Indoor Thermal Comfort Sector: A Review of Detection and Control Methods for Thermal Environment in Livestock Buildings
Abstract
:1. Introduction
2. Research Methodology
- application of field experiments in collecting thermal environmental data from livestock buildings;
- application of scale model and wind tunnel to study thermal environmental conditions in livestock buildings;
- application of CFD simulation in thermal environmental management research in livestock buildings; and
- application of machine learning and deep learning in thermal environmental control in livestock buildings.
3. Thermal Environment Detection Methods in Livestock Buildings
3.1. Main Thermal Environmental Parameters in Livestock Buildings
3.2. Single Thermal Environmental Parameter Detection Methods for Livestock Buildings
3.2.1. Field Experiments
3.2.2. Scale Model in a Wind Tunnel
3.2.3. CFD Simulation
- (1)
- Model simplification
- (2)
- Mesh type
- (3)
- Turbulence model
3.2.4. Machine Learning
3.3. Detection Methods of Thermal Environment Based on Multi-Environmental Parameters
3.3.1. Equivalent Temperature for Pigs
3.3.2. Equivalent Temperature for Broiler
3.3.3. Equivalent Temperature for Cattle
4. Thermal Environment Control Methods in Livestock Buildings
4.1. Building Envelop
4.1.1. Inlet Configuration
4.1.2. Outlet Configuration
4.1.3. Water-Cooled Floor
4.2. Indoor Facility and Equipment
4.2.1. Deflector
4.2.2. Perforated Air Ducting (PAD) System
4.2.3. Other Facilities
5. Problems and Research Prospects of Detection and Control Methods for Thermal Environment in Livestock Buildings
6. Conclusions
- (1)
- Temperature, humidity, and airflow speed are the main parameters affecting the thermal environment in livestock buildings.
- (2)
- For single parameter detection, a field experiment is the most commonly used method. A scale model in a wind tunnel can effectively control experimental conditions and has been extensively applied in aerodynamics studies. But it fails to accurately represent the real situation. CFD simulation analyzes the thermal environment in both quantitative and qualitative manners, while model simplification, mesh, and turbulence models may affect its accuracy. Machine learning is an emerging detection method, and its precision is influenced by the data and model.
- (3)
- For detecting the thermal environment based on multi-environmental parameters, an effective temperature index is a feasible detection method. It considers varying proportions of different environmental parameters and is classified according to livestock species.
- (4)
- For thermal environment control methods, the inlet configuration significantly affects the air motion and distribution, while the outlet determines the ventilation rate. The water-cooled floor can effectively decrease surface temperature. Deflectors beneath the ceiling can effectively increase airspeed, while deflectors behind inlets or pits affect airflow patterns and turbulence intensity. A PAD system significantly increases the air speed in AOZ. EAHE significantly mitigates the heat load of livestock housing. Sprinkling removes heat from livestock buildings through evaporation but concurrently elevates humidity levels.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Livestock and Agroecology; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- Lamy, E.; van Harten, S.; Sales-Baptista, E.; Guerra, M.M.M.; de Almeida, A.M. Factors influencing livestock productivity. In Environmental Stress and Amelioration in Livestock Production; Springer: Berlin/Heidelberg, Germany, 2012; pp. 19–51. [Google Scholar]
- St-Pierre, N.R.; Cobanov, B.; Schnitkey, G. Economic losses from heat stress by US livestock industries. J. Dairy Sci. 2003, 86, 52–77. [Google Scholar] [CrossRef]
- Pisello, A.L.; Cotana, F.; Nicolini, A.; Buratti, C. Effect of dynamic characteristics of building envelope on thermal-energy performance in winter conditions: In field experiment. Energy Build. 2014, 80, 218–230. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, Q. Effect of fluctuating wind direction on cross natural ventilation in buildings from large eddy simulation. Build. Environ. 2002, 37, 379–386. [Google Scholar] [CrossRef]
- Rong, L.; Nielsen, P.V.; Bjerg, B.; Zhang, G. Summary of best guidelines and validation of CFD modeling in livestock buildings to ensure prediction quality. Comput. Electron. Agric. 2016, 121, 180–190. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Lee, I.-B.; Yeo, U.-H.; Kim, J.-G.; Kim, R.-W. Machine learning approach to predict air temperature and relative humidity inside mechanically and naturally ventilated duck houses: Application of recurrent neural network. Agriculture 2022, 12, 318. [Google Scholar] [CrossRef]
- Roger, L. How to manage heat stress to improve pig health, comfort and performance. Int. Pig Top. 2015, 30, 35–36. [Google Scholar]
- Mondaca, M.R.; Rojano, F.; Choi, C.Y. Computational modeling of a conductive cooling system to alleviate heat stress in dairy cows. In Proceedings of the ASABE Annual International Meeting, Dallas, TX, USA, 29 July–1 August 2012. [Google Scholar]
- Schauberger, G.; Hennig-Pauka, I.; Zollitsch, W.; Hörtenhuber, S.J.; Baumgartner, J.; Niebuhr, K.; Schönhart, M. Efficacy of adaptation measures to alleviate heat stress in confined livestock buildings in temperate climate zones. Biosyst. Eng. 2020, 200, 157–175. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, G.; Choi, C.Y. Effect of airflow speed and direction on convective heat transfer of standing and reclining cows. Biosyst. Eng. 2018, 167, 87–98. [Google Scholar] [CrossRef]
- Huang, T.; Zhang, G.; Rong, L. Conductive heat loss of sows in a ventilated environment identified by steady CFD-CHT modelling considering thermophysiological effects. Comput. Electron. Agric. 2022, 199, 107142. [Google Scholar] [CrossRef]
- Brandt, P.; Bjerg, B.; Pedersen, P.; Sørensen, K.; Rong, L.; Huang, T.; Zhang, G. The effect of air temperature, velocity and humidity on respiration rate and rectal temperature as an expression of heat stress in gestating sows. J. Therm. Biol. 2022, 104, 103142. [Google Scholar] [CrossRef]
- Brown-Brandl, T.M.; Eigenberg, R.A.; Nienaber, J.A.; Hahn, G.L. Dynamic Response Indicators of Heat Stress in Shaded and Non-shaded Feedlot Cattle, Part 1: Analyses of Indicators. Biosyst. Eng. 2005, 90, 451–462. [Google Scholar] [CrossRef]
- Hansen, R.; Bjerg, B. Optimal ambient Temperature with regard to Feed Efficiency and Daily Gain of finisher pigs. In Proceedings of the EurAgEng 2018 Conference, Wageningen, The Netherlands, 8–12 July 2018; pp. 8–12. [Google Scholar]
- Campo, J.L.; Prieto, M.T.; Dávila, S.G. Effects of housing system and cold stress on heterophil-to-lymphocyte ratio, fluctuating asymmetry, and tonic immobility duration of chickens. Poult. Sci. 2008, 87, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Levente, K.; Luca, K.F.; Ferenc, R.; Viktor, J.; Ottó, S.; Loor, J.J. Assessment of heat stress in 7-week old dairy calves with non-invasive physiological parameters in different thermal environments. PLoS ONE 2018, 13, e0200622. [Google Scholar]
- Zhao, Y.; Shepherd, T.A.; Li, H.; Xin, H. Environmental assessment of three egg production systems–Part I: Monitoring system and indoor air quality. Poult. Sci. 2015, 94, 518–533. [Google Scholar] [CrossRef]
- Hill, D.L.; Wall, E. Dairy cattle in a temperate climate: The effects of weather on milk yield and composition depend on management. Animal 2015, 9, 138–149. [Google Scholar] [CrossRef]
- Luyu, D.; Meizhi, W.; Zhaohui, C.; Jijun, L.; Shitang, Y.; Junsheng, Z. Effects of spraying cooling on open beef cattle barn in Southern China. Trans. Chin. Soc. Agric. Eng. 2013, 29, 224–231. [Google Scholar]
- Gautam, K.R.; Rong, L.; Zhang, G.; Bjerg, B.S. Temperature distribution in a finisher pig building with hybrid ventilation. Biosyst. Eng. 2020, 200, 123–137. [Google Scholar] [CrossRef]
- Sharma, N.; Chaudhry, K.; Rao, C. Air pollution dispersion studies through environmental wind tunnel (EWT) investigations: A review. J. Sci. Ind. Res. 2005, 8, 549–559. [Google Scholar]
- Hudson, N.; Ayoko, G. Odour sampling. 2. Comparison of physical and aerodynamic characteristics of sampling devices: A review. Bioresour. Technol. 2008, 99, 3993–4007. [Google Scholar] [CrossRef]
- Rong, L.; Nielsen, P.V.; Zhang, G. Effects of airflow and liquid temperature on ammonia mass transfer above an emission surface: Experimental study on emission rate. Bioresour. Technol. 2009, 100, 4654–4661. [Google Scholar] [CrossRef]
- Ye, Z.; Zhang, G.; Seo, I.-H.; Kai, P.; Saha, C.; Wang, C.; Li, B. Airflow characteristics at the surface of manure in a storage pit affected by ventilation rate, floor slat opening, and headspace height. Biosyst. Eng. 2009, 104, 97–105. [Google Scholar] [CrossRef]
- Wu, W.; Zong, C.; Zhang, G. Comparisons of two numerical approaches to simulate slatted floor of a slurry pit model–large eddy simulations. Comput. Electron. Agric. 2013, 93, 78–89. [Google Scholar] [CrossRef]
- Wu, W.; Kai, P.; Zhang, G. An assessment of a partial pit ventilation system to reduce emission under slatted floor–Part 1: Scale model study. Comput. Electron. Agric. 2012, 83, 127–133. [Google Scholar] [CrossRef]
- Yi, Q.; Janke, D.; Thormann, L.; Zhang, G.; Amon, B.; Hempel, S.; Nosek, Š.; Hartung, E.; Amon, T. Airflow characteristics downwind a naturally ventilated pig building with a roofed outdoor exercise yard and implications on pollutant distribution. Appl. Sci. 2020, 10, 4931. [Google Scholar] [CrossRef]
- Lo, L.J.; Banks, D.; Novoselac, A. Combined wind tunnel and CFD analysis for indoor airflow prediction of wind-driven cross ventilation. Build. Environ. 2013, 60, 12–23. [Google Scholar]
- Gebremedhin, K.; Wu, B. Characterization of flow field in a ventilated space and simulation of heat exchange between cows and their environment. J. Therm. Biol. 2003, 28, 301–319. [Google Scholar] [CrossRef]
- Cheng, Q.; Wu, W.; Li, H.; Zhang, G.; Li, B. CFD study of the influence of laying hen geometry, distribution and weight on airflow resistance. Comput. Electron. Agric. 2018, 144, 181–189. [Google Scholar] [CrossRef]
- Li, H.; Rong, L.; Zhang, G. Study on convective heat transfer from pig models by CFD in a virtual wind tunnel. Comput. Electron. Agric. 2016, 123, 203–210. [Google Scholar] [CrossRef]
- Li, H.; Rong, L.; Zong, C.; Zhang, G. A numerical study on forced convective heat transfer of a chicken (model) in horizontal airflow. Biosyst. Eng. 2016, 150, 151–159. [Google Scholar] [CrossRef]
- Seo, I.H.; Lee, I.B.; Moon, O.K.; Kim, H.T.; Hwang, H.S.; Hong, S.W.; Bitog, J.P.; Yoo, J.I.; Kwon, K.S.; Kim, Y.H. Improvement of the ventilation system of a naturally ventilated broiler house in the cold season using computational simulations. Biosyst. Eng. 2009, 104, 106–117. [Google Scholar] [CrossRef]
- Hui, X.; Zhu, Q.; Ji-Qin, N.; Li, B.M.; Wang, Y. Effect of cooling pad installation on indoor airflow distribution in a tunnel-ventilated laying-hen house. Int. J. Agric. Biol. Eng. 2016, 9, 9. [Google Scholar]
- Rong, L.; Bjerg, B.; Zhang, G. Assessment of modeling slatted floor as porous medium for prediction of ammonia emissions–Scaled pig barns. Comput. Electron. Agric. 2015, 117, 234–244. [Google Scholar] [CrossRef]
- Mondaca, M.R.; Choi, C.Y. An evaluation of simplifying assumptions in dairy cow computational fluid dynamics models. Trans. ASABE 2016, 59, 1575–1584. [Google Scholar]
- Cheng, Q.; Mu, Y.; Li, B. CFD simulation of influence of air supply location of airflow and temperature in stacked-cage hen house with tunnel ventilation. Trans. Chin. Soc. Agric. Eng. 2019, 35, 192–199. [Google Scholar]
- Duan, R.; Liu, W.; Xu, L.; Huang, Y.; Shen, X.; Lin, C.H.; Liu, J.; Chen, Q.; Sasanapuri, B. Mesh type and number for the cfd simulations of air distribution in an aircraft cabin. Numer. Heat Transf. Part B Fundam. 2015, 67, 489–506. [Google Scholar] [CrossRef]
- Yu, G.; Yu, B.; Sun, S.; Tao, W.Q. Comparative study on triangular and quadrilateral meshes by a finite-volume method with a central difference scheme. Numer. Heat Transf. Part B Fundam. Int. J. Comput. Methodol. 2012, 62, 243–263. [Google Scholar] [CrossRef]
- Li, H.; Rong, L.; Zhang, G. Reliability of turbulence models and mesh types for CFD simulations of a mechanically ventilated pig house containing animals. Biosyst. Eng. 2017, 161, 37–52. [Google Scholar] [CrossRef]
- Seo, I.H.; Lee, I.B.; Moon, O.K.; Hong, S.W.; Hwang, H.S.; Bitog, J.P.; Kwon, K.S.; Ye, Z.; Lee, J.W. Modelling of internal environmental conditions in a full-scale commercial pig house containing animals. Biosyst. Eng. 2012, 111, 91–106. [Google Scholar] [CrossRef]
- Walton, A.; Cheng, A.Y.S. Large-eddy simulation of pollution dispersion in an urban street canyon—Part II: Idealised canyon simulation. Atmos. Environ. 2002, 36, 3615–3627. [Google Scholar] [CrossRef]
- Rong, L.; Elhadidi, B.; Khalifa, H.E.; Nielsen, P.V.; Zhang, G. Validation of CFD simulation for ammonia emissions from an aqueous solution. Comput. Electron. Agric. 2011, 75, 261–271. [Google Scholar] [CrossRef]
- Ansys Inc. ANSYS Fluent User’s Guide 17.1; Ansys Inc.: Pittsburgh, PA, USA, 2016. [Google Scholar]
- Kuznik, F.; Rusaoueen, G.; Brau, J. Experimental and numerical study of a full scale ventilated enclosure: Comparison of four two equations closure turbulence models. Build. Environ. 2007, 42, 1043–1053. [Google Scholar] [CrossRef]
- Saha, C.K.; Wu, W.; Zhang, G.; Bjerg, B. Assessing effect of wind tunnel sizes on air velocity and concentration boundary layers and on ammonia emission estimation using computational fluid dynamics (CFD). Comput. Electron. Agric. 2011, 78, 49–60. [Google Scholar] [CrossRef]
- Wang, X.; Wu, J.; Yi, Q.; Zhang, G.; Amon, T.; Janke, D.; Li, X.; Chen, B.; He, Y.; Wang, K. Numerical evaluation on ventilation rates of a novel multi-floor pig building using computational fluid dynamics. Comput. Electron. Agric. 2021, 182, 106050. [Google Scholar] [CrossRef]
- Yi, Q.; Wang, X.; Zhang, G.; Li, H.; Janke, D.; Amon, T. Assessing effects of wind speed and wind direction on discharge coefficient of sidewall opening in a dairy building model—A numerical study. Comput. Electron. Agric. 2019, 162, 235–245. [Google Scholar] [CrossRef]
- Cheng, Q.; Li, H.; Rong, L.; Feng, X.; Zhang, G.; Li, B. Using CFD to assess the influence of ceiling deflector design on airflow distribution in hen house with tunnel ventilation. Comput. Electron. Agric. 2018, 151, 165–174. [Google Scholar] [CrossRef]
- Tong, G.; Zhang, G.; Christopher, D.M.; Bjerg, B.; Ye, Z.; Cheng, J. Evaluation of turbulence models to predict airflow and ammonia concentrations in a scale model swine building enclosure. Comput. Fluids 2013, 71, 240–249. [Google Scholar] [CrossRef]
- Bartzanas, T.; Kittas, C.; Sapounas, A.; Nikita-Martzopoulou, C. Analysis of airflow through experimental rural buildings: Sensitivity to turbulence models. Biosyst. Eng. 2007, 97, 229–239. [Google Scholar] [CrossRef]
- Gonzalez-Mora, A.F.; Rousseau, A.N.; Larios, A.D.; Godbout, S.; Fournel, S. Assessing environmental control strategies in cage-free aviary housing systems: Egg production analysis and Random Forest modeling. Comput. Electron. Agric. 2022, 196, 106854. [Google Scholar] [CrossRef]
- Huang, T.; Rong, L.; Zhang, G. Investigating the feasibility of using computational fluid dynamics based response surface methodology and neural network to model the performance of the individualised ventilation in sow houses. Biosyst. Eng. 2022, 214, 138–151. [Google Scholar] [CrossRef]
- Yeo, U.H.; Jo, S.K.; Kim, S.H.; Park, D.H.; Jeong, D.Y.; Park, S.J.; Kim, R.W. Applicability of machine-learned regression models to estimate internal air temperature and CO2 concentration of a pig house. Agronomy 2023, 13, 328. [Google Scholar] [CrossRef]
- Hahn, L.R.; Gaughan, J.B.; Mader, T.L.; Eigenberg, R.A. Thermal indices and their applications for livestock environments. In Livestock Energetics and Thermal Environment Management; ASABE: St. Joseph, MI, USA, 2009; pp. 113–130. [Google Scholar]
- Mayer, D.G.; Davison, T.M.; Mcgowan, M.R.; Young, B.A.; Gaughan, J.B. Extent and economic effect of heat loads on dairy cattle production in Australia. Aust. Vet. J. 2010, 77, 804–808. [Google Scholar] [CrossRef]
- Amundson, J.; Mader, T.L.; Rasby, R.J.; Hu, Q.S. The effects of temperature and temperature-humidity index on pregnancy rate in beef cows. Neb. Beef Cattle Rep. 2005, 149, 9–12. [Google Scholar]
- Bjerg, B.; Rong, L.; Zhang, G. Computational prediction of the effective temperature in the lying area of pig pens. Comput. Electron. Agric. 2018, 149, 71–79. [Google Scholar] [CrossRef]
- Huang, T.; Rong, L.; Zhang, G.; Brandt, P.; Bjerg, B.; Pedersen, P.; Granath, S.W. A two-node mechanistic thermophysiological model for pigs reared in hot climates–Part 1: Physiological responses and model development. Biosyst. Eng. 2021, 212, 302–317. [Google Scholar] [CrossRef]
- Huang, T.; Zhang, G.; Brandt, P.; Bjerg, B.; Pedersen, P.; Rong, L. An effective temperature derived from a mechanistic thermophysiological model for sows reared in hot climates. Biosyst. Eng. 2022, 220, 19–38. [Google Scholar] [CrossRef]
- Tao, X. Effects of Temperature-Humidity-Velocity Conditions on the Sensitive Physiological and Biochemical Indices of Broilers. Ph.D. Thesis, Chinese Academy of Agricultural Science, Beijing, China, 2003. [Google Scholar]
- Wang, X.; Gao, H.; Gebremedhin, K.G.; Bjerg, B.S.; Van Os, J.; Tucker, C.B.; Zhang, G. A predictive model of equivalent temperature index for dairy cattle (ETIC). J. Therm. Biol. 2018, 76, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Rong, L.; Zong, C.; Zhang, G. Assessing response surface methodology for modelling air distribution in an experimental pig room to improve air inlet design based on computational fluid dynamics. Comput. Electron. Agric. 2017, 141, 292–301. [Google Scholar] [CrossRef]
- Bjerg, B.; Svidt, K.; Zhang, G.; Morsing, S.; Johnsen, J. Modeling of air inlets in CFD prediction of airflow in ventilated animal houses. Comput. Electron. Agric. 2002, 34, 223–235. [Google Scholar] [CrossRef]
- Zhang, G.; Bjerg, B.; Svidt, K.; Morsing, S.; Johnsen, J. SE—Structures and environment: Measurements of isothermal compact ceiling jets generated by rectangular wall inlets. Biosyst. Eng. 2002, 82, 463–468. [Google Scholar] [CrossRef]
- Hawendi, S.; Gao, S. Impact of windward inlet-opening positions on fluctuation characteristics of wind-driven natural cross ventilation in an isolated house using LES. Int. J. Vent. 2017, 17, 93–119. [Google Scholar] [CrossRef]
- Cheng, Q.; Feng, H.; Meng, H.; Zhou, H. CFD study of the effect of inlet position and flap on the airflow and temperature in a laying hen house in summer. Biosyst. Eng. 2021, 203, 109–123. [Google Scholar] [CrossRef]
- Kwon, K.-S.; Lee, I.-B.; Zhang, G.Q.; Ha, T. Computational fluid dynamics analysis of the thermal distribution of animal occupied zones using the jet-drop-distance concept in a mechanically ventilated broiler house. Biosyst. Eng. 2015, 136, 51–68. [Google Scholar] [CrossRef]
- Zhang, G.; Morsing, S.; Strøm, J. Modeling jet drop distances for control of a nonisothermal, flap-adjusted ventilation jet. Trans. ASAE 1996, 39, 1421. [Google Scholar] [CrossRef]
- Zhang, G.; Strøm, J. Jet drop models for control of non-isothermal free jets in a side-wall multi-inlet ventilation system. Trans. ASAE 1999, 42, 1121–1126. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, G.; Wu, W.; Bjerg, B. Model-based control of natural ventilation in dairy buildings. Comput. Electron. Agric. 2013, 94, 47–57. [Google Scholar] [CrossRef]
- Yi, Q.; Zhang, G.; Amon, B.; Hempel, S.; Janke, D.; Saha, C.K.; Amon, T. Modelling air change rate of naturally ventilated dairy buildings using response surface methodology and numerical simulation. Build. Simul. 2021, 14, 827–839. [Google Scholar] [CrossRef]
- Yi, Q.; König, M.; Janke, D.; Hempel, S.; Zhang, G.; Amon, B.; Amon, T. Wind tunnel investigations of sidewall opening effects on indoor airflows of a cross-ventilated dairy building. Energy Build. 2018, 175, 163–172. [Google Scholar] [CrossRef]
- Yi, Q.; Zhang, G.; Li, H.; Wang, X.; Janke, D.; Amon, B.; Hempel, S.; Amon, T. Estimation of opening discharge coefficient of naturally ventilated dairy buildings by response surface methodology. Comput. Electron. Agric. 2020, 169, 105224. [Google Scholar] [CrossRef]
- Yi, Q.; Zhang, G.; König, M.; Janke, D.; Hempel, S.; Amon, T. Investigation of discharge coefficient for wind-driven naturally ventilated dairy barns. Energy Build. 2018, 165, 132–140. [Google Scholar] [CrossRef]
- Khan, J.A.; Feigley, C.E.; Lee, E.; Ahmed, M.R.; Tamanna, S. Effects of inlet and exhaust locations and emitted gas density on indoor air contaminant concentrations. Build. Environ. 2006, 41, 851–863. [Google Scholar] [CrossRef]
- Wang, X.; Cao, M.; Hu, F.; Yi, Q.; Amon, T.; Janke, D.; Xie, T.; Zhang, G.; Wang, K. Effect of fans’ placement on the indoor thermal environment of typical tunnel-ventilated multi-floor pig buildings using numerical simulation. Agriculture 2022, 12, 891. [Google Scholar] [CrossRef]
- Brandt, P.; Grønvig, M.; Rong, L.; Zhang, G.; Gautam, K.; Kristensen, J.; Bjerg, B. The effect of floor cooling on respiration rate and distribution of pigs in the pen. Livest. Sci. 2022, 257, 104832. [Google Scholar] [CrossRef]
- Cabezon, F.; Schinckel, A.; Marchant-Forde, J.; Johnson, J.; Stwalley, R. Effect of floor cooling on late lactation sows under acute heat stress. Livest. Sci. 2017, 206, 113–120. [Google Scholar] [CrossRef]
- Parois, S.P.; Cabezón, F.A.; Schinckel, A.P.; Johnson, J.S.; Stwalley, R.M.; Marchant-Forde, J.N. Effect of floor cooling on behavior and heart rate of late lactation sows under acute heat stress. Front. Vet. Sci. 2018, 5, 223. [Google Scholar] [CrossRef]
- Wagenberg, A.V.; Peet-Schwering, C.M.C.; Binnendijk, G.P.; Claessen, P.J.P.W. Effect of floor cooling on farrowing sow and litter performance: Field experiment under dutch conditions. Trans. ASAE Am. Soc. Agric. Eng. 2006, 49, 1521–1527. [Google Scholar]
- Harner, J.; Smith, J. Low-profile cross-ventilated freestall facilities–A 2 year summary. In Proceedings of the High Plains Dairy Conference, Albuquerque, NM, USA, 6–7 March 2008; pp. 65–78. [Google Scholar]
- Chen, Z.; Ma, Y.; Liu, R.; Guo, F.; Liu, J.; Yang, S. Numerical simulation of environmental conditions for fan-pad evaporative cooling system of beef cattle barn in summer. Trans. Chin. Soc. Agric. Eng. 2017, 33, 211–218. [Google Scholar]
- Deng, S.; Shi, Z.; Li, B.; Zhao, S.; Ding, T.; Zheng, W. CFD simulation of airflow distribution in low profile cross ventilated dairy cattle barn. Trans. Chin. Soc. Agric. Eng. 2014, 30, 139–146. [Google Scholar]
- Ikeguchi, A.; Naide, T.; Shimoda, Y.; Noritake, K. Air flow pattern in an enclosed Japanese dairy house with push and pull low profile cross ventilation system. In Proceedings of the ASABE Annual International Meeting, New Orleans, LA, USA, 26–29 July 2015. [Google Scholar]
- Purswell, J.L.; Luck, B.D.; Davis, J.D. Effect of air deflectors on fan performancein tunnel-ventilated broiler houseswith a dropped ceiling. Appl. Eng. Agric. 2014, 30, 471–475. [Google Scholar]
- Ye, Z.; Saha, C.K.; Li, B.; Tong, G.; Wang, C.; Zhu, S.; Zhang, G. Effect of environmental deflector and curtain on air exchange rate in slurry pit in a model pig house. Biosyst. Eng. 2009, 104, 522–533. [Google Scholar] [CrossRef]
- Mondaca, M.R.; Choi, C.Y. A computational fluid dynamics model of a perforated polyethylene tube ventilation system for dairy operations. Trans. ASABE 2016, 59, 1585–1594. [Google Scholar]
- Perin, J.; Gaggini, T.S.; Manica, S.; Magnabosco, D.; Bernardi, M.L.; Wentz, I.; Bortolozzo, F.P. Evaporative snout cooling system on the performance of lactating sows and their litters in a subtropical region. Ciência Rural. 2016, 46, 342–347. [Google Scholar] [CrossRef]
- Cheng, Q.; Liu, J.; Jin, W.; Mu, Y.; Liu, S. Effects of cooling fan-duct on cooling performance in open-sided beef barn in Southern China. Trans. Chin. Soc. Agric. Eng. 2014, 30, 126–134. [Google Scholar]
- Eliene, J.; Nääs, I.D.A.; Carvalho, T.M.R.; Neves, D.P.; D’Alessandro, S.D. The impact of evaporative cooling on the thermoregulation and sensible heat loss of sows during farrowing. Eng. Agric. 2014, 34, 1050–1061. [Google Scholar]
- Wang, X.; Zhang, G.; Choi, C.Y. Evaluation of a precision air-supply system in naturally ventilated freestall dairy barns. Biosyst. Eng. 2018, 175, 1–15. [Google Scholar] [CrossRef]
- Cao, M.; Yang, R.; Choi, C.Y.; Rong, L.; Zhang, G.; Wang, K.; Wang, X. Effects of discharge angle of jet from a slot orifice on cooling performance for a perforated air ducting system in dairy cattle barn. Comput. Electron. Agric. 2023, 210, 107890. [Google Scholar] [CrossRef]
- Wang, X.; Bjerg, B.S.; Zhang, G. Design-oriented modelling on cooling performance of the earth-air heat exchanger for livestock housing. Comput. Electron. Agric. 2018, 152, 51–58. [Google Scholar] [CrossRef]
- Kim, J.-G.; Lee, I.-B.; Lee, S.-Y.; Park, S.-J.; Jeong, D.-Y.; Choi, Y.-B.; Decano-Valentin, C.; Yeo, U.-H. Development of an air-recirculated ventilation system for a piglet house, Part 1: Analysis of representative problems through field experiment and aerodynamic analysis using CFD simulation for evaluating applicability of system. Agriculture 2022, 12, 1139. [Google Scholar] [CrossRef]
- Kendall, P.; Verkerk, G.; Webster, J.; Tucker, C. Sprinklers and shade cool cows and reduce insect-avoidance behavior in pasture-based dairy systems. J. Dairy Sci. 2007, 90, 3671–3680. [Google Scholar] [CrossRef] [PubMed]
- Collier, J. Advances associated with environmental effect on dairy cattle. J. Dairy Sci. 2006, 89, 1244–1253. [Google Scholar] [CrossRef] [PubMed]
- Hempel, S.; König, M.; Menz, C.; Janke, D.; Amon, B.; Banhazi, T.; Estellés, F.; Amon, T. Uncertainty in the measurement of indoor temperature and humidity in naturally ventilated dairy buildings as influenced by measurement technique and data variability. Biosyst. Eng. 2018, 166, 58–75. [Google Scholar] [CrossRef]
- Norton, T.; Sun, D.-W.; Grant, J.; Fallon, R.; Dodd, V. Applications of computational fluid dynamics (CFD) in the modelling anddesign of ventilation systems in the agricultural industry: A review. Bioresour. Technol. 2007, 98, 2386–2414. [Google Scholar] [CrossRef] [PubMed]
Software | Turbulence Model | Research Domain | Research Object | Study |
---|---|---|---|---|
STAR CCM+ | Realizable k-ε | Sow pen with slatted floor | Heat loss of sows | Huang et al. [12] |
Ansys Fluent | Realizable k-ε | Multi-floor animal building | Indoor thermal environmental condition | Wang et al. [48] |
STAR-CCM+ | Standard k-ε | Dairy building | Airflow discharge coefficient of an opening | Yi et al. [49] |
Ansys Fluent | Standard k-ε | Laying hen house | Airflow distribution | Cheng et al. [50] |
Ansys Fluent | RNG k-ε | Swine building | Airflow velocities and patterns | Tong et al. [51] |
Ansys Fluent | RNG k-ε | Greenhouse with a tomato crop | Ventilation rates, airflow patterns and temperature | Bartzanas et al. [52] |
---- | SST k-ω | Virtual wind tunnel with cow model | Convective heat transfer of cows | Wang et al. [11] |
Ansys Fluent | SST k-ω | Virtual wind tunnel with pig model | Convective heat transfer from pig models | Li et al. [32] |
Ansys Fluent | Large eddy simulation | Slatted floor | Airflow patterns | Wu et al. [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Q.; Wang, H.; Xu, X.; He, T.; Chen, Z. Indoor Thermal Comfort Sector: A Review of Detection and Control Methods for Thermal Environment in Livestock Buildings. Sustainability 2024, 16, 1662. https://doi.org/10.3390/su16041662
Cheng Q, Wang H, Xu X, He T, Chen Z. Indoor Thermal Comfort Sector: A Review of Detection and Control Methods for Thermal Environment in Livestock Buildings. Sustainability. 2024; 16(4):1662. https://doi.org/10.3390/su16041662
Chicago/Turabian StyleCheng, Qiongyi, Hui Wang, Xin Xu, Tengfei He, and Zhaohui Chen. 2024. "Indoor Thermal Comfort Sector: A Review of Detection and Control Methods for Thermal Environment in Livestock Buildings" Sustainability 16, no. 4: 1662. https://doi.org/10.3390/su16041662
APA StyleCheng, Q., Wang, H., Xu, X., He, T., & Chen, Z. (2024). Indoor Thermal Comfort Sector: A Review of Detection and Control Methods for Thermal Environment in Livestock Buildings. Sustainability, 16(4), 1662. https://doi.org/10.3390/su16041662