Pursuing Cleaner Skies: A Study on the Impact of China’s Environmental Protection Tax Law on Haze Pollution
Abstract
:1. Introduction
2. Policy Background, Theoretical Analysis, and Hypotheses
2.1. Policy Background
2.2. Theoretical Analysis and Hypotheses
2.2.1. Direct Governance Effect of the Implementation of the EPT Law on Haze Pollution
2.2.2. Impact Mechanism of the Implementation of the EPT Law on Haze Pollution
3. Method
3.1. Model Setting
3.2. Variable Selection
3.2.1. The Explained Variable
3.2.2. Explanatory Variables
3.2.3. Control Variables
3.3. Sample Selection and Data Sources
4. Empirical Results and Analysis
4.1. Benchmark Regression Results
4.2. Parallel Trend Test
4.3. Placebo Test
4.4. Robustness Tests
4.4.1. Addressing Sample Selection Bias
4.4.2. Excluding the Interference of Other Policies
4.4.3. Accounting for Potential Omitted Variables
4.4.4. Changing the Measurement of the Explained Variable
4.4.5. Modifying the Clustering Level
4.5. Endogeneity Analysis
4.6. Mechanism Tests
4.6.1. Cleaner Industrial Structure
4.6.2. Green Technological Innovation
4.6.3. Strengthened Rigidity in Environmental Law Enforcement
5. Further Analysis
5.1. Analysis of the Moderating Effect of Fiscal Decentralization
5.2. Heterogeneity Analysis
5.2.1. Industrial Development Foundation
5.2.2. Officials’ Promotion Pressure
5.2.3. Public Environmental Concern
6. Conclusions and Policy Implications
- (1)
- Refine the green tax system. It is essential to improve the green tax system continuously, ensuring that legislation precedes the introduction of new taxes. The success of the EPT Law underscores the importance of legally establishing green taxes with strong authority to combat haze pollution and support the Blue Sky Protection Campaign.
- (2)
- Optimize fiscal decentralization. Clarifying local governments’ financial responsibilities and the distribution of EPT revenues is crucial for motivating authorities to effectively address haze pollution. A larger share of EPT revenue should be allocated to local governments to provide the financial resources necessary for environmental protection and pollution control.
- (3)
- Enhance green performance evaluation. The officials’ evaluation system should integrate haze control effectiveness as a key criterion in promotion assessments. This approach will shift the focus from economic growth alone to include environmental achievements, reinforcing officials’ environmental responsibilities and promoting sustainable development.
- (4)
- Establish a multi-agent governance mechanism. A collaborative model involving governments, enterprises, and the public is essential for effective haze control. Strengthening public participation and oversight, promoting the benefits of the EPT Law, and improving environmental protection mechanisms will enhance social accountability and contribute to creating a “Beautiful China”.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alnafrah, I.; Okunlola, O.; Sinha, A.; Abbas, S.; Dagestani, A. Unveiling the environmental efficiency puzzle: Insights from global green innovations. J. Environ. Manag. 2023, 345, 118865. [Google Scholar] [CrossRef]
- Saidin, M.I.S.; O’Neill, J. Climate Change and the Diversification of Green Social Capital in the International Political Economy of the Middle East and North Africa: A Review Article. Sustainability 2022, 14, 3756. [Google Scholar] [CrossRef]
- Yang, G.; Wang, Y.; Zeng, Y.; Gao, G.F.; Liang, X.; Zhou, M.; Wan, X.; Yu, S.; Jiang, Y.; Naghavi, M.; et al. Rapid health transition in China, 1990-2010: Findings from the Global Burden of disease study 2010. Lancet 2013, 381, 1987–2015. [Google Scholar] [CrossRef]
- Li, X.; Jin, L.; Kan, H. Air pollution: A global problem needs local fixes. Nature 2019, 570, 437–439. [Google Scholar] [CrossRef]
- Geng, G.; Zheng, Y.; Zhang, Q.; Xue, T.; Zhao, H.; Tong, D.; Zheng, B.; Li, M.; Liu, F.; Hong, C.; et al. Drivers of PM2.5 air pollution deaths in China 2002–2017. Nat. Geosci. 2021, 14, 645–650. [Google Scholar] [CrossRef]
- Zhang, F.Y.; Shi, Y.; Fang, D.K.; Ma, G.W.; Nie, C.J.; Krafft, T.; He, L.H.; Wang, Y.Y. Monitoring history and change trends of ambient air quality in China during the past four decades. J. Environ. Manag. 2020, 260, 110031. [Google Scholar] [CrossRef]
- Jia, R.; Fan, M.; Shao, S.; Yu, Y. Urbanization and haze-governance performance: Evidence from China’s 248 cities. J. Environ. Manag. 2021, 288, 112436. [Google Scholar] [CrossRef]
- Shi, H.; Qiao, Y.; Shao, X.; Wang, P. The effect of pollutant charges on economic and environmental performances: Evidence from Shandong Province in China. J. Clean. Prod. 2019, 232, 250–256. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, F.; Zhang, B. Can raising environmental tax reduce industrial water pollution? Firm-level evidence from China. Environ. Impact Assess. Rev. 2023, 101, 107155. [Google Scholar] [CrossRef]
- He, Y.; Zhu, X.; Zheng, H. The influence of environmental protection tax law on total factor productivity: Evidence from listed firms in China. Energy Econ. 2022, 113, 106248. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, S.; Wang, X.; Yao, S.; Zhu, F. Continuous monitoring, compositions analysis and the implication of regional transport for submicron and fine aerosols in Beijing, China. Atmos. Environ. 2018, 195, 30–45. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, M.; Wang, Y.; Tang, G.; Song, T.; Zhou, P.; Liu, Z.; Hu, B.; Ji, D.; Wang, L.; et al. Rapid formation of intense haze episodes via aerosol-boundary layer feedback in Beijing. Atmos. Chem. Phys. 2020, 20, 45–53. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, X.; Shi, A.; Huang, Y.; Yan, J.; Nie, T.; Yan, X.; Li, X. Secondary inorganic aerosols formation during haze episodes at an urban site in Beijing, China. Atmos. Environ. 2018, 177, 275–282. [Google Scholar] [CrossRef]
- Xue, L.; Lou, S.; Huang, X.; Ding, A. Subseasonal reversal of haze pollution over the North China Plain. Atmos. Ocean. Sci. Lett. 2023, 16, 100274. [Google Scholar] [CrossRef]
- Dong, F.; Zhang, S.; Long, R.; Zhang, X.; Sun, Z. Determinants of haze pollution: An analysis from the perspective of spatiotemporal heterogeneity. J. Clean. Prod. 2019, 222, 768–783. [Google Scholar] [CrossRef]
- Zhao, Q.; Yuan, C.H. Did Haze Pollution Harm the Quality of Economic Development?—An Empirical Study Based on China’s PM2.5 Concentrations. Sustainability 2020, 12, 1607. [Google Scholar] [CrossRef]
- Wang, X.; Su, Z.; Mao, J. How does haze pollution affect green technology innovation? A tale of the government economic and environmental target constraints. J. Environ. Manag. 2023, 334, 117473. [Google Scholar] [CrossRef]
- Wang, P.; Xue, W.; Wang, Z. Fog and haze control and enterprise green total factor productivity-evidence from China. Financ. Res. Lett. 2024, 65, 105561. [Google Scholar] [CrossRef]
- Li, C.G.; Lin, T.; Xu, Z.C.; Chen, Y.Z. Impacts of Foreign Direct Investment and Industrial Structure Transformation on Haze Pollution across China. Sustainability 2021, 13, 5439. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, W.; Luo, Y.; Xu, Y. The improvement and substitution effect of transportation infrastructure on air quality: An empirical evidence from China’s rail transit construction. Energy Policy 2019, 129, 949–957. [Google Scholar] [CrossRef]
- Burke, P.J. Green Pricing in the Asia Pacific: An Idea Whose Time Has Come? Asia Pac. Policy Stud. 2014, 1, 561–575. [Google Scholar] [CrossRef]
- Fotis, P.; Polemis, M. Sustainable development, environmental policy and renewable energy use: A dynamic panel data approach. Sustain. Dev. 2018, 26, 726–740. [Google Scholar] [CrossRef]
- Liu, G.; Yang, Z.; Zhang, F.; Zhang, N. Environmental tax reform and environmental investment: A quasi-natural experiment based on China’s Environmental Protection Tax Law. Energy Econ. 2022, 109, 106000. [Google Scholar] [CrossRef]
- He, Y.; Wen, C.; He, J. The influence of China Environmental Protection Tax Law on firm performance-evidence from stock markets. Appl. Econ. Lett. 2020, 27, 1044–1047. [Google Scholar] [CrossRef]
- Hu, X.; Sun, Y.; Liu, J.; Meng, J.; Wang, X.; Yang, H.; Xu, J.; Yi, K.; Xiang, S.; Li, Y.; et al. The impact of environmental protection tax on sectoral and spatial distribution of air pollution emissions in China. Environ. Res. Lett. 2019, 14, 054013. [Google Scholar] [CrossRef]
- Han, F.; Li, J. Assessing impacts and determinants of China’s environmental protection tax on improving air quality at provincial level based on Bayesian statistics. J. Environ. Manag. 2020, 271, 111017. [Google Scholar] [CrossRef]
- Li, P.; Lin, Z.; Du, H.; Feng, T.; Zuo, J. Do environmental taxes reduce air pollution? Evidence from fossil-fuel power plants in China. J. Environ. Manag. 2021, 295, 113112. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, U. Environmental taxes, energy consumption, and environmental quality: Theoretical survey with policy implications. Environ. Sci. Pollut. Res. 2020, 27, 24848–24862. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Yu, W.; Zhao, X.; Xu, W. Reassessing the linkage between natural resources and economic growth in China: Delving into the impacts of national resource taxes, renewable energy, financial advancements, and provincial fiscal expenditures. Resources Policy 2023, 86, 104293. [Google Scholar] [CrossRef]
- Arcila, A.; Chen, T.; Lu, X. The effectiveness of consumption tax on the reduction of car pollution in China. Transp. Res. Part D Transp. Environ. 2024, 134, 104302. [Google Scholar] [CrossRef]
- Maung, M.; Wilson, C.; Tang, X. Political Connections and Industrial Pollution: Evidence Based on State Ownership and Environmental Levies in China. J. Bus. Ethics 2016, 138, 649–659. [Google Scholar] [CrossRef]
- Chen, Q.; Maung, M.; Shi, Y.; Wilson, C. Foreign direct investment concessions and environmental levies in China. Int. Rev. Financ. Anal. 2014, 36, 241–250. [Google Scholar] [CrossRef]
- Ma, G.X.; Wang, J.N.; Yu, F.; Yang, W.S.; Ning, J.; Peng, F.; Zhou, X.F.; Zhou, Y.; Cao, D. Framework construction and application of China’s Gross Economic-Ecological Product accounting. J. Environ. Manag. 2020, 264, 109852. [Google Scholar] [CrossRef]
- Lundgren, T.; Marklund, P.O.; Samakovlis, E.; Zhou, W.C. Carbon prices and incentives for technological development. J. Environ. Manag. 2015, 150, 393–403. [Google Scholar] [CrossRef]
- Hu, J.; Fang, Q.; Wu, H. Environmental tax and highly polluting firms’ green transformation: Evidence from green mergers and acquisitions. Energy Econ. 2023, 127, 107046. [Google Scholar] [CrossRef]
- Liu, B.B.; Ge, J.P. The optimal choice of environmental tax revenue usage: Incentives for cleaner production or end-of-pipe treatment? J. Environ. Manag. 2023, 329, 117106. [Google Scholar] [CrossRef]
- Cecil, P.A. The Economics of Welfare; Macmillan: London, UK, 1932. [Google Scholar]
- Luken, R.A. Equivocating on the polluter-pays principle: The consequences for Pakistan. J. Environ. Manag. 2009, 90, 3479–3484. [Google Scholar] [CrossRef]
- Zhou, L.; Tang, L.Z. Environmental regulation and the growth of the total-factor carbon productivity of China’s industries: Evidence from the implementation of action plan of air pollution prevention and control. J. Environ. Manag. 2021, 296, 113078. [Google Scholar] [CrossRef]
- Shao, S.; Zhang, Y.; Tian, Z.; Li, D.; Yang, L. The regional Dutch disease effect within China: A spatial econometric investigation. Energy Econ. 2020, 88, 104766. [Google Scholar] [CrossRef]
- Han, X.; Cao, T. Urbanization level, industrial structure adjustment and spatial effect of urban haze pollution: Evidence from China’s Yangtze River Delta urban agglomeration. Atmos. Pollut. Res. 2022, 13, 101427. [Google Scholar] [CrossRef]
- Tan, G.R.; Cao, Y.P.; Xie, R.; Fang, J.Y. Intergovernmental competition, industrial spatial distribution, and air quality in China. J. Environ. Manag. 2022, 310, 114721. [Google Scholar] [CrossRef]
- Porter, M.E.; van der Linde, C. Toward a New Conception of the Environmental-Competitiveness Relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Li, Z.; Lai, A.; Cao, Y.; Wang, Q. Porter effect vs cost effect: The impact of China’s low carbon city pilot on carbon emissions and economic performance. J. Environ. Manag. 2024, 360, 121015. [Google Scholar] [CrossRef]
- Yan, Z.; Yu, Y.; Du, K.; Zhang, N. How does environmental regulation promote green technology innovation? Evidence from China’s total emission control policy. Ecol. Econ. 2024, 219, 108137. [Google Scholar] [CrossRef]
- Zhang, X.P.; Wang, S.Y.; Meng, Q.B.; Wu, W.X. The warning of haze: Weather and corporate investment. Account. Financ. 2019, 59, 3029–3052. [Google Scholar] [CrossRef]
- Liu, Z.; Kong, L.Q.; Xu, K. The impact of public environmental preferences and government environmental regulations on corporate pollution emissions. J. Environ. Manag. 2024, 351, 119766. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Wang, X.; Liang, Z. How does environmental information disclosure affect economic development and haze pollution in Chinese cities? The mediating role of green technology innovation. Sci. Total Environ. 2021, 775, 145811. [Google Scholar] [CrossRef]
- Blackman, A. Colombia’s discharge fee program: Incentives for polluters or regulators? J. Environ. Manag. 2009, 90, 101–119. [Google Scholar] [CrossRef]
- Pan, J.; Du, L.; Wu, H.; Liu, X. Does environmental law enforcement supervision improve corporate carbon reduction performance? Evidence from environmental protection interview. Energy Econ. 2024, 132, 107441. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, Y.; Zhang, W.; Hubacek, K.; Bi, F.; Zuo, J.; Jiang, H.; Zhang, Z.; Feng, K.; Liu, Y.; et al. Provincial air pollution responsibility and environmental tax of China based on interregional linkage indicators. J. Clean. Prod. 2019, 235, 337–347. [Google Scholar] [CrossRef]
- Li, H.; Lu, J. Can inter-governmental coordination inhibit cross-border illegal water pollution? A test based on cross-border ecological compensation policy. J. Environ. Manag. 2022, 318, 115536. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Hu, P.; Huang, Y.; Duan, Z. Effectiveness and heterogeneity evaluation of regional collaborative governance on haze pollution control: Evidence from 284 prefecture-level cities in China. Sustain. Cities Soc. 2022, 86, 104120. [Google Scholar] [CrossRef]
- Deschenes, O.; Greenstone, M.; Shapiro, J.S. Defensive Investments and the Demand for Air Quality: Evidence from the NOx Budget Program. Am. Econ. Rev. 2017, 107, 2958–2989. [Google Scholar] [CrossRef]
- Hao, Y.; Niu, X.; Wang, J. Impacts of haze pollution on China’s tourism industry: A system of economic loss analysis. J. Environ. Manag. 2021, 295, 113051. [Google Scholar] [CrossRef] [PubMed]
- Gan, T.; Yang, H.; Liang, W. How do urban haze pollution and economic development affect each other? Empirical evidence from 287 Chinese cities during 2000–2016. Sustain. Cities Soc. 2021, 65, 102642. [Google Scholar] [CrossRef]
- Liu, F.; Fan, Y.; Yang, S. Environmental benefits of innovation policy: China’s national independent innovation demonstration zone policy and haze control. J. Environ. Manag. 2022, 317, 115465. [Google Scholar] [CrossRef]
- Liu, H.; Wang, C.; Zhang, M.; Wang, S. Evaluating the effects of air pollution control policies in China using a difference-in-differences approach. Sci. Total Environ. 2022, 845, 157333. [Google Scholar] [CrossRef] [PubMed]
- La Ferrara, E.; Chong, A.; Duryea, S. Soap Operas and Fertility: Evidence from Brazil. Am. Econ. J. Appl. Econ. 2012, 4, 1–31. [Google Scholar] [CrossRef]
- Duan, Y.H.; Rahbarimanesh, A. The Impact of Environmental Protection Tax on Green Innovation of Heavily Polluting Enterprises in China: A Mediating Role Based on ESG Performance. Sustainability 2024, 16, 7509. [Google Scholar] [CrossRef]
- Madsen, J.M.; McMullin, J.L. Economic Consequences of Risk Disclosures: Evidence from Crowdfunding. Account. Rev. 2020, 95, 331–363. [Google Scholar] [CrossRef]
- Yuan, H.; Zou, L.; Feng, Y. How to achieve emission reduction without hindering economic growth? The role of judicial quality. Ecol. Econ. 2023, 209, 107839. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q.; Chang, W.-Y. Does economic agglomeration affect haze pollution? Evidence from China’s Yellow River basin. J. Clean. Prod. 2022, 335, 130271. [Google Scholar] [CrossRef]
- Guo, Z.Y.; Guo, Q.J.; Chen, S.L.; Zhu, B.; Zhang, Y.L.; Yu, J.H.; Guo, Z.B. Study on pollution behavior and sulfate formation during the typical haze event in Nanjing with water soluble inorganic ions and sulfur isotopes. Atmos. Res. 2019, 217, 198–207. [Google Scholar] [CrossRef]
- Ai, H.; Zhou, Z.; Li, K.; Kang, Z.-Y. Impacts of the desulfurization price subsidy policy on SO2 reduction: Evidence from China’s coal-fired power plants. Energy Policy 2021, 157, 112477. [Google Scholar] [CrossRef]
- Xu, S.; Sun, C.; Wei, H.; Hou, X. Road construction and air pollution: Analysis of road area ratio in China. Appl. Energy 2023, 351, 121794. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, X.; Wang, W. Study on the effect of environmental regulations and industrial structure on haze pollution in China from the dual perspective of independence and linkage. J. Clean. Prod. 2020, 256, 120748. [Google Scholar] [CrossRef]
- Xie, R.; Teo, T.S.H. Green technology innovation, environmental externality, and the cleaner upgrading of industrial structure in China-Considering the moderating effect of environmental regulation. Technol. Forecast. Soc. Change 2022, 184, 122020. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, T.; Liu, L.; Ni, J.; Yin, Y. Heterogeneous industrial agglomeration, technological innovation and haze pollution. China Econ. Rev. 2023, 77, 101880. [Google Scholar] [CrossRef]
- Weng, Z.; Ma, Z.; Xie, Y.; Cheng, C. Effect of China’s carbon market on the promotion of green technological innovation. J. Clean. Prod. 2022, 373, 133820. [Google Scholar] [CrossRef]
- van Rooij, B.; Zhu, Q.; Na, L.; Wang, Q. Centralizing Trends and Pollution Law Enforcement in China. China Q. 2017, 231, 583–606. [Google Scholar] [CrossRef]
- Liu, X.; Wang, W.; Huang, S. Criminal enforcement and environmental performance: Evidence from China. Ecol. Econ. 2024, 224, 108267. [Google Scholar] [CrossRef]
- Xue, J.; Zhu, D.; Zhao, L.; Huang, R.; Li, L.; Xie, X. Designing China’s environmental tax schemes from the perspective of differential tax rates. J. Clean. Prod. 2024, 470, 143314. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Yang, X.; Ren, S.; Ran, Q.; Hao, Y. Does local government competition aggravate haze pollution? A new perspective of factor market distortion. Socio-Econ. Plan. Sci. 2021, 76, 100959. [Google Scholar] [CrossRef]
- Elheddad, M.; Djellouli, N.; Tiwari, A.K.; Hammoudeh, S. The relationship between energy consumption and fiscal decentralization and the importance of urbanization: Evidence from Chinese provinces. J. Environ. Manag. 2020, 264, 110474. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Yuan, Y. Effects of industrial green total factor energy efficiency on haze abatement: A spatial econometric analysis based on China’s 272 cities. J. Environ. Manag. 2022, 317, 115399. [Google Scholar] [CrossRef]
- Tang, T.; Jiang, X.; Zhu, K.; Ying, Z.; Liu, W. Effects of the promotion pressure of officials on green low-carbon transition: Evidence from 277 cities in China. Energy Econ. 2024, 129, 107159. [Google Scholar] [CrossRef]
- Ren, X.; Ren, Y. Public environmental concern and corporate ESG performance. Financ. Res. Lett. 2024, 61, 104991. [Google Scholar] [CrossRef]
Variables | Sample | Mean | Standard Deviation | Min | Max |
---|---|---|---|---|---|
lnpm2.5 | 2810 | 3.6918 | 0.3776 | 2.3336 | 4.6606 |
Reform | 2810 | 0.4306 | 0.4952 | 0.0000 | 1.0000 |
Post | 2810 | 0.4000 | 0.4900 | 0.0000 | 1.0000 |
Reform × Post | 2810 | 0.1722 | 0.3777 | 0.0000 | 1.0000 |
lnEco | 2810 | 10.7886 | 0.5601 | 9.0066 | 13.0557 |
lnPop | 2810 | 5.7346 | 0.9883 | 1.7393 | 9.0886 |
Finance | 2810 | 2.5837 | 1.2322 | 0.6354 | 21.3018 |
Open | 2810 | 0.1718 | 0.2748 | 0.0003 | 2.4913 |
Green | 2810 | 0.4045 | 0.0696 | 0.0097 | 1.5811 |
lnRoad | 2810 | 2.8310 | 0.4283 | 0.8109 | 4.0955 |
lnInternet | 2810 | 3.0809 | 0.5769 | 0.8480 | 4.8352 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Reform × Post | −0.0816 *** (0.0253) | −0.0499 * (0.0255) | −0.1425 *** (0.0115) | −0.0353 *** (0.0116) |
lnEco | 0.1950 *** (0.0230) | −0.2685 *** (0.0900) | −0.1982 *** (0.0623) | |
lnPop | 0.0559 (0.0348) | −0.2486 *** (0.0352) | −0.1146 *** (0.0260) | |
Finance | −0.0196 (0.0157) | −0.0547 *** (0.0170) | −0.0107 ** (0.0050) | |
Open | −0.3318 *** (0.0675) | 0.0307 (0.0725) | 0.0411 (0.0484) | |
Green | −0.0761 (0.1429) | −0.2349 *** (0.0818) | −0.0489 (0.0614) | |
lnRoad | 0.0505 * (0.0294) | −0.0481 *** (0.0182) | 0.0290 * (0.0153) | |
lnInternet | −0.2602 *** (0.0282) | −0.1374 *** (0.0224) | −0.0386 ** (0.0165) | |
_cons | 3.7058 *** (0.0197) | 2.7769 *** (0.3245) | 8.7288 *** (0.6078) | 6.1483 *** (0.4613) |
CE | NO | NO | YES | YES |
TE | NO | NO | NO | YES |
N | 2810 | 2810 | 2810 | 2810 |
adj. R2 | 0.0063 | 0.3370 | 0.8189 | 0.8875 |
(1) | (2) | |
---|---|---|
Reform × Post | −0.0297 ** (0.0125) | −0.0296 ** (0.0117) |
_cons | 6.1799 *** (0.4861) | 6.2645 *** (0.4437) |
Controls | YES | YES |
CE | YES | YES |
TE | YES | YES |
N | 2490 | 2810 |
adj. R2 | 0.8670 | 0.9071 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Reform × Post | −0.0352 *** (0.0116) | −0.0356 *** (0.0116) | −0.0374 *** (0.0116) | −0.0441 *** (0.0115) | −0.0466 *** (0.0115) |
Airten | −0.0365 ** (0.0179) | −0.0440 ** (0.0190) | |||
Ecocomp | −0.0246 ** (0.0120) | −0.0317 *** (0.0120) | |||
VAT | 0.0401 *** (0.0134) | 0.0365 *** (0.0138) | |||
GTP | −0.0589 *** (0.0174) | −0.0617 *** (0.0174) | |||
_cons | 6.1226 *** (0.4553) | 6.1171 *** (0.4579) | 6.1040 *** (0.4546) | 6.0854 *** (0.4590) | 5.9709 *** (0.4416) |
Controls | YES | YES | YES | YES | YES |
CE | YES | YES | YES | YES | YES |
TE | YES | YES | YES | YES | YES |
N | 2810 | 2810 | 2810 | 2810 | 2810 |
adj. R2 | 0.8876 | 0.8877 | 0.8877 | 0.8883 | 0.8889 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Reform × Post | −0.0371 *** (0.0117) | −0.0335 *** (0.0117) | −0.0309 *** (0.0116) | −0.0304 ** (0.0118) |
lnwind | 0.0499 (0.0559) | 0.0243 (0.0540) | ||
lnrain | −0.0588 * (0.0302) | −0.0517 * (0.0303) | ||
lntemp | 0.2717 *** (0.0950) | 0.2567 *** (0.0888) | ||
_cons | 6.0329 *** (0.4647) | 6.5915 *** (0.4887) | 5.0272 *** (0.5468) | 5.4192 *** (0.5821) |
Controls | YES | YES | YES | YES |
CE | YES | YES | YES | YES |
TE | YES | YES | YES | YES |
N | 2810 | 2810 | 2805 | 2805 |
adj. R2 | 0.8884 | 0.8875 | 0.8902 | 0.8909 |
(1) | (2) | (3) | |
---|---|---|---|
Reform × Post | −0.2532 *** (0.0643) | −0.0353 *** (0.0094) | −0.0353 * (0.0201) |
_cons | 9.7706 *** (1.9602) | 6.1483 *** (0.3769) | 6.1483 *** (0.6264) |
Controls | YES | YES | YES |
CE | YES | YES | YES |
TE | YES | YES | YES |
Clustering level | city | city × year | province × year |
N | 2134 | 2810 | 2810 |
adj. R2 | 0.8759 | 0.8875 | 0.8875 |
(1) | (2) | |
---|---|---|
First Stage | Second Stage | |
Reform × Post | −0.3831 ** (0.1827) | |
IV | −0.0171 *** (0.0054) | |
Controls | YES | YES |
CE | YES | YES |
FE | YES | YES |
Kleibergen–Paap rk LM statistic | 8.929 *** | |
Cragg–Donald Wald F statistic | 62.323 [16.38] | |
N | 2810 | 2810 |
(1) | (3) | (2) | |
---|---|---|---|
ISC | GTI | lnLaw | |
Reform × Post | 0.0116 ** (0.0053) | 0.0566 *** (0.0200) | 0.6136 *** (0.1333) |
_cons | 1.0000 *** (0.1635) | 0.1599 (0.7165) | 1.7317 (4.1408) |
Controls | YES | YES | YES |
CE | YES | YES | YES |
TE | YES | YES | YES |
N | 2810 | 2810 | 2810 |
adj. R2 | 0.8987 | 0.2400 | 0.7744 |
(1) | (2) | |
---|---|---|
FRD | FED | |
FD × Reform × Post | −1.5856 ** (0.6201) | −0.6664 *** (0.1804) |
Reform × Post | −0.0324 *** (0.0115) | −0.0317 *** (0.0114) |
FD | −11.9359 ** (4.8005) | −4.7233 *** (1.7877) |
_cons | 5.9423 *** (0.4457) | 5.8718 *** (0.4449) |
Controls | YES | YES |
CE | YES | YES |
TE | YES | YES |
N | 2810 | 2810 |
adj. R2 | 0.8883 | 0.8886 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Old | Non-Old | High OPP | Low OPP | High PEC | Low PEC | |
Reform × Post | −0.0248 (0.0208) | −0.0400 *** (0.0136) | −0.0330 * (0.0168) | −0.0183 (0.0152) | −0.0430 *** (0.0157) | −0.0258 (0.0189) |
_cons | 5.9612 *** (0.8508) | 5.9374 *** (0.5381) | 5.6999 *** (0.5524) | 6.4974 *** (0.6713) | 6.2538 *** (0.6420) | 6.1412 *** (0.7206) |
Controls | YES | YES | YES | YES | YES | YES |
CE | YES | YES | YES | YES | YES | YES |
TE | YES | YES | YES | YES | YES | YES |
N | 920 | 1890 | 1394 | 1416 | 1404 | 1406 |
adj. R2 | 0.8575 | 0.8997 | 0.8943 | 0.8841 | 0.8884 | 0.8875 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Pan, H. Pursuing Cleaner Skies: A Study on the Impact of China’s Environmental Protection Tax Law on Haze Pollution. Sustainability 2024, 16, 11095. https://doi.org/10.3390/su162411095
Zhang W, Pan H. Pursuing Cleaner Skies: A Study on the Impact of China’s Environmental Protection Tax Law on Haze Pollution. Sustainability. 2024; 16(24):11095. https://doi.org/10.3390/su162411095
Chicago/Turabian StyleZhang, Wuxin, and Haiying Pan. 2024. "Pursuing Cleaner Skies: A Study on the Impact of China’s Environmental Protection Tax Law on Haze Pollution" Sustainability 16, no. 24: 11095. https://doi.org/10.3390/su162411095
APA StyleZhang, W., & Pan, H. (2024). Pursuing Cleaner Skies: A Study on the Impact of China’s Environmental Protection Tax Law on Haze Pollution. Sustainability, 16(24), 11095. https://doi.org/10.3390/su162411095