Sustainability and Brazilian Agricultural Production: A Bibliometric Analysis
Abstract
:1. Introduction
- RQ1: Which Brazilian institutions and authors are at the frontier of knowledge when correlating sustainability and agriculture, agribusiness, and livestock in research publications?
- RQ1-a. How many articles relating to agriculture and sustainability were published between 2000 and 2022?
- RQ1-b. Who are the authors, and what are the most prominent institutions of origin on the topic?
- RQ1-c. What are the most frequent collaborations between authors and institutions?
- RQ2: What are Brazil’s current themes and frontiers related to sustainability and agriculture, agribusiness, and livestock?
- RQ2-a. What topics (trending topics, keywords, and themes) are associated with this search topic?
- RQ2-b. What are the most frequent and current thematic relationships associated with sustainability and agriculture?
2. Materials and Methods
2.1. Bibliometric Analysis
2.2. Defining Objectives
2.3. Data Collection
2.4. Statistical Analysis and Tools
3. Results and Discussion
3.1. Descriptive Analysis of the Selected Sample
3.2. Identification of Institutions, Co-Authorships, and Collaborations
3.3. Authors
3.4. Citation Assessment
3.5. Analysis of the Mapping of Keyword Co-Occurrence Networks
3.6. Suggestion for Identifying and Forming Multi-Collaborative Research Groups
3.7. Thematic Evolution
3.8. Future Vision of Brazilian Publications on Sustainability in Agriculture and Livestock
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ONU. The 17 Sustainable Development Goals. Available online: https://sdgs.un.org/goals (accessed on 9 December 2023).
- FAO FAOSTAT—Food and Agriculture Data. Available online: https://www.fao.org/faostat/en/#home (accessed on 26 November 2023).
- Rockström, J.; Edenhofer, O.; Gaertner, J.; Declerck, F. Planet-Proofing the Global Food System. Nat. Food 2020, 1, 3–5. [Google Scholar] [CrossRef]
- Pereira, P.A.A.; Martha, G.B., Jr.; Santana, C.A.M.; Alves, E. The Development of Brazilian Agriculture: Future Technological Challenges and Opportunities. Agric. Food Secur. 2012, 1, 1–12. [Google Scholar] [CrossRef]
- Corcioli, G.; Medina, S.; Arrais, C.A. Missing the Target: Brazil’s Agricultural Policy Indirectly Subsidizes Foreign Investments to the Detriment of Smallholder Farmers and Local Agribusiness. Front. Sustain. Food Syst. 2022, 5, 796845. [Google Scholar] [CrossRef]
- dos Santos, A.J.; Moura-leite, R.; Pereira, M.W.G.; Pagán, M. Social and Environmental Disclosure of the Largest Companies in Brazil’s Agribusiness Sector. Soc. Responsab. J. 2021, 17, 1009–1027. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; De Vries, W.; De Wit, C.A.; et al. Planetary Boundaries: Guiding Human Development on a Changing Planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef]
- Luhmann, H.; Theuvsen, L. Corporate Social Responsibility in Agribusiness: Literature Review and Future Research Directions. J. Agric. Environ. Ethics 2016, 29, 673–696. [Google Scholar] [CrossRef]
- Sarkar, A.; Wang, H.; Rahman, A.; Memon, W.H.; Qian, L. A Bibliometric Analysis of Sustainable Agriculture: Based on the Web of Science (WOS) Platform. Environ. Sci. Pollut. Res. 2022, 29, 38928–38949. [Google Scholar] [CrossRef]
- Aleixandre-Tudó, J.L.; Castelló-cogollos, L.; Aleixandre, J.L.; Aleixandre-benavent, R. Bibliometric and Social Network Analysis in Scientific Research on Precision Agriculture. Curr. Sci. 2018, 115, 1653–1667. [Google Scholar] [CrossRef]
- Struik, P.C.; Kuyper, T.W. Sustainable Intensification in Agriculture: The Richer Shade of Green. A Review. Agron. Sustain. Dev. 2017, 37, 39. [Google Scholar] [CrossRef]
- Leakey, R.R.B. The Role of Trees in Agroecology and Sustainable Agriculture in the Tropics. Annu. Rev. Phytopathol. 2014, 52, 113–133. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; Román-Sánchez, I.M. Sustainable Water Use in Agriculture: A Review of Worldwide Research. Sustainability 2018, 10, 1084. [Google Scholar] [CrossRef]
- Igiehon, N.O.; Babalola, O.O. Biofertilizers and Sustainable Agriculture: Exploring Arbuscular Mycorrhizal Fungi. Appl. Microbiol. Biotechnol. 2017, 101, 4871–4881. [Google Scholar] [CrossRef]
- Bhagat, P.R.; Naz, F.; Magda, R. Artificial Intelligence Solutions Enabling Sustainable Agriculture: A Bibliometric Analysis. PLoS ONE 2022, 17, e0268989. [Google Scholar] [CrossRef]
- Yu, S.; Mu, Y. Sustainable Agricultural Development Assessment: A Comprehensive Review and Bibliometric Analysis. Sustainability 2022, 14, 11824. [Google Scholar] [CrossRef]
- Hill, R.; Adem, Ç.; Alangui, W.V.; Molnár, Z.; Aumeeruddy-Thomas, Y.; Bridgewater, P.; Tengö, M.; Thaman, R.; Yao, C.Y.A.; Berkes, F.; et al. Working with Indigenous, Local and Scientific Knowledge in Assessments of Nature and Nature’s Linkages with People. Curr. Opin. Environ. Sustain. 2020, 43, 8–20. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Wallin, J.A. Bibliometric Methods: Pitfalls and Possibilities. Basic Clin. Pharmacol. Toxicol. 2005, 97, 261–275. [Google Scholar] [CrossRef] [PubMed]
- Clarivate. KeyWords Plus Generation, Creation, and Changes. Available online: https://support.clarivate.com/ScientificandAcademicResearch/s/article/KeyWords-Plus-generation-creation-and-changes?language=en_US (accessed on 22 November 2023).
- Medrano, H.; Tomás, M.; Martorell, S.; Flexas, J.; Hernández, E.; Rosselló, J.; Pou, A.; Escalona, J.; Bota, J. From Leaf to Whole-Plant Water Use Efficiency (WUE) in Complex Canopies: Limitations of Leaf WUE as a Selection Target. Crop J. 2015, 3, 220–228. [Google Scholar] [CrossRef]
- Abafe, E.A.; Bahta, Y.T.; Jordaan, H. Exploring Biblioshiny for Historical Assessment of Global Research on Sustainable Use of Water in Agriculture. Sustainability 2022, 14, 10651. [Google Scholar] [CrossRef]
- AlRyalat, S.A.S.; Malkawi, L.W.; Momani, S.M. Comparing Bibliometric Analysis Using PubMed, Scopus, and Web of Science Databases. J. Vis. Exp. 2019, e58494. [Google Scholar] [CrossRef]
- Clarivate the New Scielo Citation Index. Available online: http://wokinfo.com/products_tools/multidisciplinary/scielo/ (accessed on 25 January 2024).
- SciELO. Projeto Presença Em Mega Índices Propõe Criar Maior Visibilidade Para Os Periódicos Da Coleção SciELO Brasil. Available online: https://blog.scielo.org/blog/2021/10/07/projeto-presenca-em-mega-indices/ (accessed on 25 January 2024).
- Martín-Martín, A.; Orduna-Malea, E.; Thelwall, M.; López-Cózar, E.D. Google Scholar, Web of Science, and Scopus: A Systematic Comparison of Citations in 252 Subject Categories. J. Informetr. 2018, 12, 1160–1177. [Google Scholar] [CrossRef]
- Freire, R.; Nicol, C. A Bibliometric Analysis of Past and Emergent Trends in Animal Welfare Science. Anim. Welf. 2019, 28, 465–485. [Google Scholar] [CrossRef]
- Zupic, I.; Čater, T. Bibliometric Methods in Management and Organization. Organ. Res. Methods 2015, 18, 429–472. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Wang, X.; Lu, J.; Song, Z.; Zhou, Y. From Past to Future: Bibliometric Analysis of Global Research Productivity on Nomogram. Front. Public Health 2022, 10, 997713. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, J.E. An Index to Quantify an Individual’ s Scientific Research Output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef]
- Palácios, H.; de Almeida, H.; Sousa, M.J. A Bibliometric Analysis of Service Climate as a Sustainable Competitive Advantage in Hospitality. Sustainability 2021, 13, 12214. [Google Scholar] [CrossRef]
- CNPq. Plataforma Lattes. Available online: https://www.lattes.cnpq.br/ (accessed on 20 January 2024).
- Kelly, C.D.; Jennions, M.D. The h Index and Career Assessment by Numbers. Trends Ecol. Evol. 2006, 21, 4–7. [Google Scholar] [CrossRef]
- Martynov, I.; Klima-frysch, J.; Schoenberger, J. A Scientometric Analysis of Neuroblastoma Research. BMC Cancer 2020, 20, 486. [Google Scholar] [CrossRef] [PubMed]
- Thangavel, P.; Chandra, B. Two Decades of M-Commerce Consumer Research: A Bibliometric Analysis Using R Biblioshiny. Sustainability 2023, 15, 11835. [Google Scholar] [CrossRef]
- Lehmann, J.; Pereira, J.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient Availability and Leaching in an Archaeological Anthrosol and a Ferralsol of the Central Amazon Basin: Fertilizer, Manure and Charcoal Amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Kattge, J. INVITED PRIMARY RESEARCH ARTICLE: TRY Plant Trait Database—Enhanced Coverage and Open Access. Glob. Chang. Biol. 2020, 26, 119–188. [Google Scholar] [CrossRef] [PubMed]
- Poorter, L.; Bongers, F.; Aide, T.M.; Zambrano, A.M.A.; Balvanera, P.; Becknell, J.M.; Boukili, V.; Brancalion, P.H.S.; Broadbent, E.N.; Chazdon, R.L.; et al. Biomass Resilience of Neotropical Secondary Forests. Nature 2016, 530, 211–214. [Google Scholar] [CrossRef]
- Da Silva, I.C.B.; Basílio, J.J.N.; Fernandes, L.A.; Colen, F.; Sampaio, R.A.; Frazão, L.A. Biochar from Different Residues on Soil Properties and Common Bean Production. Sci. Agric. 2017, 74, 378–382. [Google Scholar] [CrossRef]
- Ziviani, M.M.; Reis, I.M.S.; Tavares, O.C.H.; Silva, E.R.O.; dos Santos, O.A.Q.; Pinto, L.A.d.S.R.; Pereira, M.G. Organic Matter in Soils with Anthropic Horizons in The Eastern Amazon, Pará (Brazil). Floresta Ambient. 2022, 29, e20210091. [Google Scholar] [CrossRef]
- Alvarez, D.O.; Mendes, K.F.; Tosi, M.; de Souza, L.F.; Cedano, J.C.C.; Falcão, N.P.d.S.; Dunfield, K.; Tsai, S.M.; Tornisielo, V.L. Ecotoxicology and Environmental Safety Sorption-Desorption and Biodegradation of Sulfometuron-Methyl and Its Effects on the Bacterial Communities in Amazonian Soils Amended with Aged Biochar. Ecotoxicol. Environ. Saf. 2021, 207, 111222. [Google Scholar] [CrossRef]
- Major, J.; DiTommaso, A.; Lehmann, J.; Falca, N.P.S. Weed Dynamics on Amazonian Dark Earth and Adjacent Soils of Brazil. Agric. Ecosyst. Environ. 2005, 111, 1–12. [Google Scholar] [CrossRef]
- Lima, S.L.; Marimon-Junior, B.H.; Petter, F.A.; Tamiozzo, S.; Buck, G.B.; Marimon, B.S. Biochar as Substitute for Organic Matter in the Composition of Substrates for Seedlings. Acta Sci. 2013, 35, 333–341. [Google Scholar] [CrossRef]
- Alho, C.F.B.V.; Cardoso, A.d.S.; Alves, B.J.R.; Novotny, E.H. Biochar and Soil Nitrous Oxide Emissions. Pesqui. Agropecu. Bras. 2012, 47, 722–725. [Google Scholar] [CrossRef]
- Ascough, P.L.; Bird, M.I.; Meredith, W.; Snape, C.; Large, D.; Tilston, E.; Apperley, D.; Bernabé, A.; Shen, L. Dynamics of Charcoal Alteration in a Tropical Biome: A Biochar-Based Study. Front. Earth Sci. 2018, 6. [Google Scholar] [CrossRef]
- Carta, A.; Fernández-pascual, E.; Gioria, M.; Müller, J.V.; Rivière, S.; Rosbakh, S.; Saatkamp, A.; Vandelook, F.; Mattana, E. Climate Shapes the Seed Germination Niche of Temperate Flowering Plants: A Meta-Analysis of European Seed Conservation Data. Ann. Bot. 2022, 129, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Tumber-Dávila, S.J.; Schenk, H.J.; Du, E.; Jackson, R.B. Plant Sizes and Shapes above and Belowground and Their Interactions with Climate. New Phytol. 2022, 235, 1032–1056. [Google Scholar] [CrossRef] [PubMed]
- Lüscher, A.; Barkaoui, K.; Finn, J.A.; Suter, D.; Suter, M.; Volaire, F. Using Plant Diversity to Reduce Vulnerability and Increase Drought Resilience of Permanent and Sown Productive Grasslands. Grass Forage Sci. 2022, 77, 235–246. [Google Scholar] [CrossRef]
- Kleijn, D.; Winfree, R.; Bartomeus, I.; Carvalheiro, L.G.; Henry, M.; Isaacs, R.; Klein, A.-M.; Kremen, C.; M’Gonigle, L.K.; Rader, R.; et al. Delivery of Crop Pollination Services Is an Insufficient Argument for Wild Pollinator Conservation. Nat. Commun. 2015, 6, 7414. [Google Scholar] [CrossRef] [PubMed]
- Brussaard, L.; Ruiter, P.C.D.; Brown, G.G. Soil Biodiversity for Agricultural Sustainability. Agric. Ecosyst. Environ. 2007, 121, 233–244. [Google Scholar] [CrossRef]
- Rader, R.; Bartomeus, I.; Garibaldi, L.A.; Garratt, M.P.D.; Howlett, B.G.; Winfree, R.; Cunningham, S.A.; Mayfield, M.M.; Arthur, A.D.; Andersson, G.K.S.; et al. Non-Bee Insects Are Important Contributors to Global Crop Pollination. Proc. Natl. Acad. Sci. USA 2016, 113, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Bassu, S.; Brisson, N.; Durand, J.-L.; Boote, K.; Lizaso, J.; Jones, J.W.; Rosenzweig, C.; Ruane, A.C.; Adam, M.; Baron, C.; et al. How Do Various Maize Crop Models Vary in Their Responses to Climate Change Factors? Glob. Chang. Biol. 2014, 20, 2301–2320. [Google Scholar] [CrossRef] [PubMed]
- Peoples, M.B.; Brockwell, J.; Herridge, D.F.; Rochester, I.J.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M.; Dakora, F.D.; Bhattarai, S.; Maskey, S.L.; et al. The Contributions of Nitrogen-Fixing Crop Legumes to the Productivity of Agricultural Systems. Symbiosis 2009, 48, 1–17. [Google Scholar] [CrossRef]
- Pastorello, G. The FLUXNET2015 Dataset and the ONEFlux Processing Pipeline for Eddy Covariance Data. Sci. Data 2020, 7, 1–27. [Google Scholar] [CrossRef]
- van den Hoogen, J.; Geisen, S.; Routh, D.; Ferris, H.; Traunspurger, W.; Wardle, D.A.; de Goede, R.G.M.; Adams, B.J.; Ahmad, W.; Andriuzzi, W.S.; et al. Soil Nematode Abundance and Functional Group Composition at a Global Scale. Nature 2019, 572, 194–198. [Google Scholar] [CrossRef]
- De Moraes, A.; César, P.; Carvalho, D.F.; Anghinoni, I.; Brasil, S.; Lustosa, C.; Ely, S.; Gigante, V.; Costa, D.A.; Robinson, T. Integrated Crop—Livestock Systems in the Brazilian Subtropics. Eur. J. Agron. 2014, 57, 4–9. [Google Scholar] [CrossRef]
- Macedo, M.C.M. Integração Lavoura e Pecuária: O Estado Da Arte e Inovações Tecnológicas. Rev. Bras. Zootec. 2009, 38, 133–146. [Google Scholar] [CrossRef]
- Dick, M.; da Silva, M.A.; Dewes, H. Life Cycle Assessment of Beef Cattle Production in Two Typical Grassland Systems of Southern Brazil. J. Clean. Prod. 2015, 96, 426–434. [Google Scholar] [CrossRef]
- Hungria, M.; Campo, R.J.; Souza, E.M.; Pedrosa, F.O. Inoculation with Selected Strains of Azospirillum brasilense and A. lipoferum Improves Yields of Maize and Wheat in Brazil. Plant Soil 2010, 331, 413–425. [Google Scholar] [CrossRef]
- Costa, M.P.; Schoeneboom, J.C.; Oliveira, S.A.; Vi, R.S.; Medeiros, G.A. De A Socio-Eco-Ef Fi Ciency Analysis of Integrated and Non-Integrated Crop-Livestock-Forestry Systems in the Brazilian Cerrado Based on LCA. J. Clean. Prod. 2018, 171, 1460–1471. [Google Scholar] [CrossRef]
- Vilela, L.; Martha, G.B., Jr.; Macedo, M.C.M.; Marchão, R.L.; Guimarães, R., Jr.; Pulrolnik, K.; Maciel, G.A. Sistemas de Integração Lavoura-Pecuária Na Região Do Cerrado. Pesqui. Agropecu. Bras. 2011, 46, 1127–1138. [Google Scholar] [CrossRef]
- Bieluczyk, W.; De Cássia, M.; Gervasio, M.; Tuzzin, M.; Moraes, D.; Soltangheisi, A.; Carlos, A.; Bernardi, D.C.; Ricardo, J.; Pezzopane, M.; et al. Geoderma Integrated Farming Systems Influence Soil Organic Matter Dynamics in Southeastern Brazil. Geoderma 2020, 371, 114368. [Google Scholar] [CrossRef]
- Ruviaro, C.F.; Gianezini, M.; Brandão, F.S.; Winck, C.A.; Dewes, H. Life Cycle Assessment in Brazilian Agriculture Facing Worldwide Trends. J. Clean. Prod. 2012, 28, 9–24. [Google Scholar] [CrossRef]
- Fortes, C.; Cesar, P.; Trivelin, O.; Cesar, A. Long-Term Decomposition of Sugarcane Harvest Residues in Sao Paulo State, Brazil. Biomass and Bioenergy 2012, 42, 189–198. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.d.M.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2014, 22, 711–728. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 28 January 2024).
- Lemaire, G.; Franzluebbers, A.; De Faccio Carvalho, P.C.; Dedieu, B. Agriculture, Ecosystems and Environment Integrated Crop–Livestock Systems: Strategies to Achieve Synergy between Agricultural Production and Environmental Quality. Agric. Ecosyst. Environ. 2014, 190, 4–8. [Google Scholar] [CrossRef]
- de Faccio Carvalho, P.C.; Anghinoni, I.; de Moraes, A.; de Souza, E.D.; Sulc, R.M.; Lang, C.R.; Flores, J.P.C.; Lopes, M.L.T.; da Silva, J.L.S.; Conte, O.; et al. Managing Grazing Animals to Achieve Nutrient Cycling and Soil Improvement in No-till Integrated Systems. Nutr. Cycl. Agroecosystems 2010, 88, 259–273. [Google Scholar] [CrossRef]
- Salton, J.C.; Mercante, F.M.; Tomazi, M.; Zanatta, J.A.; Concenço, G.; Silva, W.M.; Retore, M. Integrated Crop-Livestock System in Tropical Brazil: Toward a Sustainable Production System. Agric. Ecosyst. Environ. 2014, 190, 70–79. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a Cultivated Planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, D.F. Sisvar: A Computer Statistical Analysis System. Cienc. Agrotecnologia 2011, 35, 1039–1042. [Google Scholar] [CrossRef]
- Strassburg, B.B.N.; Latawiec, A.E.; Barioni, L.G.; Nobre, C.A.; Silva, V.P.; Valentim, J.F.; Vianna, M.; Assad, E.D. When Enough Should Be Enough: Improving the Use of Current Agricultural Lands Could Meet Production Demands and Spare Natural Habitats in Brazil. Glob. Environ. Chang. 2014, 28, 84–97. [Google Scholar] [CrossRef]
- Gong, R.; Xue, J.; Zhao, L.; Zolotova, O.; Ji, X.; Xu, Y. A Bibliometric Analysis of Green Supply Chain Management Based on the Web of Science (WOS) Platform. Sustainability 2019, 11, 3459. [Google Scholar] [CrossRef]
- Mulay, P.; Joshi, R.; Chaudhari, A. Distributed Incremental Clustering Algorithms: A Bibliometric and Word-Cloud Review Analysis. Sci. Technol. Libr. 2020, 39, 289–306. [Google Scholar] [CrossRef]
- Odum, H.T. Environmental Accounting: Emergy and Environmental Decision Making; Wiley: Gainesville, FL, USA, 1996; ISBN 0471114421. [Google Scholar]
- Abel, T. Evaluating Information with Emergy: How Did Howard T. Odum Incorporate Human Information into Emergy Accounting? Discov. Environ. 2023, 1, 9. [Google Scholar] [CrossRef]
- Maia, S.M.F.; Xavier, F.A.d.S.; De Oliveira, T.S.; Mendonça, E.D.S.; Filho, A.A. Frações de Nitrogênio Em Luvissolo Sob Sistemas Agroflorestais e Convencional No Semi-Árido Cearense. Rev. Bras. Cienc. Solo 2008, 32, 381–392. [Google Scholar] [CrossRef]
- Antonino, A.C.D.; Hammecker, C.; Montenegro, S.M.L.G. Subirrigation of Land Bordering Small Reservoirs in the Semi-Arid Region in the Northeast of Brazil: Monitoring and Water Balance. Agric. Water Manag. 2005, 73, 131–147. [Google Scholar] [CrossRef]
- Montenegro, S.G.; Montenegro, A.; Ragab, R. Improving Agricultural Water Management in the Semi-Arid Region of Brazil: Experimental and Modelling Study. Irrig. Sci. 2010, 28, 301–316. [Google Scholar] [CrossRef]
- Kageyama, A.A. Desenvolvimento Rural: Conceitos e Aplicação Ao Caso Brasileiro; UFRGS: Rio Grande do Sul, RS, Brazil, 2008; ISBN 9788538600305. [Google Scholar]
- Callon, M.; Courtial, J.P.; Laville, F. Co-Word Analysis as a Tool for Describing the Network of Interactions between Basic and Technological Research: The Case of Polymer Chemsitry. Scientometrics 1991, 22, 155–205. [Google Scholar] [CrossRef]
- Cahlik, T. Comparison of the Maps of Science. Scientometrics 2000, 49, 373–387. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An Approach for Detecting, Quantifying, and Visualizing the Evolution of a Research Field: A Practical Application to the Fuzzy Sets Theory Field. J. Informetr. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Cobo, M.J.; Martínez, M.A.; Gutiérrez-Salcedo, M.; Fujita, H.; Herrera-Viedma, E. 25 Years at Knowledge-Based Systems: A Bibliometric Analysis. Knowl.-Based Syst. 2015, 80, 3–13. [Google Scholar] [CrossRef]
- Taqi, M.; Rusydiana, A.S.; Kustiningsih, N.; Firmansyah, I. Environmental Accounting: A Scientometric Using Biblioshiny. Int. J. Energy Econ. Policy 2021, 11, 369–380. [Google Scholar] [CrossRef]
- Alkhammash, R. Bibliometric, Network, and Thematic Mapping Analyses of Metaphor and Discourse in COVID-19 Publications from 2020 to 2022. Front. Psychol. 2023, 13, 1062943. [Google Scholar] [CrossRef] [PubMed]
Paper | DOI | Total Citations | TC per Year | Normalized TC |
---|---|---|---|---|
LEHMANN J, 2003, PLANT SOIL | 10.1023/A:1022833116184 [37] | 1241 | 56.41 | 10.06 |
KATTGE J, 2020, GLOB CHANGE BIOL | 10.1111/gcb.14904 [38] | 647 | 129.40 | 43.92 |
POORTER L, 2016, NATURE | 10.1038/nature16512 [39] | 626 | 69.56 | 13.11 |
KLEIJN D, 2015, NAT COMMUN | 10.1038/ncomms8414 [50] | 559 | 55.90 | 13.91 |
BRUSSAARD L, 2007, AGRIC ECOSYST ENVIRON | 10.1016/j.agee.2006.12.013 [51] | 529 | 29.39 | 9.34 |
RADER R, 2016, PROC NATL ACAD SCI U S A | 10.1073/pnas.1517092112 [52] | 475 | 52.78 | 9.95 |
BASSU S, 2014, GLOB CHANGE BIOL | 10.1111/gcb.12520 [53] | 440 | 40.00 | 8.69 |
PEOPLES MB, 2009, SYMBIOSIS | 10.1007/BF03179980 [54] | 439 | 27.44 | 7.71 |
PASTORELLO G, 2020, SCI DATA | 10.1038/s41597-020-0534-3 [55] | 432 | 86.40 | 29.33 |
VAN DEN HOOGEN J, 2019, NATURE | 10.1038/s41586-019-1418-6 [56] | 422 | 70.33 | 17.26 |
Document | DOI | Year | Local Citations | Global Citations | LC/GC Ratio (%) | Normalized Local Citations | Normalized Global Citations |
---|---|---|---|---|---|---|---|
DE MORAES A, 2014, EUR J AGRON | 10.1016/j.eja.2013.10.004 [57] | 2014 | 87 | 159 | 54.72 | 29.00 | 3.14 |
MACEDO MCM, 2009, REV BRAS ZOOTECN | 10.1590/S1516-35982009001300015 [58] | 2009 | 39 | 126 | 30.95 | 13.55 | 2.21 |
CRUSCIOL CAC, 2012, AGRON J | 10.2134/agronj2012.0002 [58] | 2012 | 28 | 63 | 44.44 | 12.56 | 2.08 |
DICK M, 2015, J CLEAN PROD-a | 10.1016/j.jclepro.2014.01.080 [59] | 2015 | 27 | 87 | 31.03 | 15.97 | 2.16 |
HUNGRIA M, 2010, PLANT SOIL | 10.1007/s11104-009-0262-0 [60] | 2010 | 24 | 324 | 7.41 | 25.41 | 8.66 |
COSTA MP, 2018, J CLEAN PROD | 10.1016/j.jclepro.2017.10.063 [61] | 2018 | 23 | 55 | 41.82 | 28.23 | 2.47 |
VILELA L, 2011, PESQUI AGROPECU BRAS | 10.1590/S0100-204X2011001000003 [62] | 2011 | 22 | 63 | 34.92 | 22.28 | 2.92 |
BIELUCZYK W, 2020, GEODERMA | 10.1016/j.geoderma.2020.114368 [63] | 2020 | 21 | 24 | 87.50 | 28.62 | 1.63 |
RUVIARO CF, 2012, J CLEAN PROD | 10.1016/j.jclepro.2011.10.015 [64] | 2012 | 19 | 86 | 22.09 | 8.52 | 2.84 |
FORTES C, 2012, BIOMASS BIOENERG | 10.1016/j.biombioe.2012.03.011 [65] | 2012 | 19 | 94 | 20.21 | 8.52 | 3.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nacimento, R.A.; Rezende, V.T.; Ortega, F.J.M.; Carvalho, S.A.; Buckeridge, M.S.; Gameiro, A.H.; Rennó, F.P. Sustainability and Brazilian Agricultural Production: A Bibliometric Analysis. Sustainability 2024, 16, 1833. https://doi.org/10.3390/su16051833
Nacimento RA, Rezende VT, Ortega FJM, Carvalho SA, Buckeridge MS, Gameiro AH, Rennó FP. Sustainability and Brazilian Agricultural Production: A Bibliometric Analysis. Sustainability. 2024; 16(5):1833. https://doi.org/10.3390/su16051833
Chicago/Turabian StyleNacimento, Rafael Araujo, Vanessa Theodoro Rezende, Fábio José Muneratti Ortega, Sylvestre Aureliano Carvalho, Marcos Silveira Buckeridge, Augusto Hauber Gameiro, and Francisco Palma Rennó. 2024. "Sustainability and Brazilian Agricultural Production: A Bibliometric Analysis" Sustainability 16, no. 5: 1833. https://doi.org/10.3390/su16051833
APA StyleNacimento, R. A., Rezende, V. T., Ortega, F. J. M., Carvalho, S. A., Buckeridge, M. S., Gameiro, A. H., & Rennó, F. P. (2024). Sustainability and Brazilian Agricultural Production: A Bibliometric Analysis. Sustainability, 16(5), 1833. https://doi.org/10.3390/su16051833