From Scarcity to Abundance: Nature-Based Strategies for Small Communities Experiencing Water Scarcity in West Texas/USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Population Estimative
2.3. Nature-Based Solutions for Wastewater Treatment
2.4. Pond and Constructed Wetland Designs
2.5. Land Application Design
2.6. Financial Estimations
3. Results
3.1. Stream Discharge System
3.2. Agricultural Reuse System
3.3. Financial Analysis and Cash Flow Projection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations (UN): New York, NY, USA, 2015. [Google Scholar]
- He, C.; Liu, Z.; Wu, J.; Pan, X.; Fang, Z.; Li, J.; Bryan, B.A. Future Global Urban Water Scarcity and Potential Solutions. Nat. Commun. 2021, 12, 4667. [Google Scholar] [CrossRef] [PubMed]
- Rijsberman, F.R. Water Scarcity: Fact or Fiction? Agric. Water Manag. 2006, 80, 5–22. [Google Scholar] [CrossRef]
- Shahangian, S.A.; Tabesh, M.; Yazdanpanah, M. Psychosocial Determinants of Household Adoption of Water-Efficiency Behaviors in Tehran Capital, Iran: Application of the Social Cognitive Theory. Urban Clim. 2021, 39, 100935. [Google Scholar] [CrossRef]
- Schmidt, J.J. Water as Global Social Policy—International Organizations, Resource Scarcity, and Environmental Security. In International Organizations in Global Social Governance; CRC: Boca Raton, FL, USA, 2021; pp. 275–296. [Google Scholar]
- Bréthaut, C.; Ezbakhe, F.; McCracken, M.; Wolf, A.; Dalton, J. Exploring Discursive Hydropolitics: A Conceptual Framework and Research Agenda. Int. J. Water Resour. Dev. 2022, 38, 464–479. [Google Scholar] [CrossRef]
- Turhan, Y. The Hydro-Political Dilemma in Africa Water Geopolitics: The Case of the Nile River Basin. African Secur. Rev. 2021, 30, 66–85. [Google Scholar] [CrossRef]
- Al-Muqdadi, S.W.H. The Spiral of Escalating Water Conflict: The Theory of Hydro-Politics. Water 2022, 14, 3466. [Google Scholar] [CrossRef]
- Vasani, H. International Water Law and Hydropolitics: An Enquiry into the Water Conflict between India and Nepal. Water Int. 2023, 48, 259–281. [Google Scholar] [CrossRef]
- Hussein, H.; Natta, A.; Yehya, A.A.K.; Hamadna, B. Syrian Refugees, Water Scarcity, and Dynamic Policies: How Do the New Refugee Discourses Impact Water Governance Debates in Lebanon and Jordan? Water 2020, 12, 325. [Google Scholar] [CrossRef]
- Hussein, H. An Analysis of the Framings of Water Scarcity in the Jordanian National Water Strategy. Water Int. 2019, 44, 6–13. [Google Scholar] [CrossRef]
- Hussein, H. Lifting the Veil: Unpacking the Discourse of Water Scarcity in Jordan. Environ. Sci. Policy 2018, 89, 385–392. [Google Scholar] [CrossRef]
- Naidoo, S. Understanding Social Constructionism of Water Quality. In Social Constructions of Water Quality in South Africa; Springer International Publishing: Cham, Switerland, 2022; pp. 13–29. [Google Scholar]
- Hellberg, S. Scarcity as a Means of Governing: Challenging Neoliberal Hydromentality in the Context of the South African Drought. Environ. Plan. E Nat. Sp. 2020, 3, 186–206. [Google Scholar] [CrossRef]
- Brisman, A.; McClanahan, B.; South, N.; Walters, R. The Politics of Water Rights: Scarcity, Sovereignty and Security. In Water, Governance, and Crime Issues; Springer International Publishing: Cham, Switerland, 2020; pp. 17–29. [Google Scholar]
- Ungureanu, N.; Vlăduț, V.; Voicu, G. Water Scarcity and Wastewater Reuse in Crop Irrigation. Sustainability 2020, 12, 9055. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. The State of the World’s Land and Water Resources for Food and Agriculture 2021—Systems at Breaking Point; FAO: Roma, Italy, 2022; ISBN 978-92-5-136127-6. [Google Scholar]
- Rosa, L.; Chiarelli, D.D.; Rulli, M.C.; Dell’Angelo, J.; D’Odorico, P. Global Agricultural Economic Water Scarcity. Sci. Adv. 2020, 6, eaaz6031. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Shao, X.-F.; Wu, C.-H.; Qiao, P. A Systematic Literature Review on Applications of Information and Communication Technologies and Blockchain Technologies for Precision Agriculture Development. J. Clean. Prod. 2021, 298, 126763. [Google Scholar] [CrossRef]
- Bwambale, E.; Abagale, F.K.; Anornu, G.K. Smart Irrigation Monitoring and Control Strategies for Improving Water Use Efficiency in Precision Agriculture: A Review. Agric. Water Manag. 2022, 260, 107324. [Google Scholar] [CrossRef]
- Kamble, S.S.; Gunasekaran, A.; Gawankar, S.A. Achieving Sustainable Performance in a Data-Driven Agriculture Supply Chain: A Review for Research and Applications. Int. J. Prod. Econ. 2020, 219, 179–194. [Google Scholar] [CrossRef]
- Geetha Varma, V. Water-Efficient Technologies for Sustainable Development. In Current Directions in Water Scarcity Research; Elsevier: Amsterdam, The Netherlands, 2022; pp. 101–128. [Google Scholar]
- Fan, T.; Li, S.; Zhao, G.; Wang, S.; Zhang, J.; Wang, L.; Dang, Y.; Cheng, W. Response of Dryland Crops to Climate Change and Drought-Resistant and Water-Suitable Planting Technology: A Case of Spring Maize. J. Integr. Agric. 2023, 22, 2067–2079. [Google Scholar] [CrossRef]
- Kumar, P.; Udayakumar, A.; Anbarasa Kumar, A.; Senthamarai Kannan, K.; Krishnan, N. Multiparameter Optimization System with DCNN in Precision Agriculture for Advanced Irrigation Planning and Scheduling Based on Soil Moisture Estimation. Environ. Monit. Assess. 2023, 195, 13. [Google Scholar] [CrossRef]
- Madramootoo, C.A. Sustainable Ground Water Use in Agriculture. Irrig. Drain. 2012, 61, 26–33. [Google Scholar] [CrossRef]
- Mayer, A.; Heyman, J.; Granados-Olivas, A.; Hargrove, W.; Sanderson, M.; Martinez, E.; Vazquez-Galvez, A.; Alatorre-Cejudo, L.C. Investigating Management of Transboundary Waters through Cooperation: A Serious Games Case Study of the Hueco Bolson Aquifer in Chihuahua, Mexico and Texas, United States. Water 2021, 13, 2001. [Google Scholar] [CrossRef]
- Mittelstet, A.R.; Smolen, M.D.; Fox, G.A.; Adams, D.C. Comparison of Aquifer Sustainability Under Groundwater Administrations in Oklahoma and Texas1. JAWRA J. Am. Water Resour. Assoc. 2011, 47, 424–431. [Google Scholar] [CrossRef]
- Lauer, S.; Sanderson, M.R.; Manning, D.T.; Suter, J.F.; Hrozencik, R.A.; Guerrero, B.; Golden, B. Values and Groundwater Management in the Ogallala Aquifer Region. J. Soil Water Conserv. 2018, 73, 593–600. [Google Scholar] [CrossRef]
- Terrell, B. Ogallala Aquifer Depletion: Economic Impact on the Texas High Plains. Water Policy 2002, 4, 33–46. [Google Scholar] [CrossRef]
- Basso, B.; Kendall, A.D.; Hyndman, D.W. The Future of Agriculture over the Ogallala Aquifer: Solutions to Grow Crops More Efficiently with Limited Water. Earth’s Futur. 2013, 1, 39–41. [Google Scholar] [CrossRef]
- Deines, J.M.; Schipanski, M.E.; Golden, B.; Zipper, S.C.; Nozari, S.; Rottler, C.; Guerrero, B.; Sharda, V. Transitions from Irrigated to Dryland Agriculture in the Ogallala Aquifer: Land Use Suitability and Regional Economic Impacts. Agric. Water Manag. 2020, 233, 106061. [Google Scholar] [CrossRef]
- Reynolds, S.; Guerrero, B.; Golden, B.; Amosson, S.; Marek, T.; Bell, J.M. Economic Feasibility of Conversion to Mobile Drip Irrigation in the Central Ogallala Region. Irrig. Sci. 2020, 38, 569–575. [Google Scholar] [CrossRef]
- Pinto, G.O.; da Silva Junior, L.C.S.; Assad, D.B.N.; Pereira, S.H.; Mello, L.C.B.d.B. Trends in Global Greywater Reuse: A Bibliometric Analysis. Water Sci. Technol. 2021, 84, 3257–3276. [Google Scholar] [CrossRef]
- Minhas, P.S.; Saha, J.K.; Dotaniya, M.L.; Sarkar, A.; Saha, M. Wastewater Irrigation in India: Current Status, Impacts and Response Options. Sci. Total Environ. 2022, 808, 152001. [Google Scholar] [CrossRef]
- Fedler, C.B. Design of Land Application Systems for Water Reuse. Water 2021, 13, 2120. [Google Scholar] [CrossRef]
- Silva Junior, L.C.S.d.; Fedler, C.B. Pond-in-Pond’s Anaerobic Pit Performance over Conventional Anaerobic Ponds—A Computational Fluid Dynamics Comparison. J. Water Process Eng. 2023, 51, 103444. [Google Scholar] [CrossRef]
- Stone, R.F. Waste Stabilization Basins for a Desert Sewage Treatment Plant. Civ. Eng. 1960, 30, 158–160. [Google Scholar]
- Oswald, W.J. Fundamental Factors in Stabilization Pond Design. Air Water Pollut. 1963, 7, 357–393. [Google Scholar] [PubMed]
- Adhikari, K.; Fedler, C.B. Pond-In-Pond: An Alternative System for Wastewater Treatment for Reuse. J. Environ. Chem. Eng. 2020, 8, 103523. [Google Scholar] [CrossRef]
- Deviller, G.; Lundy, L.; Fatta-Kassinos, D. Recommendations to Derive Quality Standards for Chemical Pollutants in Reclaimed Water Intended for Reuse in Agricultural Irrigation. Chemosphere 2020, 240, 124911. [Google Scholar] [CrossRef]
- Rahman, M.M.; Hagare, D.; Maheshwari, B.; Dillon, P. Impacts of Prolonged Drought on Salt Accumulation in the Root Zone Due to Recycled Water Irrigation. Water Air Soil Pollut. 2015, 226, 90. [Google Scholar] [CrossRef]
- Dos Santos Ferreira, M.; Gomes de Siqueira, J.; De Paulo Santos de Oliveira, V.; De Andrade Costa, D. Analysis of Municipal Public Policies for Payment for Water Environmental Services through the Public Policy Assessment Index: The State of Rio de Janeiro (Brazil) as a Study Model. Agua Y Territ. Water Landsc. 2023, 23, e6976. [Google Scholar] [CrossRef]
- State of Texas, Office of the Governor, T.E.D. Texas Economic Snapshot. Available online: https://gov.texas.gov/business/page/texas-economic-snapshot (accessed on 10 January 2024).
- Texas Water Development Board. Water Use of Texas Water Utilities; Texas Water Development Board: Austin, TX, USA, 2015. [Google Scholar]
- Texas Commission on Environmental Quality. Domestic Wastewater Effluent Limitation and Plant Siting; Texas Commission on Environmental Quality: Austin, TX, USA, 2020. [Google Scholar]
- Smith, J.E. Process Design Manual: Land Treatment of Municipal Wastewater Effluents; US Environmental Protection Agency: Cincinnati, OH, USA, 2006. [Google Scholar]
- Reed, S.C.; Crites, R.W.; Middlebrooks, E.J. Natural Systems for Waste Management and Treatment, 2nd ed.; McGraw Hill: New York, NY, USA, 1995. [Google Scholar]
- Doorenbos, J.; Pruitt, W.O. Guidelines for Predicting Crop Water Requirements; Food and Agriculture Organization of the United Nations: Rome, Italy, 1977; ISBN 0254-5284. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Sentelhas, P.C.; Gillespie, T.J.; Santos, E.A. Evaluation of FAO Penman–Monteith and Alternative Methods for Estimating Reference Evapotranspiration with Missing Data in Southern Ontario, Canada. Agric. Water Manag. 2010, 97, 635–644. [Google Scholar] [CrossRef]
- Lang, D.; Zheng, J.; Shi, J.; Liao, F.; Ma, X.; Wang, W.; Chen, X.; Zhang, M. A Comparative Study of Potential Evapotranspiration Estimation by Eight Methods with FAO Penman–Monteith Method in Southwestern China. Water 2017, 9, 734. [Google Scholar] [CrossRef]
- Cai, J.; Liu, Y.; Lei, T.; Pereira, L.S. Estimating Reference Evapotranspiration with the FAO Penman–Monteith Equation Using Daily Weather Forecast Messages. Agric. For. Meteorol. 2007, 145, 22–35. [Google Scholar] [CrossRef]
- Krebs, L. Texas Small Rural Land. Technical Report 2391; Texas A&M University: College Station, TX, USA, 2023. [Google Scholar]
- United States Department of Agriculture (USDA). Database. Field Office Technical Guide. Available online: https://efotg.sc.egov.usda.gov/#/state/TX/search (accessed on 10 January 2024).
- National Agricultural Statistics Service (NASS). Acreage Report; NASS: Washington, DC, USA, 2023. [Google Scholar]
- Federal Reserve Bank of St. Louis. Consumer Price Index (CPI) and Producer Price Index (PPI). Available online: https://fred.stlouisfed.org/ (accessed on 10 January 2024).
- Steiner, J.L.; Devlin, D.L.; Perkins, S.; Aguilar, J.P.; Golden, B.; Santos, E.A.; Unruh, M. Policy, Technology, and Management Options for Water Conservation in the Ogallala Aquifer in Kansas, USA. Water 2021, 13, 3406. [Google Scholar] [CrossRef]
- Aguado, R.; Parra, O.; García, L.; Manso, M.; Urkijo, L.; Mijangos, F. Modelling and Simulation of Subsurface Horizontal Flow Constructed Wetlands. J. Water Process Eng. 2022, 47, 102676. [Google Scholar] [CrossRef]
- David, G.; Rana, M.S.; Saxena, S.; Sharma, S.; Pant, D.; Prajapati, S.K. A Review on Design, Operation, and Maintenance of Constructed Wetlands for Removal of Nutrients and Emerging Contaminants. Int. J. Environ. Sci. Technol. 2023, 20, 9249–9270. [Google Scholar] [CrossRef]
- Garcia, X.; Pargament, D. Reusing Wastewater to Cope with Water Scarcity: Economic, Social and Environmental Considerations for Decision-Making. Resour. Conserv. Recycl. 2015, 101, 154–166. [Google Scholar] [CrossRef]
- Wu, J.; Bian, J.; Wan, H.; Ma, Y.; Sun, X. Health Risk Assessment of Groundwater Nitrogen Pollution in Songnen Plain. Ecotoxicol. Environ. Saf. 2021, 207, 111245. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Hou, M.; Qiu, Y.; Zhang, T.; Yuan, Y. Salinity Stress Effects on Transpiration and Plant Growth under Different Salinity Soil Levels Based on Thermal Infrared Remote (TIR) Technique. Geoderma 2020, 357, 113961. [Google Scholar] [CrossRef]
- Chauhan, J.S.; Kumar, S. Wastewater Ferti-Irrigation: An Eco-Technology for Sustainable Agriculture. Sustain. Water Resour. Manag. 2020, 6, 31. [Google Scholar] [CrossRef]
- McLennon, E.; Dari, B.; Jha, G.; Sihi, D.; Kankarla, V. Regenerative Agriculture and Integrative Permaculture for Sustainable and Technology Driven Global Food Production and Security. Agron. J. 2021, 113, 4541–4559. [Google Scholar] [CrossRef]
- Tal, A. Israeli Agriculture—Innovation and Advancement. In From Food Scarcity to Surplus; Springer: Singapore, 2021; pp. 299–358. [Google Scholar]
- Luthy, R.G.; Wolfand, J.M.; Bradshaw, J.L. Urban Water Revolution: Sustainable Water Futures for California Cities. J. Environ. Eng. 2020, 146, 04020065. [Google Scholar] [CrossRef]
- Mainardis, M.; Cecconet, D.; Moretti, A.; Callegari, A.; Goi, D.; Freguia, S.; Capodaglio, A.G. Wastewater Fertigation in Agriculture: Issues and Opportunities for Improved Water Management and Circular Economy. Environ. Pollut. 2022, 296, 118755. [Google Scholar] [CrossRef]
- Saliu, T.D.; Oladoja, N.A. Nutrient Recovery from Wastewater and Reuse in Agriculture: A Review. Environ. Chem. Lett. 2021, 19, 2299–2316. [Google Scholar] [CrossRef]
- Sulich, A.; Rutkowska, M.; Popławski, Ł. Green Jobs, Definitional Issues, and the Employment of Young People: An Analysis of Three European Union Countries. J. Environ. Manag. 2020, 262, 110314. [Google Scholar] [CrossRef]
- Shoushtarian, F.; Negahban-Azar, M. Worldwide Regulations and Guidelines for Agricultural Water Reuse: A Critical Review. Water 2020, 12, 971. [Google Scholar] [CrossRef]
- Morris, J.C.; Georgiou, I.; Guenther, E.; Caucci, S. Barriers in Implementation of Wastewater Reuse: Identifying the Way Forward in Closing the Loop. Circ. Econ. Sustain. 2021, 1, 413–433. [Google Scholar] [CrossRef]
- Mishra, S.; Kumar, R.; Kumar, M. Use of Treated Sewage or Wastewater as an Irrigation Water for Agricultural Purposes—Environmental, Health, and Economic Impacts. Total Environ. Res. Themes 2023, 6, 100051. [Google Scholar] [CrossRef]
- Al-Hazmi, H.E.; Mohammadi, A.; Hejna, A.; Majtacz, J.; Esmaeili, A.; Habibzadeh, S.; Saeb, M.R.; Badawi, M.; Lima, E.C.; Mąkinia, J. Wastewater Reuse in Agriculture: Prospects and Challenges. Environ. Res. 2023, 236, 116711. [Google Scholar] [CrossRef]
- Kokkinos, P.; Mandilara, G.; Nikolaidou, A.; Velegraki, A.; Theodoratos, P.; Kampa, D.; Blougoura, A.; Christopoulou, A.; Smeti, E.; Kamizoulis, G.; et al. Performance of Three Small-Scale Wastewater Treatment Plants. A Challenge for Possible Re Use. Environ. Sci. Pollut. Res. 2015, 22, 17744–17752. [Google Scholar] [CrossRef] [PubMed]
- Leonel, L.P.; Tonetti, A.L. Wastewater Reuse for Crop Irrigation: Crop Yield, Soil and Human Health Implications Based on Giardiasis Epidemiology. Sci. Total Environ. 2021, 775, 145833. [Google Scholar] [CrossRef]
- Otter, P.; Hertel, S.; Ansari, J.; Lara, E.; Cano, R.; Arias, C.; Gregersen, P.; Grischek, T.; Benz, F.; Goldmaier, A.; et al. Disinfection for Decentralized Wastewater Reuse in Rural Areas through Wetlands and Solar Driven Onsite Chlorination. Sci. Total Environ. 2020, 721, 137595. [Google Scholar] [CrossRef]
- EPA-660/2-73-006b; Wastewater Treatment and Reuse by Land Application. United States Environmental Protection Agency (EPA): Washington, DC, USA, 1973.
- Ofori, S.; Puškáčová, A.; Růžičková, I.; Wanner, J. Treated Wastewater Reuse for Irrigation: Pros and Cons. Sci. Total Environ. 2021, 760, 144026. [Google Scholar] [CrossRef]
- Natasha; Shahid, M.; Khalid, S.; Niazi, N.K.; Murtaza, B.; Ahmad, N.; Farooq, A.; Zakir, A.; Imran, M.; Abbas, G. Health Risks of Arsenic Buildup in Soil and Food Crops after Wastewater Irrigation. Sci. Total Environ. 2021, 772, 145266. [Google Scholar] [CrossRef]
Parameters | TCEQ | TTU | Units |
---|---|---|---|
Irrigation area | 205 (83) | 238 (96) | Acre (ha) |
Storage volume | 308 (378,000) | 179 (221,000) | ac-ft (m3) |
HRT in storage tank | 100 | 58 | days |
Parameter | Pond-in-Ponds | Constructed Wetlands | Land Application | Units |
---|---|---|---|---|
Area | 9.5 (3.8) | 2.4 (1.0) | 238 (96) | acre (ha) |
Storage volume | 80 (98,700) | 13 (16,000) | 124 (153,000) | ac-ft (m3) |
Estimated land cost | 27 | 7 | 448 | $1000 |
Estimated excavation cost | 340 | 55 | 527 | $1000 |
Estimated total cost | 366 | 62 | 1219 | $1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva Junior, L.C.S.d.; Costa, D.d.A.; Fedler, C.B. From Scarcity to Abundance: Nature-Based Strategies for Small Communities Experiencing Water Scarcity in West Texas/USA. Sustainability 2024, 16, 1959. https://doi.org/10.3390/su16051959
Silva Junior LCSd, Costa DdA, Fedler CB. From Scarcity to Abundance: Nature-Based Strategies for Small Communities Experiencing Water Scarcity in West Texas/USA. Sustainability. 2024; 16(5):1959. https://doi.org/10.3390/su16051959
Chicago/Turabian StyleSilva Junior, Luis Carlos Soares da, David de Andrade Costa, and Clifford B. Fedler. 2024. "From Scarcity to Abundance: Nature-Based Strategies for Small Communities Experiencing Water Scarcity in West Texas/USA" Sustainability 16, no. 5: 1959. https://doi.org/10.3390/su16051959
APA StyleSilva Junior, L. C. S. d., Costa, D. d. A., & Fedler, C. B. (2024). From Scarcity to Abundance: Nature-Based Strategies for Small Communities Experiencing Water Scarcity in West Texas/USA. Sustainability, 16(5), 1959. https://doi.org/10.3390/su16051959