Y | Y | Y |
C | −0.239 * | −0.210 * | −0.185 | −0.184 |
(0.127) | (0.127) | (0.127) | (0.127) | |
Obs. | 12,279 | 12,279 | 12,279 | 12,279 |
Wald Chi2 | 4805.02 *** | 4825.03 *** | 4849.40 *** | 4850.72 *** |
M1 FEEit (1) | M2 FEEit (2) | M3 ICit (3) | M4 ICit (4) | M5 ICit (5) | |
---|---|---|---|---|---|
Testing Variables | |||||
AIit | 0.088 *** | 0.078 *** | 0.073 *** | ||
(0.022) | (0.021) | (0.022) | |||
AIit2 | −0.009 ** | −0.008 ** | −0.008 ** | ||
(0.004) | (0.004) | (0.004) | |||
CCit | 0.072 *** | 0.065 *** | 0.062 *** | ||
(0.021) | (0.021) | (0.021) | |||
CCit2 | −0.013 *** | −0.012 *** | −0.008 * | ||
(0.004) | (0.004) | (0.004) | |||
BDit | 0.074 *** | 0.079 *** | −0.013 | ||
(0.022) | (0.021) | (0.022) | |||
BDit2 | −0.008 ** | −0.009 ** | 0.003 | ||
(0.004) | (0.004) | (0.004) | |||
ICit | 0.142 *** | ||||
(0.009) | |||||
Controls | |||||
ROAit | 0.030 *** | −0.024 *** | 0.383 *** | 0.383 *** | 0.383 *** |
(0.008) | (0.009) | (0.009) | (0.009) | (0.009) | |
SIZEit | −2.613 *** | −2.172 *** | −3.117 *** | −3.108 *** | −3.141 *** |
(0.609) | (0.603) | (0.634) | (0.635) | (0.635) | |
RGit | 0.013 * | 0.011 | 0.018 ** | 0.018 ** | 0.018 ** |
(0.008) | (0.008) | (0.008) | (0.008) | (0.008) | |
AGEit | 0.188 *** | 0.184 *** | 0.025 ** | 0.024 ** | 0.024 ** |
(0.009) | (0.009) | (0.010) | (0.010) | (0.010) | |
LEVit | 2.884 *** | 2.426 *** | 3.238 *** | 3.228 *** | 3.263 *** |
(0.609) | (0.603) | (0.634) | (0.635) | (0.635) | |
TOPHOLDit | 0.218 *** | 0.205 *** | 0.093 *** | 0.093 *** | 0.092 *** |
(0.009) | (0.009) | (0.009) | (0.009) | (0.009) | |
Period-fixed | Y | Y | Y | Y | Y |
Industry-fixed | Y | Y | Y | Y | Y |
C | −0.185 | −0.260 ** | 0.525 *** | 0.513 *** | 0.475 *** |
(0.127) | (0.126) | (0.132) | (0.132) | (0.132) | |
Obs. | 12,279 | 12,279 | 12,279 | 12,279 | 12,279 |
Wald Chi2 | 5232.75 *** | 4849.40 *** | 3514.47 *** | 3508.23 *** | 3492.91 *** |
M1 FEEit (1) | M2 FEEit (2) | M3 CGit (3) | M4 CGit (4) | M5 CGit (5) | |
---|---|---|---|---|---|
Testing Variables | |||||
AIit | 0.088 *** | 0.094 *** | 0.061 *** | ||
(0.022) | (0.021) | (0.022) | |||
AIit2 | −0.009 ** | −0.010 ** | −0.008 ** | ||
(0.004) | (0.004) | (0.004) | |||
CCit | 0.072 *** | 0.075 *** | 0.030 | ||
(0.021) | (0.021) | (0.021) | |||
CCit2 | −0.013 *** | −0.013 *** | −0.000 | ||
(0.004) | (0.004) | (0.004) | |||
BDit | 0.074 *** | 0.064 *** | −0.036 * | ||
(0.022) | (0.022) | (0.022) | |||
BDit2 | −0.008 ** | −0.006 * | 0.006 | ||
(0.004) | (0.004) | (0.004) | |||
CGit | −0.045 *** | ||||
(0.009) | |||||
Controls | |||||
ROAit | 0.030 *** | 0.026 *** | −0.066 *** | −0.066 *** | −0.067 *** |
(0.008) | (0.008) | (0.009) | (0.009) | (0.009) | |
SIZEit | −2.613 *** | −2.562 *** | −0.047 | −0.045 | −0.069 |
(0.609) | (0.626) | (0.650) | (0.650) | (0.651) | |
RGit | 0.013 * | 0.048 *** | 0.015 | 0.015 | 0.015 |
(0.008) | (0.013) | (0.013) | (0.013) | (0.013) | |
AGEit | 0.188 *** | 0.176 *** | −0.369 *** | −0.370 *** | −0.370 *** |
(0.009) | (0.010) | (0.010) | (0.010) | (0.010) | |
LEVit | 2.884 *** | 2.820 *** | −0.093 | −0.096 | −0.070 |
(0.609) | (0.626) | (0.650) | (0.650) | (0.650) | |
TOPHOLDit | 0.218 *** | 0.200 *** | −0.078 *** | −0.078 *** | −0.079 *** |
(0.009) | (0.009) | (0.009) | (0.009) | (0.009) | |
Period-fixed | Y | Y | Y | Y | Y |
Industry-fixed | Y | Y | Y | Y | Y |
C | −0.185 | −0.249 * | −0.774 *** | −0.792 *** | −0.827 *** |
(0.127) | (0.132) | (0.137) | (0.136) | (0.136) | |
Obs. | 12,279 | 11,767 | 11,767 | 11,767 | 11,767 |
Wald Chi2 | 4849.40 *** | 4741.08 *** | 4160.97 *** | 4161.50 *** | 4151.18 *** |
M1 FEEit (1) | M2 FEEit (2) | M3 DAit (3) | M4 DAit (4) | M5 DAit (5) | |
---|---|---|---|---|---|
Testing Variables | |||||
AIit | 0.088 *** | 0.087 *** | −0.010 | ||
(0.022) | (0.022) | (0.022) | |||
AIit2 | −0.009 ** | −0.009 ** | 0.007 * | ||
(0.004) | (0.004) | (0.004) | |||
CCit | 0.072 *** | 0.072 *** | 0.020 | ||
(0.021) | (0.021) | (0.021) | |||
CCit2 | −0.013 *** | −0.013 *** | −0.004 | ||
(0.004) | (0.004) | (0.004) | |||
BDit | 0.074 *** | 0.076 *** | 0.074 *** | ||
(0.022) | (0.022) | (0.022) | |||
BDit2 | −0.008 ** | −0.008 ** | −0.014 *** | ||
(0.004) | (0.004) | (0.004) | |||
DAit | −0.032 *** | ||||
(0.009) | |||||
Controls | |||||
ROAit | 0.030 *** | 0.042 *** | 0.383 *** | 0.383 *** | 0.383 *** |
(0.008) | (0.009) | (0.009) | (0.009) | (0.009) | |
SIZEit | −2.613 *** | −2.603 *** | 0.284 | 0.299 | 0.309 |
(0.609) | (0.609) | (0.628) | (0.628) | (0.628) | |
RGit | 0.013 * | 0.014 * | 0.023 *** | 0.023 *** | 0.023 *** |
(0.008) | (0.008) | (0.008) | (0.008) | (0.008) | |
AGEit | 0.188 *** | 0.188 *** | 0.010 | 0.010 | 0.010 |
(0.009) | (0.009) | (0.010) | (0.010) | (0.010) | |
LEVit | 2.884 *** | 2.875 *** | −0.260 | −0.276 | −0.287 |
(0.609) | (0.609) | (0.628) | (0.628) | (0.628) | |
TOPHOLDit | 0.218 *** | 0.217 *** | −0.024 *** | −0.025 *** | −0.024 *** |
(0.009) | (0.009) | (0.009) | (0.009) | (0.009) | |
Period-fixed | Y | Y | Y | Y | Y |
Industry-fixed | Y | Y | Y | Y | Y |
C | −0.185 | −0.169 | 0.482 *** | 0.490 *** | 0.510 *** |
(0.127) | (0.127) | (0.130) | (0.130) | (0.130) | |
Obs. | 12,279 | 12,279 | 12,279 | 12,279 | 12,279 |
Wald Chi2 | 4849.40 *** | 4867.75 *** | 3847.18 *** | 3833.48 *** | 3850.14 *** |
Mediating Relationship | Effect | Coefficient (Standard Errors) | 95% Confidence Interval | |
---|---|---|---|---|
Lower Limit | Upper Limit | |||
AI-IC-FEE | Indirect Effect | 0.018 ** (0.0008) | 0.00016 | 0.0035 |
Direct Effect | 0.687 *** (0.008) | 0.052 | 0.846 | |
CC-IC-FEE | Indirect Effect | 0.020 *** (0.0004) | 0.001 | 0.002 |
Direct Effect | 0.0002 *** (0.00007) | 0.0001 | 0.0004 | |
AI-CC-FEE | Indirect Effect | −0.004 *** (0.0007) | −0.0055 | −0.0025 |
Direct Effect | 0.070 *** (0.007) | 0.0548 | 0.0858 | |
BD-DA-FEE | Indirect Effect | 0.0013 *** (0.0004) | 0.0004 | 0.002 |
Direct Effect | 0.050 *** (0.006) | 0.037 | 0.063 |
M1 FEEit (1) | M2 FEEit (2) | M3 FEEit (3) | |
---|---|---|---|
Testing Variables | |||
DCGit | 0.044 *** | 0.084 *** | |
(0.006) | (0.012) | ||
DCGit2 | −0.011 *** | ||
(0.003) | |||
Controls | |||
ROAit | 0.007 | 0.007 | 0.006 |
(0.005) | (0.005) | (0.005) | |
SIZEit | 1.393 *** | 1.422 *** | 1.442 *** |
(0.368) | (0.366) | (0.366) | |
RGit | 0.007 | 0.006 | 0.006 |
(0.004) | (0.004) | (0.004) | |
AGEit | 0.185 *** | 0.188 *** | 0.188 *** |
(0.016) | (0.016) | (0.016) | |
LEVit | −1.260 *** | −1.291 *** | −1.310 *** |
(0.368) | (0.366) | (0.366) | |
TOPHOLDit | 0.118 *** | 0.123 *** | 0.123 *** |
(0.008) | (0.008) | (0.008) | |
Period-fixed | Y | Y | Y |
Industry-fixed | Y | Y | Y |
C | −0.304 ** | −0.271 * | −0.249 * |
(0.149) | (0.148) | (0.148) | |
Obs. | 12,279 | 12,279 | 12,279 |
Wald Chi2 | 4212.55 *** | 4297.95 *** | 4319.05 *** |
Second Stage | First Stage | |||||
---|---|---|---|---|---|---|
M1 FEEit (1) | M2 FEEit (2) | M3 FEEit (3) | AIit (4) | CCit (5) | BDit (6) | |
Testing Variables | ||||||
Digitalusage | 0.368 *** | 0.309 *** | 0.251 *** | |||
(0.020) | (0.019) | (0.021) | ||||
AIit | 0.527 *** | |||||
(0.168) | ||||||
AIit2 | −0.080 *** | |||||
(0.028) | ||||||
CCit | 0.423 *** | |||||
(0.117) | ||||||
CCit2 | −0.076 *** | |||||
(0.022) | ||||||
BDit | 0.798 *** | |||||
(0.237) | ||||||
BDit2 | −0.119 *** | |||||
(0.037) | ||||||
Controls | ||||||
ROAit | 0.032 *** | 0.027 *** | 0.032 *** | −0.001 | −0.004 | −0.021 ** |
(0.009) | (0.009) | (0.009) | (0.009) | (0.008) | (0.009) | |
SIZEit | −2.494 *** | −2.509 *** | −2.571 *** | 0.174 | −0.396 | 0.595 |
(0.622) | (0.618) | (0.637) | (0.632) | (0.615) | (0.668) | |
RGit | 0.014 * | 0.011 | 0.012 | 0.003 | 0.008 | 0.004 |
(0.008) | (0.008) | (0.008) | (0.008) | (0.008) | (0.008) | |
AGEit | 0.189 *** | 0.185 *** | 0.193 *** | −0.018 * | −0.004 | −0.026 ** |
(0.010) | (0.010) | (0.010) | (0.010) | (0.010) | (0.010) | |
LEVit | 2.767 *** | 2.774 *** | 2.833 *** | −0.181 | 0.435 | −0.593 |
(0.622) | (0.618) | (0.638) | (0.632) | (0.614) | (0.668) | |
TOPHOLDit | 0.218 *** | 0.216 *** | 0.224 *** | −0.047 *** | −0.044 *** | −0.038 *** |
(0.009) | (0.009) | (0.009) | (0.009) | (0.009) | (0.010) | |
Period-fixed | Y | Y | Y | Y | Y | Y |
Industry-fixed | Y | Y | Y | Y | Y | Y |
C | 0.039 | −0.103 | −0.009 | −0.755 *** | −0.659 *** | −0.628 *** |
(0.167) | (0.140) | (0.159) | (0.131) | (0.127) | (0.138) | |
Obs. | 12,279 | 12,279 | 12,279 | 12,279 | 12,279 | 12,279 |
CD-W F test | 198.95 | 386.66 | 105.99 | |||
Sargon | 0.00 | 0.00 | 0.00 | |||
Wald Chi2 | 3626.17 *** | 4568.49 *** | 1977.19 *** |
Step One: Selection Model | M1 Digitalusagebool | M2 Digitalusagebool | M3 Digitalusagebool |
---|---|---|---|
ROAit | −0.020 | −0.020 | −0.020 |
(0.016) | (0.016) | (0.016) | |
SIZEit | −1.070 | −1.070 | −1.070 |
(1.148) | (1.148) | (1.148) | |
RGit | 0.159 * | 0.159 * | 0.159 * |
(0.082) | (0.082) | (0.082) | |
AGEit | 0.017 | 0.017 | 0.017 |
(0.018) | (0.018) | (0.018) | |
LEVit | 1.110 | 1.110 | 1.110 |
(1.147) | (1.147) | (1.147) | |
TOPHOLDit | 0.003 | 0.003 | 0.003 |
(0.016) | (0.016) | (0.016) | |
Period-fixed | Y | Y | Y |
Industry-fixed | Y | Y | Y |
C | 1.157 | 1.157 | 1.157 |
(0.237) | (0.237) | (0.237) | |
Step Two: Response Model | FEEit | FEEit | FEEit |
AIit | 0.110 *** | 0.091 *** | 0.079 *** |
(0.022) | (0.023) | (0.023) | |
AIit2 | −0.010 *** | −0.008 ** | −0.007 * |
(0.004) | (0.004) | (0.004) | |
CCit | 0.080 *** | 0.073 *** | |
(0.022) | (0.022) | ||
CCit2 | −0.014 *** | −0.013 *** | |
(0.004) | (0.005) | ||
BDit | 0.079 *** | ||
(0.024) | |||
BDit2 | −0.009 ** | ||
(0.004) | |||
Controls | |||
ROAit | 0.028 *** | 0.027 *** | 0.028 *** |
(0.010) | (0.010) | (0.010) | |
SIZEit | −2.236 *** | −2.203 *** | −2.200 *** |
(0.761) | (0.763) | (0.764) | |
RGit | 0.010 | 0.010 | 0.009 |
(0.009) | (0.009) | (0.009) | |
AGEit | 0.192 *** | 0.192 *** | 0.192 *** |
(0.012) | (0.012) | (0.012) | |
LEVit | 2.496 *** | 2.461 *** | 2.458 *** |
(0.763) | (0.764) | (0.765) | |
TOPHOLDit | 0.219 *** | 0.219 *** | 0.220 *** |
(0.011) | (0.011) | (0.011) | |
Period-fixed | Y | Y | Y |
Industry-fixed | Y | Y | Y |
C | −0.070 | −0.031 | −0.003 |
(0.190) | (0.191) | (0.191) | |
Obs. | 12,279 | 12,279 | 12,279 |
Selected Obs. | 10,434 | 10,434 | 10,434 |
Non-selected Obs. | 1845 | 1845 | 1845 |
lambda | −0.890 | −0.903 | −0.911 |
(0.477) | (0.478) | (0.478) | |
Wald Chi2 | 3418.77 *** | 3416.80 *** | 3424.94 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, J.; Du, K.; Xia, Y. The Impact of Enterprise Digital Transformation on Audit Fees—An Intermediary Role Based on Information Asymmetry. Sustainability 2024, 16, 9970. https://doi.org/10.3390/su16229970
Xin J, Du K, Xia Y. The Impact of Enterprise Digital Transformation on Audit Fees—An Intermediary Role Based on Information Asymmetry. Sustainability. 2024; 16(22):9970. https://doi.org/10.3390/su16229970
Chicago/Turabian StyleXin, Jinguo, Kun Du, and Yuqi Xia. 2024. "The Impact of Enterprise Digital Transformation on Audit Fees—An Intermediary Role Based on Information Asymmetry" Sustainability 16, no. 22: 9970. https://doi.org/10.3390/su16229970
APA StyleXin, J., Du, K., & Xia, Y. (2024). The Impact of Enterprise Digital Transformation on Audit Fees—An Intermediary Role Based on Information Asymmetry. Sustainability, 16(22), 9970. https://doi.org/10.3390/su16229970