A Life Cycle Assessment of Methane Slip in Biogas Upgrading Based on Permeable Membrane Technology with Variable Methane Concentration in Raw Biogas
Abstract
:1. Introduction
2. Materials and Methods
2.1. LCA Boundaries
2.2. Functional Unit
2.3. The Biogas Plant for Experiments
2.4. Process Diagram of the Three-Stage Membrane Upgrading System and Its Working Principle
2.5. Measurements and Instruments
2.6. Biogas Preparation for the Experiments
2.7. LCA Technique
2.7.1. Goal and Scope
2.7.2. Life Cycle Inventory
3. Results and Discussion
3.1. Specific Electricity Consumption of Biogas Upgrading Unit
3.2. Methane Loss of Biogas Upgrading Unit
3.3. Life Cycle Assessment of the Biogas Upgrading
3.4. The Inventory Breakdown and Its Impact on Categories
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CO2 Emissions in 2023—Analysis. Available online: https://www.iea.org/reports/co2-emissions-in-2023 (accessed on 14 March 2024).
- IPCC Report on Climate Change 2022: Mitigation of Climate Change. Available online: https://www.ipcc.ch/report/sixth-assessment-report-working-group-3/ (accessed on 14 March 2024).
- Cabernard, L.; Pfister, S.; Hellweg, S. Improved Sustainability Assessment of the G20’s Supply Chains of Materials, Fuels, and Food. Environ. Res. Lett. 2022, 17, 034027. [Google Scholar] [CrossRef]
- UNEP Emissions Gap Report 2022. Available online: https://www.unep.org/resources/emissions-gap-report-2022 (accessed on 14 March 2024).
- Albers, A.; Collet, P.; Benoist, A.; Hélias, A. Back to the Future: Dynamic Full Carbon Accounting Applied to Prospective Bioenergy Scenarios. Int. J. Life Cycle Assess. 2020, 25, 1242–1258. [Google Scholar] [CrossRef]
- Albers, A.; Avadí, A.; Benoist, A.; Collet, P.; Hélias, A. Modelling Dynamic Soil Organic Carbon Flows of Annual and Perennial Energy Crops to Inform Energy-Transport Policy Scenarios in France. Sci. Total Environ. 2020, 718, 135278. [Google Scholar] [CrossRef] [PubMed]
- Council Directive 1999/31/EC of 26 April 1999 on the Landfill of Waste. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31999L0031 (accessed on 14 March 2024).
- Panagiotakis, I.; Dermatas, D. New European Union Soil Strategy: A Potential Worldwide Tool for Sustainable Waste Management and Circular Economy. Waste Manag. Res. 2022, 40, 245–247. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, T.; Anwar, M.T.; Ahmad, N.; Sher, F.; Khan, S.U.-D.; Ahmad, A.; Khan, R.; Wazeer, I. Valorisation and Emerging Perspective of Biomass Based Waste-to-Energy Technologies and Their Socio-Environmental Impact: A Review. J. Environ. Manag. 2021, 287, 112257. [Google Scholar] [CrossRef] [PubMed]
- De Medeiros Engelmann, P.; Dos Santos, V.H.J.M.; Da Rocha, P.R.; Dos Santos, G.H.A.; Lourega, R.V.; De Lima, J.E.A.; Pires, M.J.R. Analysis of Solid Waste Management Scenarios Using the WARM Model: Case Study. J. Clean. Prod. 2022, 345, 130687. [Google Scholar] [CrossRef]
- Abubakar, I.R.; Maniruzzaman, K.M.; Dano, U.L.; AlShihri, F.S.; AlShammari, M.S.; Ahmed, S.M.S.; Al-Gehlani, W.A.G.; Alrawaf, T.I. Environmental Sustainability Impacts of Solid Waste Management Practices in the Global South. Int. J. Environ. Res. Public Health 2022, 19, 12717. [Google Scholar] [CrossRef]
- Baral, K.R.; Jégo, G.; Amon, B.; Bol, R.; Chantigny, M.H.; Olesen, J.E.; Petersen, S.O. Greenhouse Gas Emissions during Storage of Manure and Digestates: Key Role of Methane for Prediction and Mitigation. Agric. Syst. 2018, 166, 26–35. [Google Scholar] [CrossRef]
- Ali, J.; Rasheed, T.; Afreen, M.; Anwar, M.T.; Nawaz, Z.; Anwar, H.; Rizwan, K. Modalities for Conversion of Waste to Energy—Challenges and Perspectives. Sci. Total Environ. 2020, 727, 138610. [Google Scholar] [CrossRef]
- Esteves, E.M.M.; Herrera, A.M.N.; Esteves, V.P.P.; Morgado, C.D.R.V. Life Cycle Assessment of Manure Biogas Production: A Review. J. Clean. Prod. 2019, 219, 411–423. [Google Scholar] [CrossRef]
- Uddin, M.M.; Wright, M.M. Anaerobic Digestion Fundamentals, Challenges, and Technological Advances. Phys. Sci. Rev. 2023, 8, 2819–2837. [Google Scholar] [CrossRef]
- Le Pera, A.; Sellaro, M.; Pellegrino, C.; Limonti, C.; Siciliano, A. Combined Pre-Treatment Technologies for Cleaning Biogas before Its Upgrading to Biomethane: An Italian Full-Scale Anaerobic Digester Case Study. Appl. Sci. 2024, 14, 2053. [Google Scholar] [CrossRef]
- Farghali, M.; Osman, A.I.; Umetsu, K.; Rooney, D.W. Integration of Biogas Systems into a Carbon Zero and Hydrogen Economy: A Review. Environ. Chem. Lett. 2022, 20, 2853–2927. [Google Scholar] [CrossRef]
- Angenent, L.T.; Usack, J.G.; Sun, T.; Fink, C.; Molitor, B.; Labatut, R.; Posmanik, R.; Hörl, M.; Hafenbradl, D. Upgrading Anaerobic Digestion within the Energy Economy—The Methane Platform. In Resource Recovery from Water: Principles and Application; IWA Publishing: London, UK, 2022. [Google Scholar] [CrossRef]
- de Carvalho, F.S.; dos Santos Reis, L.C.B.; Lacava, P.T.; de Araújo, F.H.M.; de Carvalho, J.A., Jr. Substitution of Natural Gas by Biomethane: Operational Aspects in Industrial Equipment. Energies 2023, 16, 839. [Google Scholar] [CrossRef]
- Rasheed, R.; Tahir, F.; Yasar, A.; Sharif, F.; Tabinda, A.B.; Ahmad, S.R.; Wang, Y.; Su, Y. Environmental Life Cycle Analysis of a Modern Commercial-Scale Fibreglass Composite-Based Biogas Scrubbing System. Renew. Energy 2022, 185, 1261–1271. [Google Scholar] [CrossRef]
- Eljamal, R.; Maamoun, I.; Bensaida, K.; Yilmaz, G.; Sugihara, Y.; Eljamal, O. A Novel Method to Improve Methane Generation from Waste Sludge Using Iron Nanoparticles Coated with Magnesium Hydroxide. Renew. Sustain. Energy Rev. 2022, 158, 112192. [Google Scholar] [CrossRef]
- Cheong, W.L.; Chan, Y.J.; Tiong, T.J.; Chong, W.C.; Kiatkittipong, W.; Kiatkittipong, K.; Mohamad, M.; Daud, H.; Suryawan, I.W.K.; Sari, M.M.; et al. Anaerobic Co-Digestion of Food Waste with Sewage Sludge: Simulation and Optimization for Maximum Biogas Production. Water 2022, 14, 1075. [Google Scholar] [CrossRef]
- Cubero-Cardoso, J.; Maluf Braga, A.F.; Trujillo-Reyes, Á.; Alonso-Segovia, G.; Serrano, A.; Borja, R.; Fermoso, F.G. Effect of Metals on Mesophilic Anaerobic Digestion of Strawberry Extrudate in Batch Mode. J. Environ. Manag. 2023, 326, 116783. [Google Scholar] [CrossRef]
- Astorino, C.; De Nardo, E.; Lettieri, S.; Ferraro, G.; Pirri, C.F.; Bocchini, S. Advancements in Gas Separation for Energy Applications: Exploring the Potential of Polymer Membranes with Intrinsic Microporosity (PIM). Membranes 2023, 13, 903. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; Dong, R. Recent Progress towards In-Situ Biogas Upgrading Technologies. Sci. Total Environ. 2021, 800, 149667. [Google Scholar] [CrossRef]
- Lanko, I.; Hejnic, J.; Říhová-Ambrožová, J.; Ferrer, I.; Jenicek, P. Digested Sludge Quality in Mesophilic, Thermophilic and Temperature-Phased Anaerobic Digestion Systems. Water 2021, 13, 2839. [Google Scholar] [CrossRef]
- Li, Y.; Hua, D.; Xu, H.; Zhao, Y.; Jin, F.; Fang, X. Improving Biodegradability of Corn Stover Pretreated by Different Organic Acids: Investigation on the Hydrolysis/Acidification and Methanogenic Performance. Ind. Crops Prod. 2022, 177, 114395. [Google Scholar] [CrossRef]
- Bouaita, R.; Derbal, K.; Panico, A.; Iasimone, F.; Pontoni, L.; Fabbricino, M.; Pirozzi, F. Methane Production from Anaerobic Co-Digestion of Orange Peel Waste and Organic Fraction of Municipal Solid Waste in Batch and Semi-Continuous Reactors. Biomass Bioenergy 2022, 160, 106421. [Google Scholar] [CrossRef]
- Ignatowicz, K.; Filipczak, G.; Dybek, B.; Wałowski, G. Biogas Production Depending on the Substrate Used: A Review and Evaluation Study—European Examples. Energies 2023, 16, 798. [Google Scholar] [CrossRef]
- EBA Statistical Report 2022|European Biogas Association. Available online: https://www.europeanbiogas.eu/__trashed-3/ (accessed on 15 March 2024).
- Agonafer, T.D.; Eremed, W.B.; Adem, K.D. Biogas-Based Trigeneration System: A Review. Results Eng. 2022, 15, 100509. [Google Scholar] [CrossRef]
- Golmakani, A.; Ali Nabavi, S.; Wadi, B.; Manovic, V. Advances, Challenges, and Perspectives of Biogas Cleaning, Upgrading, and Utilisation. Fuel 2022, 317, 123085. [Google Scholar] [CrossRef]
- Morrissey, A.J.; Browne, J. Waste Management Models and Their Application to Sustainable Waste Management. Waste Manag. 2004, 24, 297–308. [Google Scholar] [CrossRef]
- Gentil, E.C.; Damgaard, A.; Hauschild, M.; Finnveden, G.; Eriksson, O.; Thorneloe, S.; Kaplan, P.O.; Barlaz, M.; Muller, O.; Matsui, Y.; et al. Models for Waste Life Cycle Assessment: Review of Technical Assumptions. Waste Manag. 2010, 30, 2636–2648. [Google Scholar] [CrossRef]
- Tukker, A. Life Cycle Assessment as a Tool in Environmental Impact Assessment. Environ. Impact Assess. Rev. 2000, 20, 435–456. [Google Scholar] [CrossRef]
- Li, C.; Li, J.; Ren, Q.; Zheng, Q.; Jiang, Z. Durability of Concrete Coupled with Life Cycle Assessment: Review and Perspective. Cem. Concr. Compos. 2023, 139, 105041. [Google Scholar] [CrossRef]
- Narisetty, V.; Nagarajan, S.; Gadkari, S.; Ranade, V.V.; Zhang, J.; Patchigolla, K.; Bhatnagar, A.; Kumar Awasthi, M.; Pandey, A.; Kumar, V. Process Optimization for Recycling of Bread Waste into Bioethanol and Biomethane: A Circular Economy Approach. Energy Convers. Manag. 2022, 266, 115784. [Google Scholar] [CrossRef]
- Soleymani Angili, T.; Grzesik, K.; Salimi, E.; Loizidou, M. Life Cycle Analysis of Food Waste Valorization in Laboratory-Scale. Energies 2022, 15, 7000. [Google Scholar] [CrossRef]
- Pasciucco, F.; Francini, G.; Pecorini, I.; Baccioli, A.; Lombardi, L.; Ferrari, L. Valorization of Biogas from the Anaerobic Co-Treatment of Sewage Sludge and Organic Waste: Life Cycle Assessment and Life Cycle Costing of Different Recovery Strategies. J. Clean. Prod. 2023, 401, 136762. [Google Scholar] [CrossRef]
- Bidart, C.; Wichert, M.; Kolb, G.; Held, M. Biogas Catalytic Methanation for Biomethane Production as Fuel in Freight Transport—A Carbon Footprint Assessment. Renew. Sustain. Energy Rev. 2022, 168, 112802. [Google Scholar] [CrossRef]
- Mallouppas, G.; Yfantis, E.A.; Ioannou, C.; Paradeisiotis, A.; Ktoris, A. Application of Biogas and Biomethane as Maritime Fuels: A Review of Research, Technology Development, Innovation Proposals, and Market Potentials. Energies 2023, 16, 2066. [Google Scholar] [CrossRef]
- D’Adamo, I.; Sassanelli, C. Biomethane Community: A Research Agenda towards Sustainability. Sustainability 2022, 14, 4735. [Google Scholar] [CrossRef]
- Gupta, R.; Miller, R.; Sloan, W.; You, S. Economic and Environmental Assessment of Organic Waste to Biomethane Conversion. Bioresour. Technol. 2022, 345, 126500. [Google Scholar] [CrossRef]
- Aravani, V.P.; Sun, H.; Yang, Z.; Liu, G.; Wang, W.; Anagnostopoulos, G.; Syriopoulos, G.; Charisiou, N.D.; Goula, M.A.; Kornaros, M.; et al. Agricultural and Livestock Sector’s Residues in Greece & China: Comparative Qualitative and Quantitative Characterization for Assessing Their Potential for Biogas Production. Renew. Sustain. Energy Rev. 2022, 154, 111821. [Google Scholar] [CrossRef]
- Kucher, O.; Hutsol, T.; Glowacki, S.; Andreitseva, I.; Dibrova, A.; Muzychenko, A.; Szeląg-Sikora, A.; Szparaga, A.; Kocira, S. Energy Potential of Biogas Production in Ukraine. Energies 2022, 15, 1710. [Google Scholar] [CrossRef]
- Norouzi, O.; Dutta, A. The Current Status and Future Potential of Biogas Production from Canada’s Organic Fraction Municipal Solid Waste. Energies 2022, 15, 475. [Google Scholar] [CrossRef]
- Tomczak, W.; Gryta, M.; Daniluk, M.; Żak, S. Biogas Upgrading Using a Single-Membrane System: A Review. Membranes 2024, 14, 80. [Google Scholar] [CrossRef]
- Francisco López, A.; Lago Rodríguez, T.; Faraji Abdolmaleki, S.; Galera Martínez, M.; Bello Bugallo, P.M. From Biogas to Biomethane: An In-Depth Review of Upgrading Technologies That Enhance Sustainability and Reduce Greenhouse Gas Emissions. Appl. Sci. 2024, 14, 2342. [Google Scholar] [CrossRef]
- Fajrina, N.; Yusof, N.; Ismail, A.F.; Aziz, F.; Bilad, M.R.; Alkahtani, M. A Crucial Review on the Challenges and Recent Gas Membrane Development for Biogas Upgrading. J. Environ. Chem. Eng. 2023, 11, 110235. [Google Scholar] [CrossRef]
- Gkotsis, P.; Kougias, P.; Mitrakas, M.; Zouboulis, A. Biogas Upgrading Technologies—Recent Advances in Membrane-Based Processes. Int. J. Hydrog. Energy 2023, 48, 3965–3993. [Google Scholar] [CrossRef]
- Bian, R.; Zhang, T.; Zhao, F.; Chen, J.; Liang, C.; Li, W.; Sun, Y.; Chai, X.; Fang, X.; Yuan, L. Greenhouse Gas Emissions from Waste Sectors in China during 2006–2019: Implications for Carbon Mitigation. Process Saf. Environ. Prot. 2022, 161, 488–497. [Google Scholar] [CrossRef]
- Jacobs, A.; Auburger, S.; Bahrs, E.; Brauer-Siebrecht, W.; Christen, O.; Götze, P.; Koch, H.-J.; Rücknagel, J.; Märländer, B. Greenhouse Gas Emission of Biogas Production out of Silage Maize and Sugar Beet—An Assessment along the Entire Production Chain. Appl. Energy 2017, 190, 114–121. [Google Scholar] [CrossRef]
- Mar, K.A.; Unger, C.; Walderdorff, L.; Butler, T. Beyond CO2 Equivalence: The Impacts of Methane on Climate, Ecosystems, and Health. Environ. Sci. Policy 2022, 134, 127–136. [Google Scholar] [CrossRef]
- Gustafsson, M.; Anderberg, S. Biogas Policies and Production Development in Europe: A Comparative Analysis of Eight Countries. Biofuels 2022, 13, 931–944. [Google Scholar] [CrossRef]
- Ghafoori, M.S.; Loubar, K.; Marin-Gallego, M.; Tazerout, M. Techno-Economic and Sensitivity Analysis of Biomethane Production via Landfill Biogas Upgrading and Power-to-Gas Technology. Energy 2022, 239, 122086. [Google Scholar] [CrossRef]
- Ó Céileachair, D.; O’Shea, R.; Murphy, J.D.; Wall, D.M. The Effect of Seasonal Biomass Availability and Energy Demand on the Operation of an On-Farm Biomethane Plant. J. Clean. Prod. 2022, 368, 133129. [Google Scholar] [CrossRef]
- Shinde, A.M.; Dikshit, A.K.; Odlare, M.; Thorin, E.; Schwede, S. Life Cycle Assessment of Bio-Methane and Biogas-Based Electricity Production from Organic Waste for Utilization as a Vehicle Fuel. Clean Technol. Environ. Policy 2021, 23, 1715–1725. [Google Scholar] [CrossRef]
- Becker, C.M.; Marder, M.; Junges, E.; Konrad, O. Technologies for Biogas Desulfurization—An Overview of Recent Studies. Renew. Sustain. Energy Rev. 2022, 159, 112205. [Google Scholar] [CrossRef]
- Ministry of Energy of the Republic of Lithuania 1-194 Regarding Approval of Natural Gas Quality Requirements. Available online: https://e-seimas.lrs.lt/portal/legalAct/lt/TAD/TAIS.457419/asr (accessed on 15 March 2024).
- Galizia, M.; Chi, W.S.; Smith, Z.P.; Merkel, T.C.; Baker, R.W.; Freeman, B.D. 50th Anniversary Perspective: Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities. Macromolecules 2017, 50, 7809–7843. [Google Scholar] [CrossRef]
- Baena-Moreno, F.M.; le Saché, E.; Pastor-Pérez, L.; Reina, T.R. Membrane-Based Technologies for Biogas Upgrading: A Review. Environ. Chem. Lett. 2020, 18, 1649–1658. [Google Scholar] [CrossRef]
- EN 50470-3:2022; Electricity Metering Equipment—Part 3: Particular Requirements—Static Meters for AC Active Energy (Class Indexes A, B and C). Slovenian Institute for Standardization (SIST): Ljubljana, Slovenia, 2022.
- ISO 14044:2006. Available online: https://www.iso.org/standard/38498.html (accessed on 15 March 2024).
- Leiden University Handbook on Life Cycle Assessment. Available online: https://www.universiteitleiden.nl/en/research/research-projects/science/cml-new-dutch-lca-guide (accessed on 15 March 2024).
- ENSTO The ENTSO-E Is Publishing the ENTSO-E Market Report 2023 and ENTSO-E Capacity Calculation and Allocation (CC&A) Report 2023. Available online: https://www.entsoe.eu/news/2023/06/30/the-entso-e-is-publishing-the-entso-e-market-report-2023-and-entso-e-capacity-calculation-and-allocation-cc-a-report-2023/ (accessed on 15 March 2024).
- Pre Consultants SimaPro|LCA Software for Informed Changemakers. Available online: https://simapro.com/ (accessed on 15 March 2024).
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The Ecoinvent Database Version 3 (Part I): Overview and Methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- BRIGHT Tech: Biogas Upgrading: Membrane Technology. Available online: https://www.bright-renewables.com/technology/biogas-upgrading-membrane/ (accessed on 15 March 2024).
- Lóránt, B.; Tardy, G.M. Current Status of Biological Biogas Upgrading Technologies. Period. Polytech. Chem. Eng. 2022, 66, 465–481. [Google Scholar] [CrossRef]
- Lombardi, L.; Francini, G. Techno-Economic and Environmental Assessment of the Main Biogas Upgrading Technologies. Renew. Energy 2020, 156, 440–458. [Google Scholar] [CrossRef]
- IRENA World Energy Transitions Outlook 2023. Available online: https://www.irena.org/Digital-Report/World-Energy-Transitions-Outlook-2023 (accessed on 15 March 2024).
- IEA Renewables—Energy System. Available online: https://www.iea.org/energy-system/renewables (accessed on 15 March 2024).
- World Nuclear Association Renewable Energy and Electricity. Available online: https://world-nuclear.org/information-library/energy-and-the-environment/renewable-energy-and-electricity.aspx (accessed on 14 March 2024).
- Eurostat Preliminary 2022 Data for Energy Show Mixed Trends—Eurostat. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/w/ddn-20230705-2 (accessed on 15 March 2024).
- Soto, C.; Palacio, L.; Muñoz, R.; Prádanos, P.; Hernandez, A. Recent Advances in Membrane-Based Biogas and Biohydrogen Upgrading. Processes 2022, 10, 1918. [Google Scholar] [CrossRef]
- Kvist, T.; Aryal, N. Methane Loss from Commercially Operating Biogas Upgrading Plants. Waste Manag. 2019, 87, 295–300. [Google Scholar] [CrossRef]
- Climate Change 2022: Impacts, Adaptation and Vulnerability. In Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Shukla, P.R.; Skea, J.; Slade, R.; Al Khourdajie, A.; van Diemen, R.; McCollum, D.; Pathak, M.; Some, S.; Vyas, P.; Fradera, R.; et al. (Eds.) IPCC: Geneva, Switzerland, 2022; ISBN 978-92-9169-160-9. [Google Scholar]
- Scheutz, C.; Fredenslund, A.M. Total Methane Emission Rates and Losses from 23 Biogas Plants. Waste Manag. 2019, 97, 38–46. [Google Scholar] [CrossRef]
- Florio, C.; Fiorentino, G.; Corcelli, F.; Ulgiati, S.; Dumontet, S.; Güsewell, J.; Eltrop, L. A Life Cycle Assessment of Biomethane Production from Waste Feedstock Through Different Upgrading Technologies. Energies 2019, 12, 718. [Google Scholar] [CrossRef]
- Lorenzi, G.; Gorgoroni, M.; Silva, C.; Santarelli, M. Life Cycle Assessment of Biogas Upgrading Routes. Energy Procedia 2019, 158, 2012–2018. [Google Scholar] [CrossRef]
Experiment | Average Biogas Flow, Nm3/h | Deviation of Biogas Flow, Nm3/h | Average CH4 Content in Biogas, % vol | Deviation of CH4 Content in Biogas, % vol | Electricity Consumption, kWh/h | Deviation of Electricity Consumption, kWh/h |
---|---|---|---|---|---|---|
CM-50 | 35.0 | ±0.15 | 50.0 | ±0.1 | 10.28 | ±0.04 |
CM-60 | 35.0 | ±0.12 | 60.0 | ±0.2 | 10.21 | ±0.04 |
CM-70 | 35.0 | ±0.18 | 70.0 | ±0.2 | 10.11 | ±0.02 |
CM-80 | 35.0 | ±0.14 | 80.0 | ±0.1 | 9.99 | ±0.03 |
Experiment | Average Biomethane Flow, Nm3/h | Deviation of Biomethane Flow, Nm3/h | Average CH4 Content in Biomethane, % vol | Deviation of CH4 Content in Biomethane, % vol | Average CH4 Slip, % vol | Deviation of CH4 Slip, % vol |
---|---|---|---|---|---|---|
CM-50 | 18.05 | ±0.1 | 96.46 | ±0.36 | 0.5 | ±0.03 |
CM-60 | 21.67 | ±0.2 | 96.43 | ±0.41 | 0.5 | ±0.01 |
CM-70 | 25.26 | ±0.1 | 96.52 | ±0.39 | 0.5 | ±0.02 |
CM-80 | 28.79 | ±0.1 | 96.77 | ±0.42 | 0.5 | ±0.01 |
Inventory Description | Units | Experiments with Different CH4 Content in Biogas | |||
---|---|---|---|---|---|
CM-50 | CM-60 | CM-70 | CM-80 | ||
Inputs | |||||
Hollow fibre polymer membranes | kg | 1.54 × 10−5 | 1.28 × 10−5 | 1.10 × 10−5 | 9.63 × 10−6 |
Non-lubricated piston compressor | unit | 4.23 × 10−7 | 3.50 × 10−7 | 2.97 × 10−7 | 2.57 × 10−7 |
Gas cooler | unit | 4.23 × 10−7 | 3.50 × 10−7 | 2.97 × 10−7 | 2.57 × 10−7 |
Metal container for upgrading equipment | kg | 1.18 × 10−3 | 9.80 × 10−4 | 8.40 × 10−4 | 7.35 × 10−4 |
Construction and piping steel | kg | 1.17 × 10−4 | 9.72 × 10−5 | 8.34 × 10−5 | 7.30 × 10−5 |
Electronic components | kg | 2.33 × 10−6 | 1.94 × 10−6 | 1.67 × 10−6 | 1.46 × 10−6 |
Biogas used | m3 | 2.01 | 1.67 | 1.44 | 1.26 |
Electricity used | kWh | 5.90 × 10−1 | 4.88 × 10−1 | 4.15 × 10−1 | 3.59 × 10−1 |
Non-renewable energy | MJ | 6.59 | 5.45 | 4.63 | 4.01 |
Renewable energy | MJ | 4.23 × 10−1 | 3.50 × 10−1 | 2.98 × 10−1 | 2.58 × 10−1 |
Outputs | |||||
Carbon dioxide | kg | 3.44 × 10−1 | 2.84 × 10−1 | 2.42 × 10−1 | 2.09 × 10−1 |
Biogenic carbon dioxide (neutral) | kg | 1.88 | 1.22 | 7.53 × 10−1 | 4.07 × 10−1 |
Sulphur dioxide | kg | 1.94 × 10−3 | 1.61 × 10−3 | 1.37 × 10−3 | 1.18 × 10−3 |
Nitrogen dioxide | kg | 5.96 × 10−4 | 4.93 × 10−4 | 4.19 × 10−4 | 3.63 × 10−4 |
Methane | kg | 6.07 × 10−4 | 5.02 × 10−4 | 4.27 × 10−4 | 3.70 × 10−4 |
Biogenic methane (slip) | kg | 3.35 × 10−3 | 3.33 × 10−3 | 3.34 × 10−3 | 3.33 × 10−3 |
Methane (total) | kg | 3.95 × 10−3 | 3.83 × 10−3 | 3.77 × 10−3 | 3.70 × 10−3 |
1 m3 of BioCH4 | Units | Experiments with Different CH4 Concentrations in Biogas | |||
---|---|---|---|---|---|
Impact Category | CM-50 | CM-60 | CM-70 | CM-80 | |
Abiotic depletion | kg Sb eq | 1.25 × 10−6 | 1.04 × 10−6 | 8.92 × 10−7 | 7.80 × 10−7 |
Abiotic depletion (fossil fuels) | MJ | 3.64 | 3.01 | 2.56 | 2.22 |
Global warming (GWP100a) | kg CO2 eq | 4.53 × 10−1 | 3.91 × 10−1 | 3.47 × 10−1 | 3.12 × 10−1 |
Ozone layer depletion (ODP) | kg CFC-11 eq | 8.78 × 10−8 | 7.26 × 10−8 | 6.17 × 10−8 | 5.34 × 10−8 |
Human toxicity | kg 1,4-DB eq | 1.51 × 10−1 | 1.26 × 10−1 | 1.08 × 10−1 | 9.40 × 10−2 |
Fresh water aquatic ecotoxicity | kg 1,4-DB eq | 5.70 × 10−2 | 4.74 × 10−2 | 4.06 × 10−2 | 3.54 × 10−2 |
Marine aquatic ecotoxicity | kg 1,4-DB eq | 2.21 × 102 | 1.83 × 102 | 1.56 × 102 | 1.35 × 102 |
Terrestrial ecotoxicity | kg 1,4-DB eq | 4.30 × 10−4 | 3.56 × 10−4 | 3.04 × 10−4 | 2.64 × 10−4 |
Photochemical oxidation | kg C2H4 eq | 1.46 × 10−4 | 1.24 × 10−4 | 1.09 × 10−4 | 9.66 × 10−5 |
Acidification | kg SO2 eq | 2.65 × 10−3 | 2.19 × 10−3 | 1.86 × 10−3 | 1.61 × 10−3 |
Eutrophication | kg PO4 eq | 1.14 × 10−4 | 9.41 × 10−5 | 8.02 × 10−5 | 6.95 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buivydas, E.; Navickas, K.; Venslauskas, K. A Life Cycle Assessment of Methane Slip in Biogas Upgrading Based on Permeable Membrane Technology with Variable Methane Concentration in Raw Biogas. Sustainability 2024, 16, 3323. https://doi.org/10.3390/su16083323
Buivydas E, Navickas K, Venslauskas K. A Life Cycle Assessment of Methane Slip in Biogas Upgrading Based on Permeable Membrane Technology with Variable Methane Concentration in Raw Biogas. Sustainability. 2024; 16(8):3323. https://doi.org/10.3390/su16083323
Chicago/Turabian StyleBuivydas, Egidijus, Kęstutis Navickas, and Kęstutis Venslauskas. 2024. "A Life Cycle Assessment of Methane Slip in Biogas Upgrading Based on Permeable Membrane Technology with Variable Methane Concentration in Raw Biogas" Sustainability 16, no. 8: 3323. https://doi.org/10.3390/su16083323
APA StyleBuivydas, E., Navickas, K., & Venslauskas, K. (2024). A Life Cycle Assessment of Methane Slip in Biogas Upgrading Based on Permeable Membrane Technology with Variable Methane Concentration in Raw Biogas. Sustainability, 16(8), 3323. https://doi.org/10.3390/su16083323