Spatial and Temporal Evolution Characteristics of Ecosystem Service Value and Population Distribution in China’s Coastal Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Research Methods
2.2.1. ESV Evaluation
2.2.2. Geographical Concentration
2.2.3. Kernel Density Estimation
2.2.4. Trend Surface Analysis
2.2.5. Exploratory Spatial Data Analysis
2.2.6. Spatial Mismatch Index
2.3. Data Sources
3. Results and Analysis
3.1. Spatial and Temporal Changes in Population
3.1.1. Spatial and Temporal Changes in Population Density
3.1.2. Spatial and Temporal Changes in Population Geographic Concentration
3.1.3. Population Spatial Structure and Trends
3.2. Spatial and Temporal Changes in Ecosystem Service Value (ESV)
3.2.1. Spatial and Temporal Changes in per Capita Ecosystem Service Value
3.2.2. Spatial and Temporal Changes in Eco-Geographic Concentration
3.2.3. Evolution of the Spatial Structure of Ecosystem Service Value
3.3. Coordination Between Population and Ecosystem Service Value
3.3.1. Spatial Correlation Characteristics
3.3.2. Coordination Between Population and Total ESV
3.3.3. Coordination Characteristics of the Population with Provisioning, Regulating, and Supporting Services
4. Discussion
5. Conclusions
- (1)
- Over the past two decades, the population in coastal areas has increased from 58.06632 million to 70.07265 million, with increasing population density. Generally, the population is concentrated in coastal areas, with fewer people living in districts farther from the ocean. The main population centres are the Beijing–Tianjin–Hebei Urban Agglomeration, the Yangtze River Delta Urban Agglomeration, and the Pearl River Delta Urban Agglomeration, with secondary cores around provincial capitals.
- (2)
- The geographic concentration of ecosystem services is lower than that of the population, indicating a “low–high–low” distribution pattern from north to south. The ecosystem service value (ESV) increased from CNY 41,974.54 billion in 2000 to CNY 20,203,431.14 billion in 2020, but the per capita ESV decreased from 7228.72 yuan/person in 2000 to 6212.33 yuan/person in 2020, showing a clear downwards trend. The low ESV geographic concentration values are concentrated in the northern part of the research area.
- (3)
- There is a negative correlation between the ecosystem service value and population in coastal areas, indicating a significant spatial mismatch between the two, although overall coordination is relatively good. Mismatched counties are more widespread in the North China Plain and are also found in eastern Liaoning, northern Guangxi, and northern Guangdong. Increased human activities and urbanization in the Yangtze River Delta and Pearl River Delta have led to the degradation of ecological functions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, G.D.; Zhang, C.X.; Zhang, L.M. Improvement of the evaluation method for ecosystem service value based on per unit area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Daily, G.C. Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Ouyang, Z.Y.; Wang, X.K.; Miao, H. A primary study on Chinese terrestrial ecosystem services and their ecological-economic values. Acta Ecol. Sin. 1999, 19, 19–25. [Google Scholar]
- Costanza, R.; dArge, R.; deGroot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; Oneill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Liu, Y.B.; Hou, X.Y.; Li, X.W.; Song, B.; Wang, C. Assessing and predicting changes in ecosystem service values based on land use/cover change in the Bohai Rim coastal zone. Ecol. Indic. 2020, 111, 106004. [Google Scholar] [CrossRef]
- Tan, Z.Z.; Chen, Y.Q.; Ding, J.F.; LIU, M.D.; Wang, H.; Wang, J. Simulation of land use and assessment of ecosystem service value in the eastern coastal cities of Zhejiang Province, China. Chin. J. Appl. Ecol. 2023, 34, 2777–2787. [Google Scholar]
- Song, W.; Deng, X.Z. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef]
- Wu, C.X.; Feng, Y.Z.; Zhao, H.; Bao, Q. Study on ecosystem service value of the Yellow River Basin in Gansu Province based on land use change. J. Desert Res. 2022, 42, 304–316. [Google Scholar]
- Kuriqi, A.; Pinheiro, A.N.; Sordo-Ward, A.; Garrote, L. Influence of hydrologically based environmental flow methods on flow alteration and energy production in a run-of-river hydropower plant. J. Clean. Prod. 2019, 232, 1028–1042. [Google Scholar] [CrossRef]
- Zhang, C.X.; Xie, G.D.; Yang, Q.K.; Li, S.M. Influence of human activities on the value of ecosystem services: Case study of Zhifanggou Watershed. Resour. Sci. 2008, 30, 1910–1915. [Google Scholar]
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.K.; Hassan, R. Ecosystems and Human Well-Being-Synthesis: A Report of the Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human Domination of earth’s ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef]
- Lu, D.D. Geographical conditions and national strategies. Adv. Earth Sci. 2020, 35, 221–230. [Google Scholar]
- Cohen, B. Urbanization in developing countries: Current trends, future projections, and key challenges for sustainability. Technol. Soc. 2006, 28, 63–80. [Google Scholar] [CrossRef]
- Halpern, B.S.; Walbridge, S.; Selkoe, K.A.; Kappel, C.V.; Micheli, F.; D’Agrosa, C.; Bruno, J.F.; Casey, K.S.; Ebert, C.; Fox, H.E.; et al. A global map of human impact on marine ecosystems. Science 2008, 319, 948–952. [Google Scholar] [CrossRef]
- Dittman, D.E.; Chalupnicki, M.A.; Johnson, J.H.; Snyder, J. Reintroduction of Lake Sturgeon into the St. Regis River, NY: Post-release assessment of habitat use and growth. Northeast. Nat. 2015, 22, 704–716. [Google Scholar] [CrossRef]
- Danz, N.P.; Niemi, G.J.; Regal, R.R.; Hollenhorst, T.; Johnson, L.B.; Hanowski, J.M.; Axler, R.P.; Ciborowski, J.J.H.; Hrabik, T.; Brady, V.J.; et al. Integrated measures of anthropogenic stress in the U.S. Great Lakes Basin. Environ. Manag. 2007, 39, 631–647. [Google Scholar] [CrossRef]
- Robards, M.D.; Schoon, M.L.; Meek, C.L.; Engle, N.L. The importance of social drivers in the resilient provision of ecosystem services. Glob. Environ. Chang. 2011, 21, 522–529. [Google Scholar] [CrossRef]
- Zhang, R.; Hu, C.; Sun, Y. Decoding the characteristics of ecosystem services and the scale effect in the Middle Reaches of the Yangtze River Urban Agglomeration: Insights for planning and management. Sustainability 2024, 16, 7952. [Google Scholar] [CrossRef]
- Ba, Z.; Du, H.; Zhao, Y. Coupled and coordinated relationship between land-use cover change and ecosystem services value in horqin sandy land. Sustainability 2024, 16, 6184. [Google Scholar] [CrossRef]
- Ma, Y.; Ling, X.; Tong, Y. Ecosystem service value estimation and spatiotemporal differentiation characteristics of typical tourism cities at grid scale: A case of Sanya. Acta Ecol. Sin. 2021, 41, 7542–7554. [Google Scholar]
- Liang, F.C.; Liu, L.M. Quantitative analysis of human disturbance intensity of landscape patterns and preliminary optimization of ecological function regions: A case of Minqing County in Fujian Province. Resour. Sci. 2011, 33, 1138–1144. [Google Scholar]
- Li, Y.M.; Duan, Y.P.; Jiang, D.M.; Xie, Y. Study on landscape pattern of land use and ecosystem service value under human activities in Lanping County. Res. Soil Water Conserv. 2019, 26, 293–300. [Google Scholar]
- Menzel, S.; Kappel, C.V.; Broitman, B.R.; Micheli, F.; Rosenberg, A.A. Linking human activity and ecosystem condition to inform marine ecosystem based management. Aquat. Conserv. Mar. Freshw. Ecosyst. 2013, 23, 506–514. [Google Scholar] [CrossRef]
- Chapin, F.S.; Carpenter, S.R.; Kofinas, G.P.; Folke, C.; Abel, N.; Clark, W.C.; Olsson, P.; Smith, D.M.S.; Walker, B.; Young, O.R.; et al. Ecosystem stewardship: Sustainability strategies for a rapidly changing planet. Trends Ecol. Evol. 2010, 25, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhou, Z.X. Natural and human impacts on ecosystem services in Guanzhong-Tianshui economic region of China. Environ. Sci. Pollut. Res. 2016, 23, 6803–6815. [Google Scholar] [CrossRef]
- Meacham, M.; Queiroz, C.; Norström, A.V.; Peterson, G.D. Social-ecological drivers of multiple ecosystem services: What variables explain patterns of ecosystem services across the Norrstrom drainage basin? Ecol. Soc. 2016, 21, 14–39. [Google Scholar] [CrossRef]
- Padilla, F.M.; Vidal, B.; Sánchez, J.; Pugnaire, F.I. Land-use changes and carbon sequestration through the twentieth century in a Mediterranean mountain ecosystem: Implications for land management. J. Environ. Manag. 2010, 91, 2688–2695. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Chen, W.X.; Liu, Z.L.; Li, J.F.; Ran, D.; Zeng, J. Mapping the spatial relationship between ecosystem services and urbanization in the middle reaches of the Yangtze River Urban Agglomerations. Acta Ecol. Sin. 2020, 40, 5137–5150. [Google Scholar]
- Shi, J.R.; Li, S.X.; Song, Y.; Zhou, N.; Guo, K.L.; Bai, J. How socioeconomic factors affect ecosystem service value: Evidence from China. Ecol. Indic. 2022, 145, 109589–109600. [Google Scholar] [CrossRef]
- Baima, Z.G.; Xiao, Y.; Ouyang, Z.Y.; Wang, L.Y. Assessment of ecological conservation effect in Xishui county based on gross ecosystem product. Acta Ecol. Sin. 2020, 40, 499–509. [Google Scholar]
- Zhang, Z.P.; Xia, F.Q.; Yang, D.G.; Huo, J.W.; Wang, G.L.; Chen, H.X. Spatiotemporal characteristics in ecosystem service value and its interaction with human activities in Xinjiang, China. Ecol. Indic. 2020, 110, 105826–105837. [Google Scholar] [CrossRef]
- Ouyang, X.; Zhu, X.; He, Q.Y. Spatial interaction between urbanisation and ecosystem services: A case study in Changsha-Zhuzhou-Xiangtan urban agglomeration, China. Acta Ecol. Sin. 2019, 39, 7502–7513. [Google Scholar]
- Zhu, X.J.; Xue, L. Changes of ecological service value and its coupling with economic development in Guanzhong region. Chin. J. Ecol. 2022, 41, 769–776. [Google Scholar]
- Gao, X.; Shen, J.Q.; He, W.J.; Zhao, X.; Li, Z.C.; Hu, W.F.; Wang, J.Z.; Ren, Y.J.; Zhang, X. Spatial-temporal analysis of ecosystem services value and research on ecological compensation in Taihu Lake Basin of Jiangsu Province in China from 2005 to 2018. J. Clean. Prod. 2021, 317, 128241–128259. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhen, L.; Lu, C.X.; Xiao, Y. Expert knowledge based valuation method of ecosystem services in China. J. Nat. Resour. 2008, 23, 911–919. [Google Scholar]
- Xu, L.F.; Xu, X.G.; Luo, T.; Zhu, G.R.; Ma, Z.W. Services based on land use: A case study of Bohai Rim. Geogr. Res. 2012, 31, 1775–1784. [Google Scholar]
- Xie, G.D.; Zhang, C.X.; Zhen, L.; Zhang, L.M. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Wang, L.; Duan, X.J.; Tian, F.; Qin, X.H. Study on the relationship between population and economic spatial distribution in Yangtze River Delta. Econ. Geogr. 2009, 29, 1619–1623. [Google Scholar]
- Deng, Y.; Liu, S.H.; Cai, J.M.; Lu, X. Spatial pattern and its evolution of Chinese provincial population and empirical study. J. Geogr. Sci. 2014, 69, 1473–1486. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Zhang, J.Z. Trend surface analysis of population density of Gansu based on gis and surfer. Comput. Syst. Appl. 2008, 12, 65–68+53. [Google Scholar]
- Anselin, L. Under the hood-Issues in the specification and interpretation of spatial regression models. Agric. Econ. 2002, 27, 247–267. [Google Scholar] [CrossRef]
- Sridharan, S.; Tunstall, H.; Lawder, R.; Mitchell, R. An exploratory spatial data analysis approach to understanding the relationship between deprivation and mortality in Scotland. Soc. Sci. Med. 2007, 65, 1952–1963. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.M.; Lu, L.; Ren, Y.S.; Jiang, W.F.; Li, D.H. Study on the spatial-temporal evolution characteristics and coordination of population and ecosystem services value in central China. Resour. Dev. Mark. 2024, 40, 205–216. [Google Scholar]
- Zeng, Y.M. Simulation and projection on the pattern of Chinese population spatial distribution: Research with population density of county level based on the 5~(th) and 6~(th) population census of China. Popul. Econ. 2016, 6, 48–61. [Google Scholar]
- Luo, Z.; Yang, X.; Luo, S. Land use simulation and ecological network construction around Poyang Lake Area in China under the goal of sustainable development. Sustainability 2024, 16, 8146. [Google Scholar] [CrossRef]
- Yao, Y.Z.; Song, Y.T.; Xue, Y.T.; Jia, C.G.; Wang, Z.C.; Zhang, G.H. Spatial-temporal variations and mechanism of ecosystem services value from land use perspective: A case study of Liaoning coastal zones. Areal Res. Dev. 2024, 43, 153–159. [Google Scholar]
- Kuzyshyn, A. Spatial diversification of the social sphere development in the Carpathian-Podillia Region. Folia Geogr. 2019, 61, 144–162. [Google Scholar]
- Ai, M.S.; Chen, X.; Yu, Q. Spatial correlation analysis between human disturbance intensity (HDI) and ecosystem services value (ESV) in the Chengdu-Chongqing urban agglomeration. Ecol. Indic. 2024, 158, 111555–111563. [Google Scholar] [CrossRef]
- Utkina, K.; Kresin, V.; Brook, V.; Lisnyak, A. Integrated criteria for ranking Black Sea land-based point pollution sources. Folia Geogr. 2017, 59, 35–49. [Google Scholar]
Primary Type | Secondary Type | Farmland | Forest | Grassland | Water Area | Unused Land |
---|---|---|---|---|---|---|
Provision Services | Food Production | 2421.78 | 545.45 | 501.81 | 1745.42 | 21.82 |
Raw Material Production | 545.45 | 1265.43 | 741.81 | 501.81 | 43.64 | |
Water Resource Supply | −2858.13 | 654.53 | 414.54 | 18,086.96 | 21.82 | |
Regulatory Services | Gas Regulation | 1941.78 | 4167.20 | 2639.95 | 1679.97 | 152.72 |
Climate Regulation | 1025.44 | 12,457.96 | 6959.88 | 4996.28 | 109.09 | |
Environmental Purification | 305.45 | 3643.57 | 2290.87 | 12,108.88 | 458.17 | |
Hydrological Regulation | 3272.67 | 8159.86 | 5105.37 | 223,065.19 | 261.81 | |
Support Services | Soil Conservation | 1134.53 | 5061.73 | 3207.22 | 2029.06 | 174.54 |
Nutrient Cycling Maintenance | 349.08 | 392.72 | 240.00 | 152.72 | 21.82 | |
Biodiversity | 370.90 | 4625.37 | 2923.59 | 5563.54 | 152.72 | |
Cultural Services | Esthetic Landscape | 174.54 | 2029.06 | 1287.25 | 4123.56 | 65.45 |
Standard | Type | Category | Coordination Type |
---|---|---|---|
SMIi ≤ −1 | Negative high mismatch area | Population significantly ahead of ESV level | ESV level lags behind population demand, uncoordinated |
−1 < SMIi ≤ −0.2 | Negative moderate mismatch area | Population slightly ahead of ESV level | |
−0.2 < SMIi ≤ 0 | Negative low mismatch area | Population roughly matches ESV level | Coordinated city |
0 < SMIi ≤ 0.2 | Positive low mismatch area | ||
0.2 < SMIi ≤ 1 | Positive moderate mismatch area | Population slightly behind ESV level | ESV level ahead of population demand, uncoordinated |
SMIi > 1 | Positive moderate and high area | Population significantly behind ESV level |
Unit: 108 CNY | Farmland | Forest | Grassland | Water | Unused Land | Total |
---|---|---|---|---|---|---|
2000 | 4314.18 | 22,388.65 | 2886.61 | 12,376.23 | 8.86 | 41,974.54 |
2010 | 4121.37 | 22,489.60 | 2548.09 | 13,357.81 | 7.65 | 42,524.53 |
2020 | 4057.13 | 22,196.59 | 2554.35 | 14,376.45 | 6.63 | 43,191.14 |
ESV change | −257.05 | −192.06 | −332.26 | 2000.22 | −2.23 | 1216.6 |
Ecosystem Classification | 2000 (108 CNY) | 2010 (108 CNY) | 2020 (108 CNY) | |
---|---|---|---|---|
Primary | Secondary | |||
Supply services | Food | 1621.18 | 1568.47 | 1553.43 |
Materials | 1034.12 | 1017.20 | 1006.55 | |
Water | −216.81 | −92.38 | −8.38 | |
Regulating services | Air quality regulation | 3500.70 | 3439.30 | 3403.30 |
Climate regulation | 7985.29 | 7920.03 | 7847.71 | |
Purifying environment | 2849.61 | 2864.90 | 2883.05 | |
Regulation of water flows | 16,509.49 | 17,189.03 | 17,939.37 | |
Supporting services | Soil conservation | 3643.48 | 3596.04 | 3561.34 |
Maintain nutrient circulation | 411.25 | 401.87 | 397.22 | |
Biodiversity | 3165.29 | 3150.10 | 3137.11 | |
Cultural service | Esthetic landscape | 1470.94 | 1469.98 | 1470.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Liu, Q.; Gao, X. Spatial and Temporal Evolution Characteristics of Ecosystem Service Value and Population Distribution in China’s Coastal Areas. Sustainability 2024, 16, 10212. https://doi.org/10.3390/su162310212
Liu C, Liu Q, Gao X. Spatial and Temporal Evolution Characteristics of Ecosystem Service Value and Population Distribution in China’s Coastal Areas. Sustainability. 2024; 16(23):10212. https://doi.org/10.3390/su162310212
Chicago/Turabian StyleLiu, Chang, Qing Liu, and Xingchuan Gao. 2024. "Spatial and Temporal Evolution Characteristics of Ecosystem Service Value and Population Distribution in China’s Coastal Areas" Sustainability 16, no. 23: 10212. https://doi.org/10.3390/su162310212
APA StyleLiu, C., Liu, Q., & Gao, X. (2024). Spatial and Temporal Evolution Characteristics of Ecosystem Service Value and Population Distribution in China’s Coastal Areas. Sustainability, 16(23), 10212. https://doi.org/10.3390/su162310212