The Distribution and Evolution of Groundwater Level Depths and Groundwater Sustainability in the Hexi Corridor over the Last Five Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Data Source and Analytical Methods
3. Results and Discussions
3.1. Present Distribution of Groundwater Level and GWDs
3.1.1. The Shiyang River Basin (SYB)
3.1.2. The Shule River Basin (SLB)
3.2. Changes and Evolutionary Trends of the Groundwater Level in the Past Five Years
3.2.1. Intra-Annual Changes in the Groundwater Level
3.2.2. Inter-Annual Changes in the Groundwater Level
3.3. Factors Influencing the Dynamic Changes in the Groundwater Level
3.4. Groundwater Sustainability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, H.; Syed, T.H.; Amelung, F.; Agrawal, R.; Venkatesh, A.S. Space-time evolution of land subsidence in the National Capital Region of India using ALOS-1 and Sentinel-1 SAR data: Evidence for groundwater overexploitation. J. Hydrol. 2022, 605, 127329. [Google Scholar] [CrossRef]
- Ochoa-González, G.H.; Carreón-Freyre, D.; Franceschini, A.; Cerca, M.; Teatini, P. Overexploitation of groundwater resources in the faulted basin of Querétaro, Mexico: A 3D deformation and stress analysis. Eng. Geol. 2018, 245, 192–206. [Google Scholar] [CrossRef]
- Sun, Q.; Xu, C.; Gao, X.; Lu, C.; Cao, B.; Guo, H.; Yan, L.; Wu, C.; He, X. Response of groundwater to different water resource allocation patterns in the Sanjiang Plain, Northeast China. J. Hydrol. Reg. Stud. 2022, 42, 101156. [Google Scholar] [CrossRef]
- Sahadevan, D.K.; Pandey, A.K. Groundwater over-exploitation driven ground subsidence in the himalayan piedmont zone: Implication for aquifer health due to urbanization. J. Hydrol. 2023, 617, 129085. [Google Scholar] [CrossRef]
- Tanui, F.; Olago, D.; Ouma, G.; Kuria, Z. Hydrochemical and isotopic characteristics of the Lodwar Alluvial Aquifer System (LAAS) in Northwestern Kenya and implications for sustainable groundwater use in dryland urban areas. J. Afr. Earth Sci. 2023, 206, 105043. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, X.; Simmons, C.T.; Zhang, L.; Zhang, Q. Changes in groundwater levels across China from 2005 to 2016. J. Hydrol. 2023, 623, 129781. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, K.; Chao, L.; Liu, Z.; Du, Y.; Xu, Q. Quantifying natural recharge characteristics of shallow aquifers in groundwater overexploitation zone of North China. Water Sci. Eng. 2021, 14, 184–192. [Google Scholar] [CrossRef]
- Bai, L.; Jiang, L.; Zhao, Y.; Li, Z.; Cao, G.; Zhao, C.; Liu, R.; Wang, H. Quantifying the influence of long-term overexploitation on deep groundwater resources across Cangzhou in the North China Plain using InSAR measurements. J. Hydrol. 2022, 605, 127368. [Google Scholar] [CrossRef]
- Jiang, T.; Qu, C.; Wang, M.; Sun, Y.; Hu, B.; Chu, J. Analysis on temporal and spatial variations of groundwater hydrochemical characteristics in the past decade in southern plain of Beijing, China. J. Groundw. Sci. Eng. 2017, 5, 235–248. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Z.; Yang, Y.; Han, Y.; Wang, X. Evaluation of water resources carrying capacity in Tarim River Basin under game theory combination weights. Ecol. Indic. 2023, 154, 110609. [Google Scholar] [CrossRef]
- Kulaixi, Z.; Chen, Y.; Wang, C.; Xia, Q. Spatial differentiation of ecosystem service value in an arid region: A case study of the Tarim River Basin, Xinjiang. Ecol. Indic. 2023, 151, 110249. [Google Scholar] [CrossRef]
- Huang, F.; Ochoa, C.G. A copula incorporated cellular automata module for modeling the spatial distribution of oasis recovered by ecological water diversion: An application to the Qingtu Oasis in Shiyang River basin, China. J. Hydrol. 2022, 608, 127573. [Google Scholar] [CrossRef]
- Chunyu, X.; Huang, F.; Xia, Z.; Zhang, D.; Chen, X.; Xie, Y. Assessing the Ecological Effects of Water Transport to a Lake in Arid Regions: A Case Study of Qingtu Lake in Shiyang River Basin, Northwest China. Int. J. Environ. Res. Public Health 2019, 16, 145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhu, G.; Ma, H.; Yang, J.; Pan, H.; Guo, H.; Wan, Q.; Yong, L. Effects of Ecological Water Conveyance on the Hydrochemistry of a Terminal Lake in an Inland River: A Case Study of Qingtu Lake in the Shiyang River Basin. Water 2019, 11, 1673. [Google Scholar] [CrossRef]
- Ma, L.; Bo, J.; Li, X.; Fang, F.; Cheng, W. Identifying key landscape pattern indices influencing the ecological security of inland river basin: The middle and lower reaches of Shule River Basin as an example. Sci. Total Environ. 2019, 674, 424–438. [Google Scholar] [CrossRef]
- Pan, J.; Liang, J.; Zhao, C. Identification and optimization of ecological security pattern in arid inland basin based on ordered weighted average and ant colony algorithm: A case study of Shule River basin, NW China. Ecol. Indic. 2023, 154, 110588. [Google Scholar] [CrossRef]
- Yang, L.; Feng, Q.; Lu, T.; Adamowski, J.F.; Yin, Z.; Hatami, S.; Zhu, M.; Wen, X. The response of agroecosystem water use efficiency to cropland change in northwest China’s Hexi Corridor. Agric. Water Manag. 2023, 276, 108062. [Google Scholar] [CrossRef]
- Feng, Q.; Miao, Z.; Li, Z.; Li, J.; Si, J.; S, Y.; Chang, Z. Public perception of an ecological rehabilitation project in inland river basins in northern China: Success or failure. Environ. Res. 2015, 139, 20–30. [Google Scholar] [CrossRef]
- Sun, Y.; Mao, X.; Shen, Q.; Tong, L.; Dong, Z. Temporal and spatial variations of groundwater depth in Shiyang River basin. J. Arid Land Resour. Environ. 2009, 23, 112–117. [Google Scholar] [CrossRef]
- Wang, L.; Nie, Z.; Liu, M.; Cao, L.; Zhu, P.; Yuan, Q. Rational Allocation of Water Resources in the Arid Area of Northwestern China Based on Numerical Simulations. Sustainability 2023, 15, 55. [Google Scholar] [CrossRef]
- Chang, G.; Wang, L.; Meng, L.; Zhang, W. Farmers’ attitudes toward mandatory water-saving policies: A case study in two basins in northwest China. J. Environ. Manag. 2016, 181, 455–464. [Google Scholar] [CrossRef]
- Hao, Y.; Xie, Y.; Ma, J.; Zhang, W. The critical role of local policy effects in arid watershed groundwater resources sustainability: A case study in the Minqin oasis, China. Sci. Total Environ. 2017, 601–602, 1084–1096. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Nie, Z.; Liu, M.; Lu, H.; Wang, L. Changes in natural vegetation growth and groundwater depth and their relationship in the Minqin oasis in the Shiyang River Basin. Hydrogeol. Eng. Geol. 2020, 47, 25–33. [Google Scholar]
- Cheng, W.; Feng, Q.; Xi, H.; Yin, X.; Sindikubwabo, C.; Habiyakare, T.; Chen, Y.; Zhao, X. Spatiotemporal variability and controlling factors of groundwater depletion in endorheic basins of Northwest China. J. Environ. Manag. 2023, 344, 118468. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, H.; Yu, Y.; Zhao, W.; Yang, Q.; Liu, J. Evaluation of groundwater sustainability in the arid Hexi Corridor of Northwestern China, using GRACE, GLDAS and measured groundwater data products. Sci. Total Environ. 2020, 705, 135829. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Q.; Pu, T. Assessment of water stress level about global glacier-covered arid areas: A case study in the Shule River Basin, northwestern China. J. Hydrol. Reg. Stud. 2021, 37, 100895. [Google Scholar] [CrossRef]
- He, Y.; Jiang, X.; Wang, N.; Zhang, S.; Ning, T.; Zhao, Y.; Hu, Y. Changes in mountainous runoff in three inland river basins in the arid Hexi Corridor, China, and its influencing factors. Sustain. Cities Soc. 2019, 50, 101703. [Google Scholar] [CrossRef]
- Liu, M.; Nie, Z.; Cao, L.; Wang, L.; Lu, H.; Wang, Z.; Zhu, P. Comprehensive evaluation on the ecological function of groundwater in the Shiyang River watershed. J. Groundw. Sci. Eng. 2021, 9, 326–340. [Google Scholar] [CrossRef]
- Xie, C.; Zhao, L.; Eastoe, C.J.; Wang, N.; Dong, X. An isotope study of the Shule River Basin, Northwest China: Sources and groundwater residence time, sulfate sources and climate change. J. Hydrol. 2022, 612, 128043. [Google Scholar] [CrossRef]
- Huo, Z. Dynamic Simulation of Groundwater Level in Minqin Oasis Based on ANN and FEFLOW. Ph.D. Thesis, China Agricultural University, Beijing, China, 2007. [Google Scholar]
- Ma, J.; Han, J.; Zhang, Y. Spatial heterogeneity of Minqin Basin’s groundwater depth in recent 10 years. Arid Land Geogr. 2013, 36, 1–7. [Google Scholar] [CrossRef]
- Zhang, W. Groundwater Dynamic Evolution and Its Impact on Eco-Environment under Variational Environment in Shiyang River Basin. Master’s Thesis, Northwest A&F University, Yangling, China, 2009. [Google Scholar]
- Yang, H.; Feng, Q.; Guo, X. Variation of groundwater depth and its influence factors in the Minqin Oasis in 1999–2013. J. Desert Res. 2017, 37, 562–570. [Google Scholar] [CrossRef]
- Ma, M. Gansu Shule River Project Dynamic Forecasting Research on Groundwater in Changma Irrigation District. Master’s Thesis, Xi’an University of Technology, Xi’an, China, 2004. [Google Scholar]
- Li, F.; Yang, F.; Wang, P. Analysis of groundwater level in Shule River Basin. China Water Transp. 2012, 12, 177–179. [Google Scholar]
- Liu, M.; Jiang, Y.; Xu, X.; Huang, Q.; Huo, Z.; Huang, G. Long-term groundwater dynamics affected by intense agricultural activities in oasis areas of arid inland river basins, Northwest China. Agric. Water Manag. 2018, 203, 37–52. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, H.; Zhou, F.; Li, J.; Zhou, D.; Cen, G.; Ma, J.; Zhu, X. Spatiotemporal changes of agricultural water footprint and its driving factors using the ARDL model in the Hexi corridor, China. J. Arid Environ. 2023, 213, 104966. [Google Scholar] [CrossRef]
- Hu, H.; Ding, H.; He, B. Dynamic variation of groundwater leveling in the Middle-Lower reaches of Shiyanghe River Basin for Nearly 40 Years. Northwestern Geol. 2016, 49, 164–174. [Google Scholar]
- E, Y.; Yan, P.; Zhong, S.; Han, F. Study on the underground water variation of Shajingzi Region in Minqin County. J. Desert Res. 1997, 17, 72–78. [Google Scholar]
- Zhou, J.; Shi, P.; Lei, L.; Cao, J.; Wei, W.; Zhang, L. Study on the planting industry structure adjustment and its impact on the water demand of crops in Minqin Oasis. J. Nat. Resour. 2016, 31, 822–832. [Google Scholar] [CrossRef]
- Hu, Z.; Tian, X.; Zhang, J.; Bao, X.; Ma, Z. Research on amount and low of water requirement in Shiyang River Basin. Agric. Res. Arid Areas 2011, 29, 1–6. [Google Scholar]
- Sandoval-Solis, S.; Mckinney, D.C.; Loucks, D.P. Sustainability Index for Water Resources Planning and Management. J. Water Resour. Plan. Manag. 2011, 137, 381–390. [Google Scholar] [CrossRef]
- Loucks, D.P. Quantifying trends in system sustainability. Hydrol. Sci. J. 1997, 42, 513–530. [Google Scholar] [CrossRef]
- Hashimoto, T.; Stedinger, J.R.; Loucks, D.P. Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resour. Res. 1982, 18, 14–20. [Google Scholar] [CrossRef]
Shiyang River Basin | Shule River Basin | |||
---|---|---|---|---|
Change Rate (m/a) | R2 | Change Rate (m/a) | R2 | |
min | −12.17 | 0.00 | −1.87 | 0.00 |
max | 9.11 | 1.00 | 2.06 | 1.00 |
average | −0.13 | 0.47 | 0.01 | 0.49 |
median | 0.00 | 0.48 | −0.01 | 0.54 |
SD * | 1.90 | 0.32 | 0.44 | 0.30 |
CV * | −14.15 | 0.69 | 33.63 | 0.62 |
Basin | Sub-Basin | Period | Groundwater Level Decline Rate (m/a) | References |
---|---|---|---|---|
Shiyang River Basin | Minqin Basin | 1984–2001 | 0.57 | [32] |
1999–2013 | 0.33 | [33] | ||
2010–2017 | 0.21 | [23] | ||
2019–2023 | 0.09 | This study | ||
Wuwei Basin | 1984–2001 | 0.31 | [32] | |
2019–2023 | −0.09 * | This study | ||
Changning Basin | 2019–2023 | −0.58 * | This study | |
Shule River Basin | Yumen Basin | 1987–2000 | 0.07–0.21 | [34] |
2003–2010 | 0.08 | [35] | ||
2019–2023 | 0.06 | This study | ||
Guazhou-Dunhuang | 2003–2010 | 0.05 | [35] | |
Guazhou Basin | 2019–2023 | 0.05 | This study | |
Huahai Basin | 2003–2010 | 0.26 | This study | |
2019–2023 | 0.03 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, L.; Liu, X.; Zhu, P.; Wang, L. The Distribution and Evolution of Groundwater Level Depths and Groundwater Sustainability in the Hexi Corridor over the Last Five Years. Sustainability 2024, 16, 2527. https://doi.org/10.3390/su16062527
Cao L, Liu X, Zhu P, Wang L. The Distribution and Evolution of Groundwater Level Depths and Groundwater Sustainability in the Hexi Corridor over the Last Five Years. Sustainability. 2024; 16(6):2527. https://doi.org/10.3390/su16062527
Chicago/Turabian StyleCao, Le, Xuequan Liu, Pucheng Zhu, and Lifang Wang. 2024. "The Distribution and Evolution of Groundwater Level Depths and Groundwater Sustainability in the Hexi Corridor over the Last Five Years" Sustainability 16, no. 6: 2527. https://doi.org/10.3390/su16062527
APA StyleCao, L., Liu, X., Zhu, P., & Wang, L. (2024). The Distribution and Evolution of Groundwater Level Depths and Groundwater Sustainability in the Hexi Corridor over the Last Five Years. Sustainability, 16(6), 2527. https://doi.org/10.3390/su16062527