The Impacts and Spatial Characteristics of High-Standard Farmland Construction on Agricultural Carbon Productivity
Abstract
:1. Introduction
2. Research Assumptions
2.1. Mechanism of the Impact of High-Standard Farmland Construction on Agricultural Carbon Productivity
2.1.1. Scale Effects: Promoting Large-Scale Agricultural Operations
2.1.2. Structural Effects: Restructuring Agricultural Cultivation
2.1.3. Technology Effects: Promoting Technological Progress in Agriculture
2.2. Spatial Spillover Effects of High-Standard Farmland Construction on Agricultural Carbon Productivity
3. Methods
3.1. Model
3.1.1. Benchmark Modeling
3.1.2. Mediation Effects Model
3.1.3. Partial Measurement Modeling
- (1)
- Global Autocorrelation Model
- (2)
- Spatial panel model
3.2. Variable Description and Measurement
3.2.1. The Explained Variable
3.2.2. Core Explanatory Variable
3.2.3. Control Variables
3.2.4. Mechanism Variables
3.3. Sample Selection and Data Sources
4. Empirical Results
4.1. Benchmark Regression
4.2. Heterogeneity Analysis
4.3. Robustness Testing
4.3.1. Replacement Variable
4.3.2. Endogeneity Consideration
4.4. Analysis of Mechanisms of Action
4.5. Analysis of Spatial Spillover Effects
4.5.1. Spatial Correlation Test
4.5.2. Spatial Econometric Model Estimation Results
5. Discussion
6. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McKinsey Global Institute. The Carbon Productivity Challenge: Curbing Climate Change and Sustaining Economic Growth; McKinsey & Company, McKinsey Global Institute: Washington, DC, USA, 2008. [Google Scholar]
- Geffersa, A.G.; Agbola, F.W.; Mahmood, A. Technical efficiency in crop production across agro-ecological zones in Ethiopia: A meta-analysis of Frontier studies. Outlook Agric. 2019, 48, 5–15. [Google Scholar] [CrossRef]
- Liao, X.; Qin, S.; Wang, Y.; Zhu, H.; Qi, X. Effects of Land Transfer on Agricultural Carbon Productivity and Its Regional Differentiation in China. Land 2023, 12, 1358. [Google Scholar] [CrossRef]
- Baráth, L.; Bakucs, Z.; Benedek, Z.; Fertő, I.; Nagy, Z.; Vígh, E.; Debrenti, E.; Fogarasi, J. Does participation in agri-environmental schemes increase eco-efficiency? Sci. Total Environ. 2024, 906, 167518. [Google Scholar] [CrossRef] [PubMed]
- Adetutu, M.O.; Ajayi, V. The impact of domestic and foreign R&D on agricultural productivity in sub-Saharan Africa. World Dev. 2020, 125, 104690. [Google Scholar]
- Xiong, C.; Wang, G.; Xu, L. Spatial differentiation identification of influencing factors of agricultural carbon productivity at city level in Taihu lake basin, China. Sci. Total Environ. 2021, 800, 149610. [Google Scholar] [CrossRef]
- Coderoni, S.; Vanino, S. The farm-by-farm relationship among carbon productivity and economic performance of agriculture. Sci. Total Environ. 2022, 819, 153103. [Google Scholar] [CrossRef] [PubMed]
- Gornall, J.; Betts, R.; Burke, E.; Clark, R.; Camp, J.; Willett, K.; Wiltshire, A. Implications of climate change for agricultural productivity in the early twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2973–2989. [Google Scholar] [CrossRef]
- Akbar, U.; Li, Q.L.; Akmal, M.A.; Shakib, M.; Iqbal, W. Nexus between agro-ecological efficiency and carbon emission transfer: Evidence from China. Environ. Sci. Pollut. Res. 2021, 28, 18995–19007. [Google Scholar] [CrossRef]
- Chopra, R.; Magazzino, C.; Shah, M.I.; Sharma, G.D.; Rao, A.; Shahzad, U. The role of renewable energy and natural resources for sustainable agriculture in ASEAN countries: Do carbon emissions and deforestation affect agriculture productivity? Resour. Policy 2022, 76, 102578. [Google Scholar] [CrossRef]
- Olesen, J.E.; Bindi, M. Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 2002, 16, 239–262. [Google Scholar] [CrossRef]
- Rehman, A.; Alam, M.M.; Alvarado, R.; Işık, C.; Ahmad, F.; Cismas, L.M.; Pupazan, M.C.M. Carbonization and agricultural productivity in Bhutan: Investigating the impact of crops production, fertilizer usage, and employment on CO2 emissions. J. Clean. Prod. 2022, 375, 134178. [Google Scholar] [CrossRef]
- Khurshid, A.; Rauf, A.; Qayyum, S.; Calin, A.C.; Duan, W. Green innovation and carbon emissions: The role of carbon pricing and environmental policies in attaining sustainable development targets of carbon mitigation—Evidence from Central-Eastern Europe. Environ. Dev. Sustain. 2023, 25, 8777–8798. [Google Scholar] [CrossRef]
- Fang, L.; Hu, R.; Mao, H.; Chen, S. How crop insurance influences agricultural green total factor productivity: Evidence from Chinese farmers. J. Clean. Prod. 2021, 321, 128977. [Google Scholar] [CrossRef]
- Ramzan, M.; Iqbal, H.A.; Usman, M.; Ozturk, I. Environmental pollution and agricultural productivity in Pakistan: New insights from ARDL and wavelet coherence approaches. Environ. Sci. Pollut. Res. 2022, 29, 28749–28768. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhu, J.; Wang, L.; Zhong, S. The inhibitory effect of agricultural fiscal expenditure on agricultural green total factor productivity. Sci. Rep. 2022, 12, 20933. [Google Scholar] [CrossRef] [PubMed]
- Ye, D.; Zhen, S.; Wang, W.; Liu, Y. Spatial double dividend from China’s main grain-producing areas policy: Total factor productivity and the net carbon effect. Humanit. Soc. Sci. Commun. 2023, 10, 459. [Google Scholar] [CrossRef]
- Qian, L.; Liu, C.; Zheng, L.; Qian, W. How does high-standard farmland construction affect farmland transfer. China Land Sci. 2023, 37, 62–70. [Google Scholar]
- Hao, S.; Wang, G.; Yang, Y.; Zhao, S.; Huang, S.; Liu, L.; Zhang, H. Promoting grain production through high-standard farmland construction: Evidence in China. J. Integr. Agric. 2024, 23, 324–335. [Google Scholar] [CrossRef]
- Martyn, A.; Koshel, A.; Hunko, L.; Kolosa, L. Land consolidation in Ukraine after land reform: Voluntary and forced mechanisms. Acta Sci. Pol. Adm. Locorum 2022, 21, 223–229. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Warr, P. Land consolidation as technical change: Economic impacts in rural Vietnam. World Dev. 2020, 127, 104750. [Google Scholar] [CrossRef]
- Ye, F.; Wang, L.; Razzaq, A.; Tong, T.; Zhang, Q.; Abbas, A. Policy Impacts of High-Standard Farmland Construction on Agricultural Sustainability: Total Factor Productivity-Based Analysis. Land 2023, 12, 283. [Google Scholar] [CrossRef]
- Pašakarnis, G.; Maliene, V. Towards sustainable rural development in Central and Eastern Europe: Applying land consolidation. Land Use Policy 2010, 27, 545–549. [Google Scholar] [CrossRef]
- Bradfield, T.; Butler, R.; Dillon, E.; Hennessy, T.; Kilgarriff, P. The effect of land fragmentation on the technical inefficiency of dairy farms. J. Agric. Econ. 2021, 72, 486–499. [Google Scholar] [CrossRef]
- Baráth, L.; Fertő, I.; Bojnec, Š. The effect of investment, LFA and agri-environmental subsidies on the components of total factor productivity: The case of Slovenian farms. J. Agric. Econ. 2020, 71, 853–876. [Google Scholar] [CrossRef]
- Liu, Y.; Liao, W.; Zhang, X.; Qiu, H. Impact of high-standard farmland construction policy on chemical fertilizer reduction: A case study of China. Front. Environ. Sci. 2023. [Google Scholar] [CrossRef]
- Asimeh, M.; Nooripoor, M.; Azadi, H.; Van Eetvelde, V.; Sklenička, P.; Witlox, F. Agricultural land use sustainability in Southwest Iran: Improving land leveling using consolidation plans. Land Use Policy 2020, 94, 104555. [Google Scholar] [CrossRef]
- Yang, N.; Sun, X.; Qi, Q. Impact of factor quality improvement on agricultural carbon emissions: Evidence from China’s high-standard farmland. Front. Environ. Sci. 2022, 10, 1722. [Google Scholar] [CrossRef]
- Tang, W.; Huang, K.; Zhou, F. Can High-Standard Farmland Construction Policy Promote Agricultural Green Development? Evidence from Quasi Natural Experiments in Hunan, China. Pol. J. Environ. Stud. 2023, 32, 5333–5346. [Google Scholar] [CrossRef] [PubMed]
- Ntihinyurwa, P.D.; de Vries, W.T. Farmland fragmentation, farmland consolidation and food security: Relationships, research lapses and future perspectives. Land 2021, 10, 129. [Google Scholar] [CrossRef]
- Wang, Y.; Li, G.; Wang, S.; Zhang, Y.; Li, D.; Zhou, H.; Yu, W.; Xu, S. A Comprehensive Evaluation of Benefit of High-Standard Farmland Development in China. Sustainability 2022, 14, 10361. [Google Scholar] [CrossRef]
- Long, R.; Shao, T.; Chen, H. Spatial econometric analysis of China’s province-level industrial carbon productivity and its influencing factors. Appl. Energy 2016, 166, 210–219. [Google Scholar] [CrossRef]
- Koondhar, M.A.; Aziz, N.; Tan, Z.; Tang, S.; Abbasi, K.R.; Kong, R. Green growth of cereal food production under the constraints of agricultural carbon emissions: A new insights from ARDL and VECM models. Sustain. Energy Technol. Assess. 2021, 47, 101452. [Google Scholar] [CrossRef]
- Ismael, M.; Srouji, F.; Boutabba, M.A. Agricultural technologies and carbon emissions: Evidence from Jordanian economy. Environ. Sci. Pollut. Res. 2018, 25, 10867–10877. [Google Scholar] [CrossRef] [PubMed]
- Houssou, N.; Diao, X.; Cossar, F.; Kolavalli, S.; Jimah, K.; Aboagye, P. Agricultural Mechanization in Ghana: Is Specialization in Agricultural Mechanization a Viable Business Model? International Food Policy Research Institute: Washington, DC, USA, 2013. [Google Scholar]
- Li, C.; Shi, Y.; Khan, S.U.; Zhao, M. Research on the impact of agricultural green production on farmers’ technical efficiency: Evidence from China. Environ. Sci. Pollut. Res. 2021, 28, 38535–38551. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Zhang, Y.; Chen, Y. The Impact of High-Standard Farmland Construction Policy on Grain Quality from the Perspectives of Technology Adoption and Cultivated Land Quality. Agriculture 2023, 13, 1702. [Google Scholar] [CrossRef]
- Takeshima, H.; Hatzenbuehler, P.L.; Edeh, H.O. Effects of agricultural mechanization on economies of scope in crop production in Nigeria. Agric. Syst. 2020, 177, 102691. [Google Scholar] [CrossRef]
- Mathew, I.; Shimelis, H.; Mutema, M.; Minasny, B.; Chaplot, V. Crops for increasing soil organic carbon stocks—A global meta analysis. Geoderma 2020, 367, 114230. [Google Scholar] [CrossRef]
- Tientao, A.; Legros, D.; Pichery, M.C. Technology spillover and TFP growth: A spatial Durbin model. Int. Econ. 2016, 145, 21–31. [Google Scholar] [CrossRef]
- Kaya, Y.; Yolobori, K. Energy and Economy: Strategies for Sustainability; Bookwell Publications: Delhi, India, 1999; pp. 1–69. [Google Scholar]
- Wu, G.Y.; Sun, X.J.; Yu, F.B.; Yang, L.S. Analysis of the spatial correlation pattern of carbon productivity in China’s plantation industry and the factors affecting it. China Popul. Resour. Environ. 2020, 30, 46–57. [Google Scholar]
- Huang, X.; Feng, C.; Qin, J.; Wang, X.; Zhang, T. Measuring China’s agricultural green total factor productivity and its drivers during 1998–2019. Sci. Total Environ. 2022, 829, 154477. [Google Scholar] [CrossRef] [PubMed]
- Gang, F.; Xiaolu, W.; Guangrong, M. The Contribution of Marketization to China’s Economic Growth. China Econ. 2012, 7, 4. [Google Scholar]
- Liu, L.; Wang, X.; Meng, X.; Cai, Y. The coupling and coordination between food production security and agricultural ecological protection in main food-producing areas of China. Ecol. Indic. 2023, 154, 110785. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, F.; Hao, R.; Wu, L. Agricultural science and technology innovation, spatial spillover and agricultural green development—Taking 30 provinces in China as the research object. Appl. Sci. 2022, 12, 845. [Google Scholar] [CrossRef]
- Kurosaki, T.; Khan, H. Human capital, productivity, and stratification in rural Pakistan. Rev. Dev. Econ. 2006, 10, 116–134. [Google Scholar] [CrossRef]
- Oueslati, W.; Salanié, J.; Wu, J.J. Urbanization and agricultural productivity: Some lessons from European cities. J. Econ. Geogr. 2019, 19, 225–249. [Google Scholar] [CrossRef]
- Tian, P.; Lu, H.; Heijungs, R.; Li, D.; Xue, Y.; Yang, Y. Patterns of carbon footprints of main grains production in China: A comparison between main and non-main producing areas. Environ. Sci. Pollut. Res. 2022, 29, 23595–23606. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, F.; Wu, G.; Mai, Q. Spatial spillover effects of grain production efficiency in China: Measurement and scope. J. Clean. Prod. 2021, 278, 121062. [Google Scholar] [CrossRef]
Sources of Carbon Emissions | Carbon Emission Factor | Reference Source |
---|---|---|
Pesticide | 4.9341 kg/kg | ORNL Oak Ridge National Laboratory (USA) |
Fertilizer | 0.8956 kg/kg | ORNL Oak Ridge National Laboratory (USA) |
Agricultural film | 5.1800 kg/kg | Institute of Agricultural Resources and Ecological Environment, Nanjing Agricultural University |
Agricultural machinery | 0.5927 kg/kg | United Nations Intergovernmental Panel on Climate Change (IPCC) |
Tillage | 312.6 kg/km2 | LABCAU China Agricultural University College of Biology and Technology |
Irrigation | 19.8575 kg/hm2 | Wu et al. (2020) [42] |
Variables | Abbreviation | Units | N | Mean | S.D. | Min | Max |
---|---|---|---|---|---|---|---|
Agricultural carbon productivity | CP | logarithmic | 465 | 2.750 | 0.666 | 1.552 | 5.854 |
High-standard farmland construction | HSF | — | 465 | 0.369 | 0.222 | 0.068 | 0.894 |
Replanting index | MCI | — | 465 | 1.279 | 0.393 | 0.566 | 2.427 |
Disaster rate | DIS | % | 465 | 22.854 | 15.114 | 0.000 | 93.59 |
Agricultural irrigation conditions | IRR | % | 465 | 53.626 | 23.571 | 14.660 | 99.701 |
Agricultural economic development | AEDL | CNY 10,000, logarithmic | 465 | 2.992 | 2.008 | 0.279 | 9.690 |
Agricultural financial support | FINA | — | 465 | 0.099 | 0.034 | 0.021 | 0.190 |
Agricultural industry structure | IS | % | 465 | 20.227 | 9.949 | 0.889 | 54.657 |
Rural human capital | EDU | logarithmic | 465 | 7.327 | 0.891 | 3.240 | 9.801 |
Urbanization level | URB | % | 465 | 50.683 | 14.976 | 19.928 | 89.583 |
Degree of marketization | MAR | logarithmic | 465 | 6.973 | 2.097 | 0.106 | 11.233 |
Agricultural scale operation | FMS | Acres/person, logarithmic | 465 | 7.986 | 5.740 | 2.394 | 37.608 |
Agricultural cropping structure | STRU | % | 465 | 66.241 | 12.988 | 35.385 | 96.430 |
Advances in agricultural technology | AT | Watt/mu, logarithmic | 465 | 509.876 | 280.017 | 109.080 | 1788.119 |
Variables | Model (1) | Model (2) | Model (3) |
---|---|---|---|
HSF | 0.097 ** (0.041) | 0.107 *** (0.040) | 0.139 *** (0.046) |
DIS | −0.097 *** (0.038) | −0.112 *** (0.039) | −0.077 ** (0.037) |
IRR | −0.318 *** (0.081) | −0.254 *** (0.087) | −0.268 *** (0.082) |
MCI | −0.004 (0.048) | −0.046 (0.049) | −0.094 (0.050) |
AEDL | 0.134 *** (0.023) | 0.135 *** (0.030) | |
FINA | −1.043 *** (0.288) | −0.927 *** (0.291) | |
IS | 0.150 * (0.162) | 0.199 ** (0.162) | |
EDU | 0.123 * (0.147) | ||
URB | 0.372 ** (0.161) | ||
MAR | 0.001 (0.025) | ||
Regional fixed effects | Yes | Yes | Yes |
Time fixed effects | Yes | Yes | Yes |
Adj-R2 | 0.852 | 0.863 | 0.864 |
N | 465 | 465 | 465 |
Variables | Topographic Features | Production Function Area | Level of Economic Development | |||
---|---|---|---|---|---|---|
Plains (1) | Hilly Areas (2) | Major Grain-Producing Areas (3) | Non-Major Grain Producing Areas (4) | East-Central Regions (5) | Western Regions (6) | |
HSF | 0.225 *** (0.067) | 0.138 * (0.083) | 0.355 ** (0.139) | 0.129 ** (0.060) | 0.139 *** (0.048) | −0.117 (0.110) |
_Cons | Yes | Yes | Yes | Yes | Yes | Yes |
Regional fixed effects | Yes | Yes | Yes | Yes | Yes | Yes |
Time fixed effects | Yes | Yes | Yes | Yes | Yes | Yes |
Adj-R2 | 0.8587 | 0.8979 | 0.8182 | 0.8870 | 0.8181 | 0.9185 |
N | 240 | 225 | 195 | 270 | 330 | 135 |
Variables | Replacement of Core Variables (1) | Replacement of Explanatory Variables (2) | Simultaneous Replacement (3) | System GMM (4) |
---|---|---|---|---|
AI | 0.095 *** (0.018) | 0.063 *** (0.012) | ||
HSF | 0.073 *** (0.012) | 0.145 ** (0.073) | ||
L.CP | 0.543 *** (0.140) | |||
_Cons | Yes | Yes | Yes | Yes |
Regional fixed effects | Yes | Yes | Yes | Yes |
Time fixed effects | Yes | Yes | Yes | Yes |
Adj-R2 | 0.8173 | 0.5391 | 0.6158 | |
N | 465 | 465 | 465 | 434 |
AR(1)-p-value | 0.017 | |||
AR(2)-p-value | 0.600 | |||
Hansen test p-value | 0.793 |
Variables | Model (1) | Model (2) | Model (3) | Model (4) | Model (5) | Model (6) |
---|---|---|---|---|---|---|
HSF | 0.141 *** (0.039) | 0.157 *** (0.046) | 0.117 *** (0.024) | 0.080 ** (0.041) | 0.115 ** (0.053) | 0.099 *** (0.035) |
FMS | 0.174 *** (0.058) | |||||
STRU | 0.207 *** (0.068) | |||||
AT | 0.117 *** (0.031) | |||||
_Cons | Yes | Yes | Yes | Yes | Yes | Yes |
Regional fixed effects | Yes | Yes | Yes | Yes | Yes | Yes |
Time fixed effects | Yes | Yes | Yes | Yes | Yes | Yes |
Adj-R2 | 0.852 | 0.866 | 0.902 | 0.8589 | 0.8351 | 0.8560 |
N | 465 | 465 | 465 | 465 | 465 | 465 |
Year | High-Standard Farmland Construction | Agricultural Carbon Productivity | ||
---|---|---|---|---|
Moran Index | Z-Value | Moran Index | Z-Value | |
2003 | 0.027 | 0.670 | 0.172 ** | 2.426 |
2004 | 0.040 | 0.808 | 0.153 ** | 1.974 |
2005 | 0.051 | 0.924 | 0.162 * | 1.894 |
2006 | 0.135 | 1.569 | 0.082 | 1.216 |
2007 | 0.208 ** | 2.266 | 0.137 * | 1.780 |
2008 | 0.195 ** | 2.151 | 0.090 | 1.301 |
2009 | 0.228 ** | 2.466 | 0.201 ** | 2.309 |
2010 | 0.235 ** | 2.538 | 0.210 ** | 2.351 |
2011 | 0.233 ** | 2.525 | 0.209 ** | 2.332 |
2012 | 0.236 ** | 2.558 | 0.254 *** | 2.689 |
2013 | 0.234 ** | 2.545 | 0.267 *** | 2.818 |
2014 | 0.232 ** | 2.536 | 0.269 *** | 2.801 |
2015 | 0.230 ** | 2.512 | 0.250 *** | 2.684 |
2016 | 0.235 ** | 2.552 | 0.281 *** | 2.966 |
2017 | 0.238 *** | 2.570 | 0.307 *** | 3.142 |
Test | Statistic | Test | Statistic |
---|---|---|---|
LM spatial lag | 325.037 *** | Wald spatial error | 37.39 *** |
Robust LM spatial error | 7.769 *** | LR spatial error | 80.85 *** |
LM spatial error | 366.882 *** | Time LR test | 60.34 *** |
Robust LM spatial lag | 49.614 *** | Spatial LR test | 668.51 *** |
Wald spatial lag | 24.21 *** | Hausman | −49.73 *** |
LR spatial lag | 82.42 *** |
Variables | (1) | (2) |
---|---|---|
HSF | 0.071 *** (0.020) | |
W× HSF | 0.025 ** (0.029) | |
Direct effect | 0.074 *** (0.020) | |
Indirect effect | 0.043 *** (0.012) | |
Total effect | 0.117 *** (0.031) | |
_Cons | Yes | Yes |
Regional fixed effects | Yes | Yes |
Time fixed effects | Yes | Yes |
ρ | 0.394 *** (0.050) | 0.394 *** (0.050) |
R2 | 0.4021 | 0.4021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiaokaiti, X.; Zhang, H.; Jia, N. The Impacts and Spatial Characteristics of High-Standard Farmland Construction on Agricultural Carbon Productivity. Sustainability 2024, 16, 1481. https://doi.org/10.3390/su16041481
Xiaokaiti X, Zhang H, Jia N. The Impacts and Spatial Characteristics of High-Standard Farmland Construction on Agricultural Carbon Productivity. Sustainability. 2024; 16(4):1481. https://doi.org/10.3390/su16041481
Chicago/Turabian StyleXiaokaiti, Xiayire, Hongli Zhang, and Nan Jia. 2024. "The Impacts and Spatial Characteristics of High-Standard Farmland Construction on Agricultural Carbon Productivity" Sustainability 16, no. 4: 1481. https://doi.org/10.3390/su16041481
APA StyleXiaokaiti, X., Zhang, H., & Jia, N. (2024). The Impacts and Spatial Characteristics of High-Standard Farmland Construction on Agricultural Carbon Productivity. Sustainability, 16(4), 1481. https://doi.org/10.3390/su16041481