Algae Extracts in Horticulture: Characterization of Algae-Based Extracts and Impact on Turnip Germination and Radish Culture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Raw Algal Extracts
2.2. Determination of pH and Electrical Conductivity of Raw Extracts
2.3. Determination of Solids
2.4. Phosphorus Determination
2.5. Mineral Determination
2.6. Nitrogen and Protein Determination Using the Kjeldahl Method
2.7. Determination of Total Phenolic Content in Raw Algal Extracts
2.8. ABTS+ Assay for Determination of Antioxidants in Raw Algal Extracts
2.9. Preparation of Extracts
2.10. Germination Tests
2.11. Pot Trial of Radish Plants Treated with Different Algae-Based Extracts
2.12. Post-Harvest Treatment of Radishes
2.13. Determination of Macro and Micronutrients
2.14. Extraction of Bioactive Compounds from Radishes
2.15. Determination of the Total Content of Phenolic Compounds in Radishes
2.16. ABTS+ Test for Determining Antioxidants in Radishes
2.17. Statistical Treatment
3. Results and Discussion
3.1. Determining the pH and Electrical Conductivity of the Crude Extracts
3.2. Determination of Crude Extract Solids
3.3. Characterization of Macro- and Micro-Elements in the Crude Extracts
3.4. Phenolic Compound and Antioxidant Content of Algae Extracts
3.5. Germination Tests
3.6. Trial of Radishes in Pots with Extract Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- López-Padrón, I.; Martínez-González, L.; Pérez-Domínguez, G.; Reyes-Guerrero, Y.; Núñez-Vázquez, M.; Cabrera-Rodríguez, J.A. Algae and their uses in agriculture. An update. Cultiv. Trop. 2020, 41, 20203479728. [Google Scholar]
- Kapoore, R.V.; Wood, E.E.; Llewellyn, C.A. Algae biostimulants: A critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnol. Adv. 2021, 49, 107754. [Google Scholar] [CrossRef] [PubMed]
- Salavisa, I.; Soares, M.; Bizarro, S. A Critical Assessment of Organic Agriculture in Portugal: A Reflection on the Agro-Food System Transition; University Institute of Lisbon: Lisbon, Portugal, 2021. [Google Scholar] [CrossRef]
- Ammar, E.E.; Aioub, A.A.A.; Elesawy, A.E.; Karkour, A.M.; Mouhamed, M.S.; Amer, A.A.; EL-Shershaby, N.A. Algae as Bio-fertilizers: Between current situation and future prospective: The role of Algae as a Bio-fertilizer in serving of ecosystem. Saudi J. Biol. Sci. 2022, 29, 3083–3096. [Google Scholar] [CrossRef] [PubMed]
- Asimakis, E.; Shehata, A.A.; Eisenreich, W.; Acheuk, F.; Lasram, S.; Basiouni, S.; Emekci, M.; Ntougias, S.; Taner, G.; May-Simera, H.; et al. Algae and Their Metabolites as Potential Bio-Pesticides. Microorganisms 2022, 10, 307. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Bo, Y.; Feng, Y.; Tan, Y.; Zhou, C.; Yan, X.; Ruan, R.; Xu, Q.; Cheng, P. Potential applications for multifunctional microalgae in soil improvement. Front. Environ. Sci. 2022, 10, 1035332. [Google Scholar] [CrossRef]
- Sharma, H.S.; Fleming, C.; Selby, C.; Rao, J.R.; Martin, T. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol. 2014, 26, 465–490. [Google Scholar] [CrossRef]
- Hamed, S.M.; Abd El-Rhman, A.A.; Abdel-Raouf, N.; Ibraheem, I.B.M. Role of marine macroalgae in plant protection & improvement for sustainable agriculture technology. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 104–110. [Google Scholar] [CrossRef]
- Leogrande, R.; El Chami, D.; Fumarola, G.; Di Carolo, M.; Piegari, G.; Elefante, M.; Perrelli, D.; Dongiovanni, C. Biostimulants for Resilient Agriculture: A Preliminary Assessment in Italy. Sustainability 2022, 14, 6816. [Google Scholar] [CrossRef]
- Lee, R.E. Phycology, 5th ed.; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulant Properties of Seaweed Extracts in Plants: Implications towards Sustainable Crop Production. Plants 2021, 10, 531. [Google Scholar] [CrossRef]
- Muñoz-Miranda, L.A.; Iñiguez-Moreno, M. An extensive review of marine pigments: Sources, biotechnological applications, and sustainability. Aquat. Sci. 2023, 85, 68. [Google Scholar] [CrossRef]
- Sousa, T.; Cotas, J.; Bahcevandziev, K.; Pereira, L. Effects of “sargaço” extraction residues on seed germination. Millenium—J. Educ. Technol. Health 2020, 2, 29–37. [Google Scholar] [CrossRef]
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association, American Water Works Association and Water Environmental Federation: Washington, DC, USA, 1998. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144. [Google Scholar] [CrossRef]
- Gião, M.S.; González-Sanjosé, M.L.; Rivero-Pérez, M.D.; Pereira, C.I.; Pintado, M.E.; Malcata, F.X. Infusions of Portuguese medicinal plants: Dependence of final antioxidant capacity and phenol content on extraction features. J. Sci. Food Agric. 2007, 87, 2638–2647. [Google Scholar] [CrossRef]
- Rayorath, P.; Jithesh, M.N.; Farid, A.; Khan, W.; Palanisamy, R.; Hankins, S.D.; Critchley, A.T.; Prithiviraj, B. Rapid bioassays to evaluate the plant growth promoting activity of Ascophyllum nodosum (L.) Le Jol. using a model plant, Arabidopsis thaliana (L.) Heynh. J. Appl. Phycol. 2008, 20, 423–429. [Google Scholar] [CrossRef]
- Seng, M.; Cheong, E.J. Comparative study of various pretreatment on seed germination of Dalbergia cochinchinensis. For. Sci. Technol. 2020, 16, 68–74. [Google Scholar] [CrossRef]
- Ammaturo, C.; Pacheco, D.; Cotas, J.; Formisano, L.; Ciriello, M.; Pereira, L.; Bahcevandziev, K. Use of Chlorella vulgaris and Ulva lactuca as Biostimulant on Lettuce. Appl. Sci. 2023, 13, 9046. [Google Scholar] [CrossRef]
- Hernández-Herrera, R.M.; Santacruz-Ruvalcaba, F.; Ruiz-López, M.A.; Norrie, J.; Hernández-Carmona, G. Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). J. Appl. Phycol. 2014, 26, 619–628. [Google Scholar] [CrossRef]
- AlgaEnergy. Ficha Técnica AgriAlgae Foliar. Prodelesa. 2021. Available online: https://www.prodelesa.com/wp-content/uploads/2021/05/Fichas-tecnicas-2021_Fol.pdf (accessed on 23 December 2023).
- Zheng, H.; Zhao, Y.; Guo, L. A Bioactive Substance Derived from Brown Seaweeds: Phlorotannins. Mar. Drugs 2022, 20, 742. [Google Scholar] [CrossRef]
- Ertani, A.; Francioso, O.; Tinti, A.; Schiavon, M.; Pizzeghello, D.; Nardi, S. Evaluation of seaweed extracts from laminaria and Ascophyllum nodosum spp. As biostimulants in Zea mays L. using a combination of chemical, biochemical and morphological approaches. Front. Plant Sci. 2018, 9, 361254. [Google Scholar] [CrossRef]
- Castro, P.S.d.S. Estudos em Biomassa de Macroalgas Recorrendo a Tecnologias de Extração Verdes. Master’s Thesis, Instituto Superior de Engenharia de Lisboa, Lisbon, Portugal, 2019. Available online: http://hdl.handle.net/10400.21/13327 (accessed on 13 December 2023).
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Turk, M.; Eser, O. Effects of salt stress on germination of some silage maize (Zea mays L.) cultivars. Sci. Pap.-Ser. A Agron. 2016, 59, 466–469. [Google Scholar]
- Godlewska, K.; Pacyga, P.; Michalak, I.; Biesiada, A.; Szumny, A.; Pachura, N.; Piszcz, U. Systematic Investigation of the Effects of Seven Plant Extracts on the Physiological Parameters, Yield, and Nutritional Quality of Radish (Raphanus sativus var. sativus). Front. Plant Sci. 2021, 12, 651152. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Salama, D.M.; El-Tanahy, A.M.M.; Abd El-Samad, E.H. Utilization of seaweed (Sargassum vulgare) extract to enhance growth, yield and nutritional quality of red radish plants. Ann. Agric. Sci. 2019, 64, 167–175. [Google Scholar] [CrossRef]
- Ruzzi, M.; Giordano, M.; Ii, F.; El-Sayed, I.; Desoky, M.; Rehim, A.; Geng, Y. Biostimulants induce positive changes in the radish morpho-physiology and yield. Front. Plant Sci. 2022, 13, 950393. [Google Scholar]
- Yousaf, M.; Bashir, S.; Raza, H.; Shah, A.N.; Iqbal, J.; Arif, M.; Bukhari, M.A.; Muhammad, S.; Hashim, S.; Alkahtani, J.; et al. Role of nitrogen and magnesium for growth, yield and nutritional quality of radish. Saudi J. Biol. Sci. 2021, 28, 3021–3030. [Google Scholar] [CrossRef] [PubMed]
- Gamba, M.; Asllanaj, E.; Raguindin, P.F.; Glisic, M.; Franco, O.H.; Minder, B.; Bussler, W.; Metzger, B.; Kern, H.; Muka, T. Nutritional and phytochemical characterization of radish (Raphanus sativus): A systematic review. Trends Food Sci. Technol. 2021, 113, 205–218. [Google Scholar] [CrossRef]
- Rasul, F.; Gupta, S.; Olas, J.J.; Gechev, T.; Sujeeth, N.; Mueller-Roeber, B. Priming with a Seaweed Extract Strongly Improves Drought Tolerance in Arabidopsis. Int. J. Mol. Sci. 2021, 22, 1469. [Google Scholar] [CrossRef]
- Chami, D.E.; Galli, F. An Assessment of Seaweed Extracts: Innovation for Sustainable Agriculture. Agronomy 2020, 10, 1433. [Google Scholar] [CrossRef]
Extract | Parameters | |
---|---|---|
pH | EC (dS/m) | |
UA | 5.97 | 12.01 |
CJ | 5.30 | 12.93 |
GR | 6.24 | 11.58 |
AA | 3.48 | 22.50 |
Extract | Parameters | ||
---|---|---|---|
TS (g/L) | VS (g/L) | FS (g/L) | |
UA | 23.595 ± 0.095 b | 992.680 ± 1.541 b | 8.418 ± 1.547 ab |
CJ | 10.335 ± 0.046 c | 990.515 ± 3.992 b | 6.390 ± 2.273 b |
GR | 22.098 ± 0.113 b | 984.386 ± 2.936 b | 8.004 ± 1.315 ab |
AA | 118.499 ± 2.233 a | 1015.250 ± 3.018 a | 15.662 ± 1.109 a |
Elements | Crude Algae Extracts | |||
---|---|---|---|---|
UA | CJ | GR | AA | |
Ca (mg/L) | 440.80 ± 9.33 a | 277.15 ± 30.90 a | 311.70 ± 17.96 a | 447.39 ± 45.69 a |
Mg (mg/L) | 346.75 ± 10.25 a | 106.50 ± 9.19 b | 309.25 ± 4.60 a | 380.50 ± 28.99 a |
Na (mg/L) | 1439.50 ± 38.89 a | 1652.50 ± 144.96 a | 1439.50 ± 24.75 a | 953.00 ± 165.46 a |
K (mg/L) | 1044.00 ± 63.64 b | 1429.50 ± 149.20 ab | 1183.00 ± 311.13 ab | 3301.25 ± 189.15 a |
Fe (mg/L) | 3.82 ± 0.28 c | 3.02 ± 0.11 bc | 5.06 ± 0.27 b | 50.85 ± 0.35 a |
Zn (mg/L) | 2.38 ± 0.73 ab | 6.57 ± 0.30 ab | 3.08 ± 0.22 b | 5.25 ± 0.26 a |
Mn (mg/L) | 4.21 ± 0.25 a | 0.83 ± 0.08 b | 4.53 ± 0.06 a | 3.11 ± 0.26 ab |
Cu (mg/L) | 0.74 ± 0.13 a | 1.57 ± 0.28 a | 0.85 ± 0.01 a | 1.17 ± 0.02 a |
P (mg/L) | 62.67 ± 2.98 b | 27.84 ± 1.78 c | 47.92 ± 0.39 b | 513.26 ± 5.56 a |
N (mg/L) | 215.23 ± 0 b | 194.23 ± 0 b | 199.48 ± 0 b | 10,925.49 ± 12.99 a |
DAY | Parameters | Crude Algae Extracts | |||
---|---|---|---|---|---|
UA | CJ | GR | AA | ||
34 | Chl | 20.953 ± 3.520 a | 21.941 ± 2.556 a | 22.722 ± 1.988 a | 22.428 ± 1.848 a |
Flav | 1.007 ± 0.165 bc | 1.010 ± 0.100 c | 1.103 ± 0.129 a | 1.084 ± 0.124 ab | |
Anth | 0.156 ± 0.020 a | 0.159 ± 0.022 a | 0.153 ± 0.013 a | 0.154 ± 0.015 a | |
NBI | 21.264 ± 4.701 ab | 21.960 ± 3.524 ab | 20.853 ± 2.830 b | 20.904 ± 2.426 ab | |
44 | Chl | 24.777 ± 2.700 a | 24.546 ± 3.004 a | 23.054 ± 2.112 a | 23.355 ± 3.255 a |
Flav | 0.948 ± 0.160 ab | 0.939 ± 0.095 b | 0.970 ± 0.172 ab | 0.947 ± 0.130 ab | |
Anth | 0.131 ± 0.021 a | 0.129 ± 0.029 a | 0.141 ± 0.017 a | 0.140 ± 0.027 a | |
NBI | 26.957 ± 6.120 ab | 26.307 ± 3.667 a | 24.703 ± 6.152 b | 25.185 ± 5.431 ab | |
47 | Chl | 26.131 ± 2.868 a | 25.912 ± 2.639 a | 25.378 ± 2.349 a | 25.719 ± 2.599 a |
Flav | 0.859 ± 0.448 ab | 0.910 ± 0.144 b | 0.937 ± 0.245 ab | 0.989 ± 0.201 ab | |
Anth | 0.136 ± 0.022 a | 0.122 ± 0.020 a | 0.127 ± 0.018 a | 0.124 ± 0.020 a | |
NBI | 46.629 ± 35.214 ab | 29.254 ± 5.914 a | 28.753 ± 7.364 ab | 27.382 ± 7.616 ab |
Parameters | Radish According to Treatment | ||||
---|---|---|---|---|---|
C | UA | CJ | GR | AA | |
Total weight (g) | 42.02 ± 28.69 a | 60.08 ± 15.29 a | 49.23 ± 13.59 a | 48.75 ± 16.18 a | 53.44 ± 11.26 a |
Weight of aerial part (g) | 18.62 ± 17.02 a | 19.15 ± 3.87 a | 17.02 ± 4.46 a | 16.30 ± 5.31 a | 19.52 ± 5.99 a |
Number of leaves | 6.8 ± 1.19 a | 6.3 ± 0.83 a | 6.6 ± 0.97 a | 6.1 ± 1.29 a | 5.7 ± 0.67 a |
Leaf evaluation * | S | M | M | M | M |
Root weight (g) | 22.40 ± 14.15 a | 40.32 ± 11.89 a | 31.75 ± 10.02 a | 31.97 ± 11.53 a | 33.21 ± 7.05 a |
H. Diameter (mm) | 31.82 ± 12.37 a | 37.10 ± 4.34 a | 32.78 ± 3.19 a | 34.99 ± 4.50 a | 37.22 ± 3.24 a |
V. Diameter (mm) | 39.85 ± 9.47 b | 57.37 ± 8.36 a | 54.94 ± 12.68 a | 53.72 ± 12.35 ab | 50.86 ± 9.06 ab |
Radish Roots According to Treatment | Evaluated Parameters | ||||
---|---|---|---|---|---|
Moisture (%) | Protein (%dm) | Phosphorus (mg/100 g dm) | PC (mg eq. Gallic Acid/g fm) | AO (mg eq. Ascorbic Acid/g fm) | |
C | 90.78 ± 0.36 a | 1.823 ± 0.012 a | 363.39 ± 9.78 a | 0.05664 | 0.0553 ± 0.0004 d |
UA | 90.56 ± 0.38 ab | 1.796 ± 0.018 ab | 668.69 ± 52.64 a | 0.10434 | 0.0722 ± 0.0003 b |
CJ | 90.62 ± 0.26 ab | 1.767 ± 0.010 b | 508.09 ± 42.91 a | 0.09113 | 0.0698 ± 0.0003 c |
GR | 90.93 ± 0.11 a | 1.866 ± 0.004 a | 680.03 ± 89.56 a | 0.12121 | 0.0754 ± 0.0000 a |
AA | 89.72 ± 0.20 b | 1.742 ± 0.014 ab | 706.10 ± 63.83 a | 0.05811 | 0.0554 ± 0.0009 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, D.; Cotas, J.; Pereira, L.; Bahcevandziev, K. Algae Extracts in Horticulture: Characterization of Algae-Based Extracts and Impact on Turnip Germination and Radish Culture. Sustainability 2024, 16, 2529. https://doi.org/10.3390/su16062529
Santos D, Cotas J, Pereira L, Bahcevandziev K. Algae Extracts in Horticulture: Characterization of Algae-Based Extracts and Impact on Turnip Germination and Radish Culture. Sustainability. 2024; 16(6):2529. https://doi.org/10.3390/su16062529
Chicago/Turabian StyleSantos, Daniel, João Cotas, Leonel Pereira, and Kiril Bahcevandziev. 2024. "Algae Extracts in Horticulture: Characterization of Algae-Based Extracts and Impact on Turnip Germination and Radish Culture" Sustainability 16, no. 6: 2529. https://doi.org/10.3390/su16062529
APA StyleSantos, D., Cotas, J., Pereira, L., & Bahcevandziev, K. (2024). Algae Extracts in Horticulture: Characterization of Algae-Based Extracts and Impact on Turnip Germination and Radish Culture. Sustainability, 16(6), 2529. https://doi.org/10.3390/su16062529