Evaluating the Impact of Learning Management Systems in Geographical Education in Primary School: An Experimental Study on the Importance of Learning Analytics-Based Feedback
Abstract
:1. Introduction
Aim and Research Questions
2. Literature Review
2.1. Tradition vs. Adaptation to Current Education Needs: From Passive and Paper-Based Learning to an Active, Technological and Student-Centeredone
2.2. Leveraging Tasks in Moodle to Enhance Active and Autonomous Learning Paths
2.3. Empowering Both Educators and Learners: The Potential of Learning Analytics to Foster Greater and Daily Feedback throughout the LMS Moodle Sustainably
3. Materials and Methods
3.1. Design
3.2. Context and Participants
3.3. Procedure
3.4. Instruments
3.5. Data Analyses
4. Results
4.1. Is the Inclusion of Extensive Feedback Beneficial for the Improvement of Students’ Academic Achievement?
4.2. Can LAs Data Collected during LMS Tasks Be Used to Predict Student Academic Achievement?
4.3. What Is the Level of Student Satisfaction with the LMS Task after the Study?
5. Discussion
6. Conclusions
Limitations and Proposals for Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baldassarri, S. 2022 EDUCAUSE Horizont Report. Teaching and Learning Edition. Educ. Publ. 2022, 32, e14. [Google Scholar] [CrossRef]
- Redecker, C. European Framework for the Digital Competence of Educators: DigCompEdu; Punie, Y., Ed.; Publications Office: Luxembourg, 2017; ISBN 978-92-79-73494-6. [Google Scholar]
- Long, P.; Siemens, G.; Conole, G.; Gašević, D. LAK ’11: Proceedings of the 1st International Conference on Learning Analytics and Knowledge; Association for Computing Machinery: New York, NY, USA, 2011. [Google Scholar]
- Gašević, D.; Greiff, S.; Shaffer, D.W. Towards Strengthening Links between Learning Analytics and Assessment: Challenges and Potentials of a Promising New Bond. Comput. Human Behav. 2022, 134, 107304. [Google Scholar] [CrossRef]
- Gómez-Carrasco, C.J.; Ortuño, J.; Miralles-Martínez, P. Enseñar Ciencias Sociales Con Métodos Activos de Aprendizaje: Reflexiones y Propuestas a Través de la Indagación; Octaedro: Barcelona, Spain, 2018; ISBN 9788417219536. [Google Scholar]
- Acar, O.A.; Tuncdogan, A. Using the Inquiry-Based Learning Approach to Enhance Student Innovativeness: A Conceptual Model. Teach. High. Educ. 2019, 24, 895–909. [Google Scholar] [CrossRef]
- Kozanitis, A.; Nenciovici, L. Effect of Active Learning versus Traditional Lecturing on the Learning Achievement of College Students in Humanities and Social Sciences: A Meta-Analysis. High. Educ. 2022, 86, 1377–1394. [Google Scholar] [CrossRef]
- Sagarika, R.H.; Kandakatla, R.; Gulhane, A. Role of Learning Analytics to Evaluate Formative Assessments: Using a Data Driven Approach to Inform Changes in Teaching Practices. J. Eng. Educ. Transform. 2021, 34, 550–556. [Google Scholar] [CrossRef]
- Miralles Martínez, P.; Gómez Carrasco, C.J.; Sánchez Ibañez, R. Dime Qué Preguntas y Te Diré Qué Evalúas y Enseñas. Análisis de Los Exámenes de Ciencias Sociales En Tercer Ciclo de Educación Primaria. Aula Abierta 2014, 42, 83–89. [Google Scholar] [CrossRef]
- Bulut, O.; Gorgun, G.; Yildirim-Erbasli, S.N.; Wongvorachan, T.; Daniels, L.M.; Gao, Y.; Lai, K.W.; Shin, J. Standing on the Shoulders of Giants: Online Formative Assessments as the Foundation for Predictive Learning Analytics Models. Br. J. Educ. Technol. 2023, 54, 19–39. [Google Scholar] [CrossRef]
- Gašević, D.; Dawson, S.; Rogers, T.; Gasevic, D. Learning Analytics Should Not Promote One Size Fits All: The Effects of Instructional Conditions in Predicting Academic Success. Internet High. Educ. 2016, 28, 68–84. [Google Scholar] [CrossRef]
- Yassine, S.; Kadry, S.; Sicilia, M.-A. IEEE A Framework for Learning Analytics in Moodle for Assessing Course Outcomes. In Proceedings of the 2016 IEEE Global Engineering Education Conference (EDUCON), Abu Dhabi, United Arab Emirates, 10–13 April 2016; pp. 261–266. [Google Scholar]
- Justin, T.S.; Krishnan, R.; Nair, S.; Samuel, B.S. Learners’ Performance Evaluation Measurement Using Learning Analytics in Moodle. In Lecture Notes in Networks and Systems; Springer Science and Business Media Deutschland GmbH: Berlin/Heidelberg, Germany, 2022; Volume 191, pp. 931–942. [Google Scholar]
- Ros Martínez de Lahidalga, I. Moodle, la Plataforma Para la Enseñanza y Organización Escolar; 2008; pp. 1–12. Available online: https://addi.ehu.es/handle/10810/6876 (accessed on 18 March 2024).
- Li, K.C.; Wong, B. Trends of Learning Analytics in STE(A)M Education: A Review of Case Studies. Interact. Technol. Smart Educ. 2020, 17, 323–335. [Google Scholar] [CrossRef]
- Wineburg, S. Why Learn History (When It’s Already on Your Phone); The University of Chicago Press: Chicago, IL, USA, 2018; ISBN 9780226357218. [Google Scholar]
- Moreno-Vera, J.R.; Alvén, F. Concepts for Historical and Geographical Thinking in Sweden’s and Spain’s Primary Education Curricula. Humanit. Soc. Sci. Commun. 2020, 7, 107. [Google Scholar] [CrossRef]
- Chinn, C.A.; Barzilai, S.; Duncan, R.G. Education for a “Post-Truth” World: New Directions for Research and Practice. Educ. Res. 2021, 50, 51–60. [Google Scholar] [CrossRef]
- Brooks, C.; Butt, G.; Fargher, M. The Power of Geographical Thinking; Brooks, C., Butt, G., Fargher, M., Eds.; International Perspectives on Geographical Education; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-49985-7. [Google Scholar]
- Roberts, M. Powerful Knowledge and Geographical Education. Curric. J. 2014, 25, 187–209. [Google Scholar] [CrossRef]
- Scholten, N.; Caldis, S.; Sprenger, S. Intervention Studies to Improve Initial Teacher Education in Geography: A Scoping Review. In International Perspectives on Geographical Education; Springer Nature: Berlin/Heidelberg, Germany, 2022; pp. 9–24. [Google Scholar]
- Gómez-Carrasco, C.J.; Miralles-Martínez, P.; López-Facal, R. Handbook of Research on Teacher Education in History and Geography; Peter Lang AG: Lausanne, Switzerland, 2021. [Google Scholar]
- Gómez-Carrasco, C.J.; Miralles-Martínez, P. Los Contenidos de Ciencias Sociales y Las Capacidades Cognitivas En Los Exámenes de Tercer Ciclo de Educación Primaria ¿una Evaluación En Competencias? Rev. Complut. Educ. 2013, 24, 91–121. [Google Scholar] [CrossRef]
- Graves, N.J. Geography in Education; Heinemann Educational: Portsmouth, NH, USA, 1975. [Google Scholar]
- Alfageme, M.B.; Miralles Martínez, P. El Profesorado de Geografía e Historia de Enseñanza Secundaria Ante La Evaluación. Educ. Rev. 2014, 52, 193–209. [Google Scholar] [CrossRef]
- Palacios-Rodríguez, A.; Cabero-Almenara, J.; Barroso-Osuna, J. Competencia Digital Docente Según #DigCompEdu. Aportes Desde la Investigación; Universidad de Sevilla: Sevilla, Spain, 2023. [Google Scholar]
- Tüzün, H.; Yilmaz-Soylu, M.; Karakuş, T.; Inal, Y.; Kizilkaya, G. The Effects of Computer Games on Primary School Students’ Achievement and Motivation in Geography Learning. Comput. Educ. 2009, 52, 68–77. [Google Scholar] [CrossRef]
- Tsai, Y.-S.; Perrotta, C.; Gasevic, D. Empowering Learners with Personalised Learning Approaches? Agency, Equity and Transparency in the Context of Learning Analytics. Assess. Eval. High. Educ. 2020, 45, 554–567. [Google Scholar] [CrossRef]
- Rosário, P.; Cunha, J.; Nunes, T.; Nunes, A.R.; Moreira, T.; Núñez, J.C. “Homework Should Be...but We Do Not Live in an Ideal World”: Mathematics Teachers’ Perspectives on Quality Homework and on Homework Assigned in Elementary and Middle Schools. Front. Psychol. 2019, 10, 430481. [Google Scholar] [CrossRef]
- Stanja, J.; Gritz, W.; Krugel, J.; Hoppe, A.; Dannemann, S. Formative Assessment Strategies for Students’ Conceptions—The Potential of Learning Analytics. Br. J. Educ. Technol. 2023, 54, 58–75. [Google Scholar] [CrossRef]
- Mwalumbwe, I.; Mtebe, J.S. Using Learning Analytics to Predict Students’ Performance in Moodle Learning Management System: A Case of Mbeya University of Science and Technology. Electron. J. Inf. Syst. Dev. Ctries. 2017, 79, 1–13. [Google Scholar] [CrossRef]
- Kliziene, I.; Taujanskiene, G.; Augustiniene, A.; Simonaitiene, B.; Cibulskas, G. The Impact of the Virtual Learning Platform Eduka on the Academic Performance of Primary School Children. Sustainability 2021, 13, 2268. [Google Scholar] [CrossRef]
- Magalhães, P.; Ferreira, D.; Cunha, J.; Rosário, P. Online vs. Traditional Homework: A Systematic Review on the Benefits to Students’ Performance. Comput. Educ. 2020, 152, 103869. [Google Scholar] [CrossRef]
- Suad, A.; Tapalova, O.; Berestova, A.; Vlasova, S. The Impact of Moodle Learning Analytics on Students’ Performance and Motivation. Int. J. Instr. 2023, 16, 297–312. [Google Scholar] [CrossRef]
- Tirado-Olivares, S.; Bueno-Baquero, A.; López-Fernández, C.; Mínguez-Pardo, R.; Cózar-Gutiérrez, R. Revisión de La Literatura Sobre El Uso de Learning Analytics En El Rendimiento Académico de Estudiantes de Pregrado: Impresiones Iniciales. In Educar para Transformar: Innovación Pedagógica, Calidad y TIC en Contextos Formativos; Cobos-Sanchiz, D., López-Meneses, E., Martín-Padilla, A.H., Molina-García, L., Jaén-Martínez, A., Eds.; Dykinson: Madrid, Spain, 2023; pp. 2511–2521. ISBN 978-84-1122-469-7. [Google Scholar]
- Lunsford, M.L.; Pendergrass, M. Making Online Homework Work. Primus 2016, 26, 531–544. [Google Scholar] [CrossRef]
- Cechinel, C.; De Freitas Dos Santos, M.; Barrozo, C.; Schardosim, J.E.; De Vila, E.; Ramos, V.; Primo, T.; Munoz, R.; Queiroga, E.M. A Learning Analytics Dashboard for Moodle: Implementing Machine Learning Techniques to Early Detect Students at Risk of Failure. In Proceedings of the 2021 16th Latin American Conference on Learning Technologies, LACLO 2021, Arequipa, Peru, 19–21 October 2021; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2021; pp. 130–136. [Google Scholar]
- Pardo, A.; Jovanovic, J.; Dawson, S.; Gašević, D.; Mirriahi, N. Using Learning Analytics to Scale the Provision of Personalised Feedback. Br. J. Educ. Technol. 2019, 50, 128–138. [Google Scholar] [CrossRef]
- Feliu, J. Evaluación Colaborativa Por Competencias En Un Equipo Docente. In Analítica del Aprendizaje: 30 Experiencias con Datos en el Aula; Filvà, D.A., Ed.; Independiente: Badalona, Spain, 2018; pp. 100–104. [Google Scholar]
- Børte, K.; Lillejord, S.; Chan, J.; Wasson, B.; Greiff, S. Prerequisites for Teachers’ Technology Use in Formative Assessment Practices: A Systematic Review. Educ. Res. Rev. 2023, 41, 100568. [Google Scholar] [CrossRef]
- Tirado-Olivares, S.; López-Fernández, C.; González-Calero, J.A.; Cózar-Gutiérrez, R. Enhancing Historical Thinking through Learning Analytics in Primary Education: A Bridge to Formative Assessment. Educ. Inf. Technol. 2024, 1–25. [Google Scholar] [CrossRef]
- Pelletier, K.; Brown, M.; Brooks, D.C.; McCormack, M.; Reeves, J.; Arbino, N.; Bozkurt, A.; Crawford, S.; Czerniewicz, L.; Gibson, R.; et al. 2021 EDUCAUSE Horizon Report Teaching and Learning Edition—Learning & Technology Library (LearnTechLib); EDU: San Diego, CA, USA, 2021; ISBN 978-1-933046-08-2. [Google Scholar]
- Ferguson, R.; Clow, D. ACM Learning Analytics Community Exchange: Evidence Hub. In Proceedings of the LAK ’16: Proceedings of the Sixth International Conference on Learning Analytics & Knowledge, New York, NY, USA, 25–29 April 2016; pp. 520–521. [Google Scholar]
- Sadler, D.R. Formative Assessment and the Design of Instructional Systems. Instr. Sci. 1989, 18, 119–144. [Google Scholar] [CrossRef]
- Black, P.; Wiliam, D. Developing the Theory of Formative Assessment. Educ. Assess. Eval. Account. 2009, 21, 5–31. [Google Scholar] [CrossRef]
- Dubé, A.K.; Wen, R. Identification and Evaluation of Technology Trends in K-12 Education from 2011 to 2021. Educ. Inf. Technol. 2022, 27, 1929–1958. [Google Scholar] [CrossRef]
- Knobbout, J.; van der Stappen, E. Where Is the Learning in Learning Analytics? A Systematic Literature Review to Identify Measures of Affected Learning. EC-TEL 2018. Lifelong Technol. Learn. 2018, 11082, 88–100. [Google Scholar]
- Christopoulos, A.; Pellas, N.; Laakso, M.-J. A Learning Analytics Theoretical Framework for STEM Education Virtual Reality Applications. Educ. Sci. 2020, 10, 317. [Google Scholar] [CrossRef]
- Mangaroska, K.; Sharma, K.; Gasevic, D.; Giannakos, M. Multimodal Learning Analytics to Inform Learning Design: Lessons Learned from Computing Education. J. Learn. Anal. 2020, 7, 79–97. [Google Scholar] [CrossRef]
- Ifenthaler, D.; Yau, J.Y.K. Utilising Learning Analytics to Support Study Success in Higher Education: A Systematic Review. Educ. Technol. Res. Dev. 2020, 68, 1961–1990. [Google Scholar] [CrossRef]
- Srinivasa, K.G.; Muralidhar, K. A Beginner’s Guide to Learning Analytics; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Hedges, L.V. Challenges in Building Usable Knowledge in Education. J. Res. Educ. Eff. 2018, 11, 1–21. [Google Scholar] [CrossRef]
- Leppink, J. The Question-Design-Analysis Bridge. In Statistical Methods for Experimental Research in Education and Psychology; Springer: Cham, Switzerland, 2019; pp. 3–21. ISBN 978-3-030-21241-4. [Google Scholar]
- Kay, R.H.; Knaack, L. Assessing Learning, Quality and Engagement in Learning Objects: The Learning Object Evaluation Scale for Students (LOES-S). Educ. Technol. Res. Dev. 2009, 57, 147–168. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Leppink, J. Analysis of Covariance (ANCOVA) vs. Moderated Regression (MODREG): Why the Interaction Matters. Health Prof. Educ. 2018, 4, 225–232. [Google Scholar] [CrossRef]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach; Guildford Publications: New York, NY, USA, 2022. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum: Mahwah, NJ, USA, 1988. [Google Scholar]
Test | Group | N | M | SD |
---|---|---|---|---|
Pre-test | CG | 37 | 4.26 | 1.94 |
EG | 43 | 4.77 | 1.83 | |
Post-test | CG | 37 | 5.76 | 2.14 |
EG | 43 | 6.37 | 2.11 |
B | SD | Beta | t | p | |
---|---|---|---|---|---|
Constant | 0.36 | 0.58 | 0.622 | 0.536 | |
LMS tasks (mean score) | 0.82 | 0.12 | 0.69 | 6.82 | <0.001 |
Pre-test | 0.11 | 0.11 | 0.10 | 0.96 | 0.338 |
Experimental condition | 0.15 | 0.32 | 0.04 | 0.47 | 0.639 |
Test | Dimension | Group | Total | U | p | r |
---|---|---|---|---|---|---|
LOES-S | Learning | CG | 3.67 (0.68) | 543.5 | 0.001 | 0.35 |
EG | 4.14 (0.75) | |||||
Quality | CG | 4.11 (0.73) | 720.0 | 0.078 | 0.14 | |
EG | 4.38 (0.64) | |||||
Engagement | CG | 3.63 (0.70) | 601.0 | 0.005 | 0.30 | |
EG | 4.02 (0.99) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tirado-Olivares, S.; Cózar-Gutiérrez, R.; González-Calero, J.A.; Dorotea, N. Evaluating the Impact of Learning Management Systems in Geographical Education in Primary School: An Experimental Study on the Importance of Learning Analytics-Based Feedback. Sustainability 2024, 16, 2616. https://doi.org/10.3390/su16072616
Tirado-Olivares S, Cózar-Gutiérrez R, González-Calero JA, Dorotea N. Evaluating the Impact of Learning Management Systems in Geographical Education in Primary School: An Experimental Study on the Importance of Learning Analytics-Based Feedback. Sustainability. 2024; 16(7):2616. https://doi.org/10.3390/su16072616
Chicago/Turabian StyleTirado-Olivares, Sergio, Ramón Cózar-Gutiérrez, José Antonio González-Calero, and Nuno Dorotea. 2024. "Evaluating the Impact of Learning Management Systems in Geographical Education in Primary School: An Experimental Study on the Importance of Learning Analytics-Based Feedback" Sustainability 16, no. 7: 2616. https://doi.org/10.3390/su16072616
APA StyleTirado-Olivares, S., Cózar-Gutiérrez, R., González-Calero, J. A., & Dorotea, N. (2024). Evaluating the Impact of Learning Management Systems in Geographical Education in Primary School: An Experimental Study on the Importance of Learning Analytics-Based Feedback. Sustainability, 16(7), 2616. https://doi.org/10.3390/su16072616