Advancing Urban Microclimate Monitoring: The Development of an Environmental Data Measurement Station Using a Low-Tech Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Overview
2.2. Validation of the Environmental Sensors
2.2.1. Dry Air Temperature and Humidity
- The first scenario is a step-by-step heating process. The oven temperature was increased by 5 degrees every 60 min from 25 °C to 55 °C. These temperatures were selected to reflect summer temperature conditions and slightly exceed them. At the same time, the relative humidity in the oven varied between 55% and 20%, as presented in Figure 1.
- The second scenario involved uncontrolled conditions in the oven, with temperature variations between 25 °C and 30 °C and relative humidity from 80% to 50% (ambient conditions), as presented in Figure 2. It should be noted that the oven was turned off, and the variations occurred due to changes in the ambient conditions within the room.
- The third scenario involved a rapid temperature increase from 25 °C to 55 °C in the oven. A gradual decrease followed this until it returned to ambient conditions, as presented in Figure 3.
- For the last scenario, all the sensors were left in a room with natural variations for one month.
2.2.2. Mean Radiant Temperature via Globe Temperature
2.2.3. Wind Measurement
2.2.4. Solar Radiation
2.3. Sensor Design
Assembly and Exterior Design
2.4. Network and Data Acquisition
2.5. Validation In Situ
- Hygrovue 5: Measures air temperature with an accuracy of 0.3 °C and relative humidity within 1.8% (at 25 °C) across the range of 0 to 80% RH and ±3% (at 25 °C) for the range of 80 to 100% RH. The Hygrovue 5 is housed within a 6-plate solar radiation shield.
- A100L2 cup anemometer: Positioned at a height of two meters to measure the air velocity. It boasts an accuracy of 1% + 0.1 m/s within the range of 0.2 m/s to 50 m/s with a start speed of 0.2 m/s.
- CMP11 pyranometer: Measures global horizontal irradiation and offers a directional error of less than 10 W/m² for angles up to 80° relative to the incident solar beam of 1000 W/m² according to its datasheet.
3. Results and Discussion
3.1. Calibration In Vitro
3.1.1. Temperature and Humidity
3.1.2. Wind Speed
3.2. Calibration In Situ
3.2.1. Temperature and Humidity
3.2.2. Wind Speed in Real Conditions
3.2.3. Global Irradiance
3.2.4. Data Quantity Check
3.3. The Low-Tech Approach
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MAE | Mean Absolute Error |
MRE | Mean Relative Error |
MRT | Mean radiant temperature |
OTC | Outdoor thermal comfort |
PCB | Printed Circuit Board |
PET | Physiological Equivalent Temperature |
PV | Photovoltaic |
RMSE | Root Mean Square Error |
UHI | Urban heat island |
UTCI | Universal Thermal Climate Index |
Appendix A. Diagram of the C Code
Appendix A.1. Diagram of Transmitter Code
Appendix A.2. Diagram of Gateway Code
References
- Howard, L. The Climate of London; AUC: Tokyo, Japan, 1833. [Google Scholar]
- Pelling, M.; Prakash, A.; Zheng, Y.; Ziervogel, G.; Cartwright, A.; Dhar, T.; Evans, B.; Hadi, S.P.; Handayani, W.; Hondula, D.; et al. 2022: Cities, Settlements and Key Infrastructure. In Climate Change 2022: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge Press: Cambridge, UK, 2022. [Google Scholar]
- Worsa-Kozak, M.; Arsen, A. Groundwater Urban Heat Island in Wrocław, Poland. Land 2023, 12, 658. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates, 2nd ed.; Routledge: London, UK, 2009; OCLC: 51200739. [Google Scholar]
- Kim, S.W.; Brown, R.D. Urban heat island (UHI) intensity and magnitude estimations: A systematic literature review. Sci. Total. Environ. 2021, 779, 146389. [Google Scholar] [CrossRef] [PubMed]
- Tso, C. A survey of urban heat island studies in two tropical cities. Atmos. Environ. 1996, 30, 507–519. [Google Scholar] [CrossRef]
- Huang, J.M.; Chang, H.Y.; Wang, Y.S. Spatiotemporal Changes in the Built Environment Characteristics and Urban Heat Island Effect in a Medium-Sized City, Chiayi City, Taiwan. Sustainability 2020, 12, 365. [Google Scholar] [CrossRef]
- Huang, J.M.; Chang, H.Y.; Chen, L.C.; Wang, Y.S. Canopy-scale Built-environment Characteristics and Urban Heat Island Effect in a Tropical Medium-sized City. Sustainability 2021, 13, 868. [Google Scholar] [CrossRef]
- Charabi, Y.; Bakhit, A. Assessment of the canopy urban heat island of a coastal arid tropical city: The case of Muscat, Oman. Atmos. Res. 2011, 101, 215–227. [Google Scholar] [CrossRef]
- Romero Rodríguez, L.; Sánchez Ramos, J.; Álvarez Domínguez, S. Simplifying the process to perform air temperature and UHI measurements at large scales: Design of a new APP and low-cost Arduino device. Sustain. Cities Soc. 2023, 95, 104614. [Google Scholar] [CrossRef]
- Oke, T.R. Initial Guidance to Obtain Representative Meteorogical Data; World Meteorological Organization: Geneva, Switzerland, 2004; Volume 81. [Google Scholar]
- Oke, T.R. Towards better scientific communication in urban climate. Theor. Appl. Climatol. 2006, 84, 179–190. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, K.Y.; He, Y.; Jim, C.; Brown, R.D.; Shi, Y.; Lau, K.; Ng, E. Microclimatic measurements in tropical cities: Systematic review and proposed guidelines. Build. Environ. 2022, 222, 109411. [Google Scholar] [CrossRef]
- Vesala, T.; Kljun, N.; Rannik, Ü.; Rinne, J.; Sogachev, A.; Markkanen, T.; Sabelfeld, K.; Foken, T.; Leclerc, M.Y. Flux and concentration footprint modelling. Model. Pollut. Complex Environ. Syst. 2010, 2, 339–355. [Google Scholar]
- Kljun, N.; Rotach, M.; Schmid, H. A Three-Dimensional Backward Lagrangian Footprint Model For A Wide Range Of Boundary-Layer Stratifications. Bound.-Layer Meteorol. 2002, 103, 205–226. [Google Scholar] [CrossRef]
- Kljun, N.; Calanca, P.; Rotach, M.W.; Schmid, H.P. A Simple Parameterisation for Flux Footprint Predictions. Bound.-Layer Meteorol. 2004, 112, 503–523. [Google Scholar] [CrossRef]
- Fischer, L. Phénomènes radiatifs et îlot de chaleur urbain dans l’agglomération de Strasbourg. RGE 2005, 45, 99–112. [Google Scholar] [CrossRef]
- Hassani, N.; Drogue, G. Mesure et spatialisation de l’îlot de chaleur urbain dans l’aire urbaine de Metz Métropole: Premiers résultats de la campagne de mesure 2019. Climatologie 2020, 17, 8. [Google Scholar] [CrossRef]
- Foissard, X. L’îlot de Chaleur Urbain et le Changement Climatique: Application à l’Agglomération Rennaise; Géographie, Université Rennes 2: Rennes, France, 2015. [Google Scholar]
- Leconte, F. Caractérisation des Îlots de Chaleur Urbain Par Zonage Climatique et Mesures Mobiles: Cas de Nancy, Climatologie; Université de Lorraine: Metz, France, 2015. [Google Scholar]
- Sun, C.Y.; Kato, S.; Gou, Z. Application of Low-Cost Sensors for Urban Heat Island Assessment: A Case Study in Taiwan. Sustainability 2019, 11, 2759. [Google Scholar] [CrossRef]
- Giridharan, R.; Emmanuel, R. The impact of urban compactness, comfort strategies and energy consumption on tropical urban heat island intensity: A review. Sustain. Cities Soc. 2018, 40, 677–687. [Google Scholar] [CrossRef]
- Sari, D.P. A Review of How Building Mitigates the Urban Heat Island in Indonesia and Tropical Cities. Earth 2021, 2, 653–666. [Google Scholar] [CrossRef]
- Khalil, H.A.E.E.; Ibrahim, A.; Elgendy, N.; Makhlouf, N. Enhancing Livability in Informal Areas: A Participatory Approach to Improve Urban Microclimate in Outdoor Spaces. Sustainability 2022, 14, 6395. [Google Scholar] [CrossRef]
- Nsabagwa, M.; Byamukama, M.; Kondela, E.; Otim, J.S. Towards a robust and affordable Automatic Weather Station. Dev. Eng. 2019, 4, 100040. [Google Scholar] [CrossRef]
- Sudantha, B.H.; Warusavitharana, E.J.; Ratnayake, R.; Mahanama, P.K.; Cannata, M.; Strigaro, D. Appropriateness of low cost sensor network for environmental monitoring in a tropical country: Experience and lessons learnt from real world deployment. PeerJ PrePrints 2018, 6, e27224v1. [Google Scholar] [CrossRef]
- Botero-Valencia, J.S.; Mejia-Herrera, M.; Pearce, J.M. Low cost climate station for smart agriculture applications with photovoltaic energy and wireless communication. HardwareX 2022, 11, e00296. [Google Scholar] [CrossRef]
- Abdelmoneim, A.A.; Khadra, R.; Elkamouh, A.; Derardja, B.; Dragonetti, G. Towards Affordable Precision Irrigation: An Experimental Comparison of Weather-Based and Soil Water Potential-Based Irrigation Using Low-Cost IoT-Tensiometers on Drip Irrigated Lettuce. Sustainability 2024, 16, 306. [Google Scholar] [CrossRef]
- Rocha, J.V.; Magalhães, R.R.; Carvalho, L.G.d.; Diotto, A.V.; Barbosa, B.H.G. Development of a low-cost weather station and real-time monitoring for automated irrigation management. Acta Scientiarum Technol. 2022, 44, e59244. [Google Scholar] [CrossRef]
- Cheddadi, Y.; Cheddadi, H.; Cheddadi, F.; Errahimi, F.; Es-sbai, N. Design and implementation of an intelligent low-cost IoT solution for energy monitoring of photovoltaic stations. SN Appl. Sci. 2020, 2, 1165. [Google Scholar] [CrossRef]
- Morón, C.; Diaz, J.P.; Ferrández, D.; Saiz, P. Design, Development and Implementation of a Weather Station Prototype for Renewable Energy Systems. Energies 2018, 11, 2234. [Google Scholar] [CrossRef]
- Cano-Suñén, E.; Martínez, I.; Fernández, Á.; Zalba, B.; Casas, R. Internet of Things (IoT) in Buildings: A Learning Factory. Sustainability 2023, 15, 12219. [Google Scholar] [CrossRef]
- Mobaraki, B.; Lozano-Galant, F.; Soriano, R.; Castilla Pascual, F. Application of Low-Cost Sensors for Building Monitoring: A Systematic Literature Review. Buildings 2021, 11, 336. [Google Scholar] [CrossRef]
- Martín-Garín, A.; Millán-García, J.; Baïri, A.; Millán-Medel, J.; Sala-Lizarraga, J. Environmental monitoring system based on an Open Source Platform and the Internet of Things for a building energy retrofit. Autom. Constr. 2018, 87, 201–214. [Google Scholar] [CrossRef]
- Malet-Damour, B.; Guichard, S.; Jean, A.P.; Miranville, F.; Boyer, H. SHADECO: A low-cost shadow-ring for diffuse measures: State of the art, principles, design and application. Renew. Energy 2018, 117, 71–84. [Google Scholar] [CrossRef]
- Tanguy, A.; Carrière, L.; Laforest, V. Low-tech approaches for sustainability: Key principles from the literature and practice. Sustain. Sci. Pract. Policy 2023, 19, 2170143. [Google Scholar] [CrossRef]
- Guimbretiere, G.; Hodencq, S.; Balland, M. Une Approche de la Low-Tech Dans l’Enseignement Supérieur et la Recherche. La Pensée Écologique. 2022. Available online: https://hal.science/hal-03585151v2 (accessed on 20 February 2024).
- Vernon, H. The measurement of radiant heat in relation to human comfort. J. Ind. Hyg. 1932, 14, 95–111. [Google Scholar]
- Ho, H.C.; Knudby, A.; Xu, Y.; Hodul, M.; Aminipouri, M. A comparison of urban heat islands mapped using skin temperature, air temperature, and apparent temperature (Humidex), for the greater Vancouver area. Sci. Total. Environ. 2016, 544, 929–938. [Google Scholar] [CrossRef]
- Wang, C.; Zhan, W.; Li, L.; Wang, S.; Wang, C.; Miao, S.; Du, H.; Jiang, L.; Jiang, S. Urban heat islands characterized by six thermal indicators. Build. Environ. 2023, 244, 110820. [Google Scholar] [CrossRef]
- Jendritzky, G.; de Dear, R.; Havenith, G. UTCI-Why another thermal index? Int. J. Biometeorol. 2011, 56, 421–428. [Google Scholar] [CrossRef]
- Höppe, P. The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef]
- Walther, E.; Goestchel, Q. The P.E.T. comfort index: Questioning the model. Build. Environ. 2018, 137, 1–10. [Google Scholar] [CrossRef]
- Sayad, B.; Helmi, M.R.; Osra, O.A.; Abed, A.M.; Alhubashi, H.H. Microscale Investigation of Urban Heat Island (UHI) in Annaba City: Unveiling Factors and Mitigation Strategies. Sustainability 2024, 16, 747. [Google Scholar] [CrossRef]
- Bruse, M.; Fleer, H. Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model. Environ. Model. Softw. 1998, 13, 373–384. [Google Scholar] [CrossRef]
- Musy, M.; Malys, L.; Morille, B.; Inard, C. The use of SOLENE-microclimat model to assess adaptation strategies at the district scale. Urban Clim. 2015, 14, 213–223. [Google Scholar] [CrossRef]
- ISO7726, A; Ergonomics of the Thermal Environment—Instruments for Measuring Physical Quantities. ISO: Geneva, Switzerland, 2002.
- Mobaraki, B.; Komarizadehasl, S.; Castilla Pascual, F.J.; Lozano-Galant, J.A. Application of Low-Cost Sensors for Accurate Ambient Temperature Monitoring. Buildings 2022, 12, 1411. [Google Scholar] [CrossRef]
- Mobaraki, B.; Komarizadehasl, S.; Pascual, F.J.C.; Antonio, J.; Galant, L. Determination of environmental parameters based on Arduino based low-cost sensors. In Proceedings of the RTCEE International Conference, Virtual, 10–12 November 2020. [Google Scholar]
- Salamone, F.; Belussi, L.; Danza, L.; Ghellere, M.; Meroni, I. Design and Development of nEMoS, an All-in-One, Low-Cost, Web-Connected and 3D-Printed Device for Environmental Analysis. Sensors 2015, 15, 13012–13027. [Google Scholar] [CrossRef]
- Budd, G.M. Wet-bulb globe temperature (WBGT)—Its history and its limitations. J. Sci. Med. Sport 2008, 11, 20–32. [Google Scholar] [CrossRef]
- Johansson, E.; Thorsson, S.; Emmanuel, R.; Krüger, E. Instruments and methods in outdoor thermal comfort studies—The need for standardization. Urban Clim. 2014, 10, 346–366. [Google Scholar] [CrossRef]
- Humphreys, M. The optimum diameter for a globe thermometer for use indoors. Ann. Occup. Hyg. 1977, 20, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, W.; Liu, Z.; Lau, K.; Shi, Y.; Ng, E. Comparing different recalibrated methods for estimating mean radiant temperature in outdoor environment. Build. Environ. 2022, 216, 109004. [Google Scholar] [CrossRef]
- Banfi, A.; Tatti, A.; Ferrando, M.; Fustinoni, D.; Zanghirella, F.; Causone, F. An experimental technique based on globe thermometers for the measurement of mean radiant temperature in urban settings. Build. Environ. 2022, 222, 109373. [Google Scholar] [CrossRef]
- Adafruit. C2192 Anemometer Datasheet. Available online: https://cdn-shop.adafruit.com/product-files/1733/C2192_datasheet.pdf (accessed on 15 December 2023).
- DFRobot. JL-FS2 Anemometer Datasheet. Available online: https://wiki.dfrobot.com/Wind_Speed_Sensor_Voltage_Type_0-5V__SKU_SEN0170 (accessed on 15 December 2023).
- Tohsing, K.; Phaisathit, D.; Pattarapanitchai, S.; Masiri, I.; Buntoung, S.; Aumporn, O.; Wattan, R. A development of a low-cost pyranometer for measuring broadband solar radiation. J. Phys. Conf. Ser. 2019, 1380, 012045. [Google Scholar] [CrossRef]
- Lorenzo, O.G.; Suárez-García, A.; Peña, D.G.; Fuente, M.G.; Granados-López, D. A Low-Cost Luxometer Benchmark for Solar Illuminance Measurement System Based on the Internet of Things. Sensors 2022, 22, 7107. [Google Scholar] [CrossRef] [PubMed]
- Michael, P.R.; Johnston, D.E.; Moreno, W. A conversion guide: Solar irradiance and lux illuminance. J. Meas. Eng. 2020, 8, 153–166. [Google Scholar] [CrossRef]
- Fakra, A.; Boyer, H.; Miranville, F.; Bigot, D. A simple evaluation of global and diffuse luminous efficacy for all sky conditions in tropical and humid climate. Renew. Energy 2011, 36, 298–306. [Google Scholar] [CrossRef]
- Chase, O.A.; Teles, M.B.; de Jesus dos Santos Rodrigues, M.; de Almeida, J.F.S.; Macêdo, W.N.; da Costa Junior, C.T. A Low-Cost, Stand-Alone Sensory Platform for Monitoring Extreme Solar Overirradiance Events. Sensors 2018, 18, 2685. [Google Scholar] [CrossRef]
- Saloux, E.; Teyssedou, A.; Sorin, M. Explicit model of photovoltaic panels to determine voltages and currents at the maximum power point. Sol. Energy 2011, 85, 713–722. [Google Scholar] [CrossRef]
- Espressif. Esp32 Datasheet. Available online: https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf (accessed on 6 October 2023).
- Peña, G.; Alberto, J. Cost Effective Technology Applied to Domotics and Smart Home Energy Management Systems; Accepted: 2022-02-17T12:19:58Z; Universidad de Córdoba: Cordoba, Colombia, 2022. [Google Scholar]
- Hermansyah; Kasim; Yusri, I.K. Solar Panel Remote Monitoring and Control System on Miniature Weather Stations Based on Web Server and ESP32. Int. J. Recent Technol. Appl. Sci. 2020, 2, 1–24. [Google Scholar] [CrossRef]
- Ioannou, K.; Karampatzakis, D.; Amanatidis, P.; Aggelopoulos, V.; Karmiris, I. Low-Cost Automatic Weather Stations in the Internet of Things. Information 2021, 12, 146. [Google Scholar] [CrossRef]
- Linggarjati, J. Design and Prototyping of Temperature Monitoring System for Hydraulic Cylinder in Heavy Equipment using ESP32 with data logging and WiFi Connectivity. IOP Conf. Ser. Earth Environ. Sci. 2022, 998, 012042. [Google Scholar] [CrossRef]
- Rojas Gregorio, J.I.; Diaz Gilete, S.; Mazón Bueso, J. Development of a Low-Cost Weather Station to Measure in Situ Essential Climate Variables. J. Earth Sci. Eng. 2014, 4, 455–463. [Google Scholar]
- Cheung, H.K.; Levermore, G.J.; Watkins, R. A low cost, easily fabricated radiation shield for temperature measurements to monitor dry bulb air temperature in built up urban areas. Build. Serv. Eng. Res. Technol. 2010, 31, 371–380. [Google Scholar] [CrossRef]
- Tondini, S.; Tritini, S.; Amatori, M.; Croce, S.; Seppi, S.; Monsorno, R. LoRa-based Wireless Sensor Networks for Urban Scenarios Using an Open-source Approach. Sensors Transducers 2019, 238, 64–71. [Google Scholar]
- Random Nerd Tutorials | Learn ESP32, ESP8266, Arduino, and Raspberry Pi. 2019. Available online: https://randomnerdtutorials.com/ (accessed on 14 December 2023).
- Steadman, R.G. A Universal Scale of Apparent Temperature. J. Appl. Meteorol. Climatol. 1984, 23, 1674–1687. [Google Scholar] [CrossRef]
Sensor | Accuracy (°C) | Range (°C) | Resolution (°C) | Response Time (s) | Price (€) |
---|---|---|---|---|---|
DHT20 | 0.3 | −40 to 80 | 0.1 | 2 | 5.75 |
DHT22 | 0.5 | −40 to 80 | 0.1 | 2 | 7.13 |
SHT35 | 0.1 | −40 to 125 | 0.01 | more than 2 | 12.88 |
SHT31 | 0.2 | −40 to 125 | 0.01 | more than 2 | 9.67 |
DS18B20 | 0.5 | −55 to 125 | 0.1 | 2 | 3.25 |
Sensor | Accuracy (°C) | Resolution (°C) | Response Time (s) | Price (€) |
---|---|---|---|---|
DHT20 | 2 | 0.1 | 2 | 5.75 |
DHT22 | 2 | 0.1 | 2 | 7.13 |
SHT35 | 1.5 | 0.01 | 8 | 12.88 |
SHT31 | 2 | 0.01 | 8 | 9.67 |
Sensor | Accuracy | Starting Speed (m/s) | Range (m/s) | Price (€) |
---|---|---|---|---|
C2192 | 1 (m/s) | 0.2–0.4 | 0.4–33 | 44.95 |
JL-FS2 | 3% | 0.4–0.8 | 0–30 | 48 |
Sensor | MAE (°C) | RMSE (°C) | MAE (%RH) | RMSE (%RH) | Price (€) |
---|---|---|---|---|---|
DHT20 | 0.4 | 0.5 | 1.62 | 2.28 | 5.75 |
DHT22 | 0.21 | 0.42 | 1.38 | 1.86 | 7.13 |
SHT35 | 0.19 | 0.29 | 2.02 | 2.81 | 12.88 |
SHT31 | 0.18 | 0.31 | 1.67 | 2.26 | 9.67 |
DS18B20 | 0.92 | 0.95 | X | X | 3.25 |
Model | Equation | R² | MAE (W/m²) | RMSE (W/m²) |
---|---|---|---|---|
Simple linear regression (Isc) | 0.84 | 82.98 | 159.03 | |
Simple linear regression (Tcell) | 0.87 | 70.32 | 121.08 | |
Multiple linear regression | 0.91 | 62.85 | 111.13 | |
Model | Feature Importance | R² | MAE (W/m²) | RMSE (W/m²) |
Random forest | 0.93 | 24.88 | 56.47 |
Sensor | Obtained Accuracy | Required Accuracy from ISO7726 [47] |
---|---|---|
Thermometer | 0.2 °C | 0.5 °C |
Hygrometer | 2% RH | 0.15 kPa for partial pressure of water vapor ( 5% RH at 20 °C) |
Globe temperature | 0.75 °C | 5 °C for mean radiant temperature (from 0 to 50 °C) |
Pyranometer | 50 W/m² | 10 W/m² between (100 W/m² and 1000 W/m²) and 15 W/m² over 1000 W/m² |
Anemometer | 0.5 m/s | (0.1 + 0.05 va) m/s |
Device | Price (€) | Description |
---|---|---|
INA219 | 1.9 | Current sensor |
SHT31 | 9.67 | Thermo hygrometer |
JL-FS2 | 49 | Anemometer |
ADS1015 | 1.55 | Analog to digital converter |
Boost 9V | 3.35 | Anemometer power supply |
DS18B20 | 3.25 | Temperature sensor |
Solar cell 0.5Wp | 3 | Low-tech pyranometer |
ESP 32 | 12.88 | Microcontroller |
Shield SD | 1.75 | Data storage |
SD card | 7.92 | Data storage |
RFM95 | 4.45 | LoRa transmission |
PCB | 5 | Printed circuit board and connectors |
Electronic Part | 103.72 | |
Solar cell 6 Wp | 17.99 | Power supply |
Li-Po battery 20 Ah | 19.99 | Power supply |
Sunflower 5 V | 7.21 | Battery management system |
Power Supply | 45.19 | |
ASA | 5 | Filament for 3D printing |
Junction box | 15.35 | Electronic case |
Metal square tube | 10 | Assembly |
Fixation | 13.70 | Assembly |
Mechanical Part | 44.05 | |
Total | 192.96 |
Characteristic | |
---|---|
Size | 0.8 × 0.45 × 0.3 m |
Weight | 3.5 kg |
Current consumption | Between 80 and 250 mA at peaks |
Autonomy | 20 Ah |
Range for LoRa | 250 m in urban conditions |
Price | €192.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lefevre, A.; Malet-Damour, B.; Boyer, H.; Rivière, G. Advancing Urban Microclimate Monitoring: The Development of an Environmental Data Measurement Station Using a Low-Tech Approach. Sustainability 2024, 16, 3093. https://doi.org/10.3390/su16073093
Lefevre A, Malet-Damour B, Boyer H, Rivière G. Advancing Urban Microclimate Monitoring: The Development of an Environmental Data Measurement Station Using a Low-Tech Approach. Sustainability. 2024; 16(7):3093. https://doi.org/10.3390/su16073093
Chicago/Turabian StyleLefevre, Alexandre, Bruno Malet-Damour, Harry Boyer, and Garry Rivière. 2024. "Advancing Urban Microclimate Monitoring: The Development of an Environmental Data Measurement Station Using a Low-Tech Approach" Sustainability 16, no. 7: 3093. https://doi.org/10.3390/su16073093
APA StyleLefevre, A., Malet-Damour, B., Boyer, H., & Rivière, G. (2024). Advancing Urban Microclimate Monitoring: The Development of an Environmental Data Measurement Station Using a Low-Tech Approach. Sustainability, 16(7), 3093. https://doi.org/10.3390/su16073093