How to Enhance Public Participation in Environmental Governance? Evidence from China
Abstract
:1. Introduction
2. Literature Review
3. Variables and Data Sources
3.1. Public Participation in Environmental Governance
3.2. Public Attention to Environmental Governance
3.3. Other Variables
4. Methodology
5. Results
5.1. Baseline Test
5.2. Mechanisms
5.3. Robustness
5.3.1. Lagged Impact Effects of Government Response Variables
5.3.2. Spatial Econometric Model
6. Discussion
6.1. Impact of Air Quality on Public Participation Motivation
6.2. Relationship between Public Concern and Public Participation
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ebenstein, A.; Fan, M.; Greenstone, M.; He, G.; Zhou, M. New Evidence on the Impact of Sustained Exposure to Air Pollution on Life Expectancy from China’s Huai River Policy. Proc. Natl. Acad. Sci. USA 2017, 114, 10384–10389. [Google Scholar] [CrossRef] [PubMed]
- Greenstone, M.; Nilekani, J.; Pande, R.; Ryan, N.; Sudarshan, A.; Sugathan, A. Lower Pollution, Longer Lives: Life Expectancy Gains If India Reduced Particulate Matter Pollution. Econ. Political Wkly. 2015, 50, 40–46. [Google Scholar]
- Adhvaryu, A.R.; Kala, N.; Nyshadham, A. Management and Shocks to Worker Productivity: Evidence from Air Pollution Exposure in an Indian Garment Factory; University of Michigan: Ann Arbor, MI, USA, 2014. [Google Scholar]
- Chang, T.; Graff Zivin, J.; Gross, T.; Neidell, M. Particulate Pollution and the Productivity of Pear Packers. Am. Econ. J. Econ. Policy 2016, 8, 141–169. [Google Scholar] [CrossRef]
- Wang, S. The Environmental and Economic Consequences of Internalizing Border Spillovers; University of Chicago: Chicago, IL, USA, 2020. [Google Scholar]
- Ito, K.; Zhang, S. Willingness to Pay for Clean Air: Evidence from Air Purifier Markets in China. J. Political Econ. 2020, 128, 1627–1672. [Google Scholar] [CrossRef]
- Li, L.; Xia, X.H.; Chen, B.; Sun, L. Public Participation in Achieving Sustainable Development Goals in China: Evidence from the Practice of Air Pollution Control. J. Clean. Prod. 2018, 201, 499–506. [Google Scholar] [CrossRef]
- Hao, Y.; Chen, K.; Kang, J.; Yang, X.; Zhang, C.; Zheng, X. Digital Technology Enables Construction of National Governance Modernization. Bull. Chin. Acad. Sci. 2022, 37, 1675–1685. (In Chinese) [Google Scholar] [CrossRef]
- Buntaine, M.T.; Greenstone, M.; He, G.; Liu, M.; Wang, S.; Zhang, B. Does the Squeaky Wheel Get More Grease? The Direct and Indirect Effects of Citizen Participation on Environmental Governance in China. Am. Econ. Rev. 2024, 114, 815–850. [Google Scholar] [CrossRef]
- Jiang, J.; Meng, T.; Zhang, Q. From Internet to Social Safety Net: The Policy Consequences of Online Participation in China. Governance 2019, 32, 531–546. [Google Scholar] [CrossRef]
- Zhong, Y. Political Culture and Participation in the Chinese Countryside: Some Empirical Evidence. PS Political Sci. Politics 2004, 37, 445–453. [Google Scholar] [CrossRef]
- Su, Z.; Meng, T. Selective Responsiveness: Online Public Demands and Government Responsiveness in Authoritarian China. Soc. Sci. Res. 2016, 59, 52–67. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.C. Public Participation in Public Decisions, 1st ed.; Jossey-Bass: San Francisco, CA, USA, 1995; ISBN 978-0-7879-0129-5. [Google Scholar]
- Li, X.; Tilt, B. Public Engagements with Smog in Urban China: Knowledge, Trust, and Action. Environ. Sci. Policy 2019, 92, 220–227. [Google Scholar] [CrossRef]
- Li, W.; Liu, J.; Li, D. Getting Their Voices Heard: Three Cases of Public Participation in Environmental Protection in China. J. Environ. Manag. 2012, 98, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Shipeng, S.; Xin, L.; Ansheng, H.; Xiaoxia, S. Public Participation in Rural Environmental Governance around the Water Source of Xiqin Water Works in Fujian. J. Resour. Ecol. 2018, 9, 66–77. [Google Scholar] [CrossRef]
- Simon, H.A. Reason in Human Affairs; Stanford University Press: Redwood City, CA, USA, 1983. [Google Scholar]
- Newig, J.; Fritsch, O. Environmental Governance: Participatory, Multi-Level—And Effective? Environ. Policy Gov. 2009, 19, 197–214. [Google Scholar] [CrossRef]
- Jin, M. Citizen Participation, Trust, and Literacy on Government Legitimacy: The Case of Environmental Governance. J. Sustain. Soc. Chang. 2013, 5, 2. [Google Scholar]
- Zhang, H.; Tao, L.; Yang, B.; Bian, W. The Relationship between Public Participation in Environmental Governance and Corporations’ Environmental Violations. Financ. Res. Lett. 2023, 53, 103676. [Google Scholar] [CrossRef]
- He, G.; Zhang, L.; Lu, Y.; Mol, A.P.J. Managing Major Chemical Accidents in China: Towards Effective Risk Information. J. Hazard. Mater. 2011, 187, 171–181. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Mol, A.P.J.; Lu, Y. Trust and Credibility in Governing China’s Risk Society. Environ. Sci. Technol. 2012, 46, 7442–7443. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Lu, Y.; Mol, A.P.J.; Beckers, T. Changes and Challenges: China’s Environmental Management in Transition. Environ. Dev. 2012, 3, 25–38. [Google Scholar] [CrossRef]
- Chiabai, A.; Rübbelke, D.; Maurer, L. ICT Applications in the Research into Environmental Sustainability: A User Preferences Approach. Environ. Dev. Sustain. 2013, 15, 81–100. [Google Scholar] [CrossRef]
- Bond, R.M.; Fariss, C.J.; Jones, J.J.; Kramer, A.D.I.; Marlow, C.; Settle, J.E.; Fowler, J.H. A 61-Million-Person Experiment in Social Influence and Political Mobilization. Nature 2012, 489, 295–298. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Mol, A.P.J.; Zhang, L.; Lu, Y. Public Participation and Trust in Nuclear Power Development in China. Renew. Sustain. Energy Rev. 2013, 23, 1–11. [Google Scholar] [CrossRef]
- Zhang, L.; Mol, A.P.; He, G. Transparency and Information Disclosure in China’s Environmental Governance. Curr. Opin. Environ. Sustain. 2016, 18, 17–24. [Google Scholar] [CrossRef]
- Wu, L.; Ma, T.; Bian, Y.; Li, S.; Yi, Z. Improvement of Regional Environmental Quality: Government Environmental Governance and Public Participation. Sci. Total Environ. 2020, 717, 137265. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Wang, Z.; Zhou, Y. Public Participation and the Effect of Environmental Governance in China: A Systematic Review and Meta-Analysis. Sustainability 2023, 15, 4442. [Google Scholar] [CrossRef]
- Buntaine, M.T.; Hunnicutt, P.; Komakech, P. The Challenges of Using Citizen Reporting to Improve Public Services: A Field Experiment on Solid Waste Services in Uganda. J. Public Adm. Res. Theory 2021, 31, 108–127. [Google Scholar] [CrossRef]
- Mannarini, T.; Fedi, A.; Trippetti, S. Public Involvement: How to Encourage Citizen Participation. J. Commun. Appl. Soc. Psychol. 2010, 20, 262–274. [Google Scholar] [CrossRef]
- Baumgartner, F.R.; Jones, B.D. Agendas and Instability in American Politics, 2nd ed.; University of Chicago Press: Chicago, IL, USA, 2010; ISBN 978-0-226-03953-4. [Google Scholar]
- Johnson, H.A.; Wagner, M.M.; Hogan, W.R.; Chapman, W.; Olszewski, R.T.; Dowling, J.; Barnas, G. Analysis of Web Access Logs for Surveillance of Influenza. In Proceedings of the MEDINFO 2004, San Francisco, CA, USA, 7–11 September 2004; IOS Press: Amsterdam, The Netherlands, 2004; pp. 1202–1206. [Google Scholar]
- Ginsberg, J.; Mohebbi, M.H.; Patel, R.S.; Brammer, L.; Smolinski, M.S.; Brilliant, L. Detecting Influenza Epidemics Using Search Engine Query Data. Nature 2009, 457, 1012–1014. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Varian, H. Predicting the Present with Google Trends. Econ. Rec. 2012, 88, 2–9. [Google Scholar] [CrossRef]
- Wu, L.; Brynjolfsson, E. The Future of Prediction: How Google Searches Foreshadow Housing Prices and Sales. In Economic Analysis of the Digital Economy; University of Chicago Press: Chicago, IL, USA, 2015; pp. 89–118. [Google Scholar]
- Da, Z.; Engelberg, J.; Gao, P. In Search of Attention. J. Financ. 2011, 66, 1461–1499. [Google Scholar] [CrossRef]
- Andrei, D.; Hasler, M. Investor Attention and Stock Market Volatility. Rev. Financ. Stud. 2015, 28, 33–72. [Google Scholar] [CrossRef]
- Goddard, J.; Kita, A.; Wang, Q. Investor Attention and FX Market Volatility. J. Int. Financ. Mark. Inst. Money 2015, 38, 79–96. [Google Scholar] [CrossRef]
- Peltomäki, J.; Graham, M.; Hasselgren, A. Investor Attention to Market Categories and Market Volatility: The Case of Emerging Markets. Res. Int. Bus. Financ. 2018, 44, 532–546. [Google Scholar] [CrossRef]
- Marcellino, M.; Stevanovic, D. The Demand and Supply of Information about Inflation; CIRANO Working Paper 2022s-27; CIRANO: Montreal, QC, Canada, 2022. [Google Scholar]
- Götz, T.B.; Knetsch, T.A. Google Data in Bridge Equation Models for German GDP. Int. J. Forecast. 2019, 35, 45–66. [Google Scholar] [CrossRef]
- Sparrow, B.; Liu, J.; Wegner, D.M. Google Effects on Memory: Cognitive Consequences of Having Information at Our Fingertips. Science 2011, 333, 776–778. [Google Scholar] [CrossRef] [PubMed]
- Ji, Q.; Yang, J.; He, Q.; Chen, H.; Wang, X.; Tang, F.; Ge, Q.; Wang, Y.; Ding, F. Understanding Public Attention towards the Beautiful Village Initiative in China and Exploring the Influencing Factors: An Empirical Analysis Based on the Baidu Index. Land 2021, 10, 1169. [Google Scholar] [CrossRef]
- Liu, Y.; Liao, W. Spatial Characteristics of the Tourism Flows in China: A Study Based on the Baidu Index. IJGI 2021, 10, 378. [Google Scholar] [CrossRef]
- Leng, X.; Zhong, S.; Kang, Y. Citizen Participation and Urban Air Pollution Abatement: Evidence from Environmental Whistle-Blowing Platform Policy in Sichuan China. Sci. Total Environ. 2022, 816, 151521. [Google Scholar] [CrossRef] [PubMed]
Variable Name | Variable Symbol | Variable Measurement | Mean | Std. |
---|---|---|---|---|
Explained variables: | ||||
Public participation in environmental governance | PPEG | Number of messages on the “Leaders’ Message Board” (1000/year) | 0.896 | 0.983 |
Explanatory variables: | ||||
Public attention to environmental governance | Concern | Baidu index | 15.939 | 12.520 |
Regional characteristic control variable: | ||||
Regional economic growth rate | Dgdp | GDP growth rate | 0.904 | 0.047 |
Population size | population_num | Number of people in the area (tens of millions) | 0.454 | 0.299 |
Air quality | pollution | Based on air emissions of sulphur dioxide, nitrogen oxides, and particulate matter | 0.217 | 0.174 |
Demographic characteristic control variables: | ||||
Economic level per capita | gdp | GDP per capita (million yuan) | 3.148 | 2.576 |
Illiteracy rate | Illiteracy | Number of illiterate people aged 15 and above/100 people | 5.338 | 5.842 |
Share of elderly population | Age | Proportion of population aged 65 and above | 0.121 | 0.029 |
internet penetration level | Ict | Proportion of internet users by province | 0.640 | 0.114 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
PPEG | PPEG | PPEG | PPEG | |
Concern | 0.06660 *** | 0.0822 *** | 0.0552 ** | 0.0785 *** |
(0.0167) | (0.0182) | (0.0223) | (3.68) | |
pollution | −20.13 *** | −22.08 *** | ||
(4.961) | (−3.99) | |||
dgdp | −5.617 | −5.732 ** | ||
(2.432) | (−2.31) | |||
population_num | 12.86 | 1.022 | ||
(12.24) | (0.07) | |||
illiteracy | 0.0690 | 0.128 | ||
(0.1411) | (0.95) | |||
age | 5.593 | −19.62 | ||
(16.26) | (−1.19) | |||
ict | −2.141 | 0.494 | ||
(2.341) | (0.23) | |||
gdp | 0.265 | 0.162 | ||
(0.326) | (0.43) | |||
Year FE | Y | Y | Y | Y |
Province FE | Y | Y | Y | Y |
_cons | 0.5423 | −0.455 | 0.051 | 6.755 |
(0.1474) | (5.372) | (2.610) | (0.83) | |
N | 155 | 155 | 155 | 155 |
(1) PPEG | (2) PPEG | (3) PPEG | (4) PPEG | (5) PPEG | |
---|---|---|---|---|---|
Concern | −0.0649 | 0.0822 *** | 0.0871 *** | 0.0773 *** | 0.0842 *** |
(−1.37) | (2.95) | (3.75) | (3.61) | (2.91) | |
XConcern | 0.201 *** | −0.00635 | −0.00332 | 0.126 | −0.000789 |
(3.33) | (−0.21) | (−0.94) | (0.84) | (−0.29) | |
X: | |||||
ict | −1.712 | ||||
(1.643) | |||||
pollution | −21.16 *** | ||||
(−2.98) | |||||
illiteracy | 0.147 | ||||
(1.08) | |||||
dgdp | −7.998 ** | ||||
(−2.18) | |||||
gdp | 0.222 | ||||
(0.52) | |||||
Regional characteristics | Y | Y | Y | Y | Y |
Demographic Characteristics | Y | Y | Y | Y | Y |
Year FE | Y | Y | Y | Y | Y |
Province FE | Y | Y | Y | Y | Y |
_cons | 14.41 * | 6.872 | 5.237 | 7.031 | 5.661 |
(1.83) | (0.84) | (0.63) | (0.87) | (0.63) | |
N | 155 | 155 | 155 | 155 | 155 |
Variable Name | Variable Symbol | Variable Measurement | Mean | Std. |
---|---|---|---|---|
Handling rate | Banli | Proportion of messages that have been dealt with in each province to the total number of messages. | 0.7187 | 0.2273 |
Handover rate | Jiaoban | Proportion of total messages that have been referred to each province | 0.2220 | 0.1929 |
Offline referral rate | U_Jiaoban | Proportion of messages that have been handed over offline to the government as a percentage of total messages by province. | 0.1470 | 0.1310 |
Average time interval between government replies | Days | The time interval between the public’s message and the government’s reply in each province. | 51.8117 | 66.8729 |
Average number of words in government replies | Nums | Average number of words in each province’s government reply | 291.9213 | 93.9838 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
PPEG | PPEG | PPEG | PPEG | PPEG | |
Concern | 0.0309 | 0.0241 | 0.0347 | 0.0784 *** | 0.116 *** |
(1.00) | (1.10) | (1.43) | (3.47) | (4.74) | |
XConcern | 0.0525 * | 0.162 *** | 0.138 *** | 0.00000238 | −0.000206 *** |
(1.96) | (4.68) | (3.25) | (0.01) | (−2.95) | |
Banli | −1.109 * | ||||
(−1.82) | |||||
Jiaoban | −2.639 *** | ||||
(−3.13) | |||||
U_Jiaoban | −2.667 ** | ||||
(−2.48) | |||||
Days | 0.0000357 | ||||
(0.02) | |||||
Nums | 0.00343 | ||||
(1.45) | |||||
Regional characteristics | Y | Y | Y | Y | Y |
Demographic Characteristics | Y | Y | Y | Y | Y |
Year FE | Y | Y | Y | Y | Y |
Province FE | Y | Y | Y | Y | Y |
_cons | 1.247 | 0.693 | 1.721 | 3.785 | 0.508 |
(0.16) | (0.10) | (0.23) | (0.46) | (0.07) | |
N | 155 | 155 | 155 | 155 | 155 |
(1) PPEG | (2) PPEG | (3) PPEG | (4) PPEG | (5) PPEG | |
---|---|---|---|---|---|
Concern | 0.0464 | 0.0496 ** | 0.0561 ** | 0.0792 *** | 0.122 *** |
(1.66) | (2.05) | (2.26) | (3.65) | (4.97) | |
XConcern | 0.0454 * | 0.0884 ** | 0.0730 * | 0.0000606 | −0.000199 *** |
(1.88) | (2.19) | (1.70) | (0.29) | (−3.07) | |
X | Banli_t1 | Jiaoban_t1 | U_jiaoban_t1 | Days_t1 | Nums_t1 |
−0.748 | −1.290 | −1.321 | −0.000429 | 0.00453 *** | |
(−1.26) | (−1.11) | (−1.05) | (−0.47) | (2.71) | |
Regional Characteristics | Y | Y | Y | Y | Y |
Demographic Characteristics | Y | Y | Y | Y | Y |
Year FE | Y | Y | Y | Y | Y |
Province FE | Y | Y | Y | Y | Y |
_cons | 2.956 | 2.413 | 2.498 | 3.038 | 1.243 |
(0.38) | (0.31) | (0.32) | (0.36) | (0.17) | |
N | 155 | 155 | 155 | 155 | 155 |
H0: SAR nested in SDM | |
Likelihood-ratio test | |
Prob > chi2 = 0.0000 | LR chi2(10) = 46.03 |
H0: SEM nested in SDM | |
Likelihood-ratio test | |
Prob > chi2 = 0.0000 | LR chi2(10) = 31.01 |
H0: IND nested in BOTH | |
Likelihood-ratio test | |
Prob > chi2 = 0.0593 | LR chi2(10) = 17.75 |
H0: TIME nested in BOTH | |
Likelihood-ratio test | |
Prob > chi2 = 0.0000 | LR chi2(10) = 239.28 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
PPEG | PPEG | PPEG | PPEG | |
Main | ||||
concern | 0.0248 * | −0.0524 | −0.0132 | 0.00439 |
(1.72) | (−1.39) | (−0.67) | (0.29) | |
pollution | −9.855 *** | −12.67 *** | −7.819 ** | −14.65 *** |
(−2.82) | (−3.05) | (−2.32) | (−3.96) | |
ICTConcern | 0.107 ** | |||
(2.25) | ||||
BANLIConcern | 0.0421 ** | |||
(2.45) | ||||
JiaobanConcern | 0.0882 *** | |||
(3.75) | ||||
banli | −1.457 *** | |||
(−3.93) | ||||
jiaoban | −1.677 *** | |||
(−2.96) | ||||
dgdp | −2.453 * | −1.814 | −2.131 | −3.082 ** |
(−1.70) | (−1.26) | (−1.56) | (−2.15) | |
population_num | 15.87 | 11.57 | 16.17 | 14.46 |
(1.52) | (1.14) | (1.64) | (1.43) | |
wenmang | 0.0824 | 0.105 | 0.121 * | 0.113 |
(1.12) | (1.43) | (1.68) | (1.56) | |
age | 8.560 | 4.436 | 15.41 * | 0.539 |
(1.05) | (0.55) | (1.90) | (0.07) | |
ict | 3.983 ** | 3.221 * | 5.110 *** | 4.266 *** |
(2.42) | (1.73) | (3.13) | (2.70) | |
gdp1 | 0.685 *** | 0.656 *** | 0.798 *** | 0.627 *** |
(3.02) | (2.99) | (3.65) | (2.76) | |
Wx | ||||
concern | 0.00397 | 0.265 | −0.113 | −0.0172 |
(0.05) | (0.73) | (−1.05) | (−0.20) | |
pollution | 8.950 | 2.655 | 14.42 | −19.27 |
(0.30) | (0.08) | (0.50) | (−0.66) | |
ICTConcern | −0.360 | |||
(−0.79) | ||||
BanliConcern | 0.158 | |||
(1.41) | ||||
JiaobanConcern | 0.264 | |||
(1.43) | ||||
banli | −6.782 ** | |||
(−2.23) | ||||
Jiaoban | −3.176 | |||
(−0.65) | ||||
dgdp | 57.12 *** | 49.06 *** | 55.89 *** | 36.18 ** |
(4.22) | (3.56) | (4.30) | (2.52) | |
population_num | −8.121 | −13.01 | 26.82 | −14.99 |
(−0.11) | (−0.16) | (0.38) | (−0.21) | |
wenmang | −0.274 | −0.134 | −0.387 | −0.292 |
(−0.38) | (−0.18) | (−0.53) | (−0.40) | |
age | 46.92 | 54.73 | 147.8 ** | 71.03 |
(0.65) | (0.79) | (2.01) | (1.02) | |
ict | 28.65 ** | 38.37 ** | 30.84 ** | 30.47 ** |
(2.14) | (2.08) | (2.32) | (2.32) | |
gdp1 | −4.292 *** | −3.909 *** | −3.357 ** | −3.035 ** |
(−3.15) | (−2.95) | (−2.47) | (−2.22) | |
Spatial rho | −0.0581 | 0.00762 | −0.239 | −0.182 |
(−0.18) | (0.02) | (−0.66) | (−0.50) | |
N | 155 | 155 | 155 | 155 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, M. How to Enhance Public Participation in Environmental Governance? Evidence from China. Sustainability 2024, 16, 3154. https://doi.org/10.3390/su16083154
Dai M. How to Enhance Public Participation in Environmental Governance? Evidence from China. Sustainability. 2024; 16(8):3154. https://doi.org/10.3390/su16083154
Chicago/Turabian StyleDai, Mingxiao. 2024. "How to Enhance Public Participation in Environmental Governance? Evidence from China" Sustainability 16, no. 8: 3154. https://doi.org/10.3390/su16083154
APA StyleDai, M. (2024). How to Enhance Public Participation in Environmental Governance? Evidence from China. Sustainability, 16(8), 3154. https://doi.org/10.3390/su16083154