Vegetation–Lake–Sand Landscape of Northeast China Sandy Land between 1980 and 2022: Pattern, Evolution, and Driving Forces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.2.1. Remote Sensing Data
2.2.2. Meteorological Data
2.2.3. Statistical Data
2.3. Methods
2.3.1. Calculation of Vegetation Coverage
2.3.2. Gray Correlation Degree
2.3.3. Principal Component Analysis
3. Results
3.1. DBSL Vegetation–Lake–Sand Landscape Pattern Status
3.2. Spatial Differentiation of the DBSL Vegetation–Lake–Sand Landscape Pattern
3.2.1. Temporal Changes in the DBSL Vegetation–Lake–Sand Landscape Pattern
3.2.2. Vegetation–Lake–Sand Landscape Interaction
3.3. Driving Mechanism of Vegetation–Lake–Sand Landscape Evolution
3.3.1. Climate Factors
3.3.2. Socio-Economic Factors
3.3.3. Quantitative Analysis of the Driving Factors of Vegetation–Lake–Sand Landscape Evolution
3.3.4. Relationship between Vegetation–Lake–Sand Landscape Evolution and Driving Factors
4. Discussion
4.1. Dynamic Change Relationship of the Vegetation–Lake–Sand Landscape
4.2. Driving Mechanism of Vegetation–Lake–Sand Landscape Evolution
4.3. DBSL Ecological Environment Management and Optimization Strategy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Driving Factors | Factors | Description |
---|---|---|
Natural factors | Annual average temperature | Spatial data |
Annual precipitation | Spatial data | |
Annual average wind speed | Non-spatial data | |
Annual average evaporation | Non-spatial data | |
Humanistic factors | Total population | Non-spatial data |
GDP | Non-spatial data | |
Farmers’ income | Non-spatial data | |
Number of large livestock at the end of the year | Non-spatial data | |
Arable land area | Non-spatial data | |
Grain yield | Non-spatial data | |
Feature value | Non-spatial data | |
Contribution rate | Non-spatial data | |
Cumulative contribution rate | Non-spatial data |
Factors | PC1 | PC2 | PC3 |
---|---|---|---|
Annual average temperature | −0.28 | 0.10 | −0.30 |
Annual precipitation | 0.41 | 0.57 | 0.17 |
Annual average wind speed | −0.10 | 0.18 | −0.17 |
Annual average evaporation | −0.03 | −0.60 | 0.57 |
Total population | 0.16 | 0.35 | 0.65 |
GDP | 0.78 | −0.30 | −0.30 |
Farmers’ income | 0.13 | −0.25 | 0.05 |
Number of large livestock at the end of the year | 0.30 | 0.02 | −0.10 |
Arable land area | −0.03 | −0.02 | 0.03 |
Grain yield | 0.01 | 0.02 | −0.01 |
Feature value | 5.03 | 1.74 | 0.96 |
Contribution rate | 54.45 | 18.92 | 10.67 |
Cumulative contribution rate | 54.45 | 73.37 | 84.04 |
References
- Wang, T.; Song, X.; Yan, C.Z.; Li, S.; Xie, J.L. Remote sensing analysis of land desertification trend in northern China in recent 35 years. China Desert 2011, 31, 1351–1356. [Google Scholar] [CrossRef]
- Xie, J.L.; Lu, Z.X.; Xiao, S.C.; Yan, C.Z. The Latest Desertification Process and Its Driving Force in Alxa League from 2000 to 2020. Remote Sens. 2023, 15, 4867. [Google Scholar] [CrossRef]
- Han, Y.; Zhao, W.W.; Ding, J.Y.; Ferreira, C.S.S. Soil erodibility for water and wind erosion and its relationship to vegetation and soil properties in China’s drylands. Sci. Total Environ. 2023, 10, 166639. [Google Scholar] [CrossRef] [PubMed]
- Al-Dousari, A.; El-Wahab, R.H.; Al-Rashed, A.R. Influences of Physiographic Factors, Vegetation Patterns and Human Impacts on Aeolian Landforms in Arid Environment. Arid Ecosyst. 2018, 8, 97–110. [Google Scholar] [CrossRef]
- Thomas, A.G.S.; Patrick, A.H. Nebkha flow dynamics and shadow dune formation. Geomorphology 2017, 282, 27–38. [Google Scholar] [CrossRef]
- Chulabush, K.; Satoshi, T.; Semyon, V.B.; Konosuke, S.; Tatsuyuki, S.; Viktor, V.L.; Irina, G.B.; Naoya, W. Long-Time Interval Satellite Image Analysis on Forest-Cover Changes and Disturbances around Protected Area, Zeya State Nature Reserve, in the Russian Far East. Remote Sens. 2021, 13, 1285. [Google Scholar] [CrossRef]
- Liu, S.L.; Dong, Y.H.; Kim, R.M.; Lam-Son, P.T.; Wang, F.F.; Liu, H.; Wu, G. Scientific concept and practices of life community of mountains, rivers, forests, farmlands, lakes, grasslands, and deserts in China. Ambio 2023, 1, 1939–1951. [Google Scholar] [CrossRef]
- Ge, X.; Dong, K.; Luloff, A.E.; Wang, L.; Xiao, J. Downwind aeolian sediment accumulations associated with lake-level variations of the Qinghai Lake during the Holocene, Northeastern Qinghai–Tibetan Plateau. Environ. Earth Sci. 2016, 78, 19.1–19.12. [Google Scholar] [CrossRef]
- Wassim, A.; Mohamed, T.; Azaiez, O.B.; Omar, G.; Houcine, K. Vegetation dynamics under variable conditions in the famous sandy steppe of southern Tunisia. Afr. J. Ecol. 2022, 53, 16–24. [Google Scholar] [CrossRef]
- Miao, Y.F.; Jin, H.L.; Cui, J.X. Human activity accelerating the rapid desertification of the Mu Us Sandy Lands, North China. Sci. Rep. 2016, 6, 23003. [Google Scholar] [CrossRef]
- Zhou, W.X.; Li, C.J.; Wang, S.; Ren, Z.B.; Lindsay, C.S. Effects of vegetation restoration on soil properties and vegetation attributes in the arid and semi-arid regions of China. J. Environ. Manag. 2023, 343, 118–186. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Ding, J.L.; Wu, P.F.; Tan, J.; Huang, S.; Teng, D.X.; Cao, X.Y.; Wang, J.Z.; Chen, W.Q. Assessing arid Inland Lake Watershed Area and Vegetation Response to Multiple Temporal Scales of Drought Across the Ebinur Lake Watershed. Sci. Rep. 2020, 10, 1354. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.B.; Wang, Y.B.; Li, Z.J.; Zhang, H.F. Analysis of Spatial-Temporal Changes and Driving Factors of Vegetation Coverage in Jiamusi City. Forests 2023, 14, 1902. [Google Scholar] [CrossRef]
- Guo, R.J.; Cai, A.N.; Chen, X. The quantitative effects of climate change and human activity on the vegetation growth in the Yangtze River Basin. Front. Earth Sci. 2023, 11, 1168384. [Google Scholar] [CrossRef]
- Li, C.X.; Jia, X.; Zhu, R.N.; Mei, X.L.; Wang, D.; Zhang, X.L. Seasonal Spatiotemporal Changes in the NDVI and Its Driving Forces in Wuliangsu Lake Basin, Northern China from 1990 to 2020. Remote Sens. 2023, 15, 2965. [Google Scholar] [CrossRef]
- Chen, S.Y.; Liang, T.G.; Xie, H.J.; Feng, Q.S.; Huang, X.D.; Yu, H. Interrelation among climate factors, snow cover, grassland vegetation, and lake in the Nam Co basin of the Tibetan Plateau. J. Appl. Remote Sens. 2014, 8, 084694. [Google Scholar] [CrossRef]
- Shen, B.; Fang, S.B.; Li, G. Vegetation Coverage Changes and Their Response to Meteorological Variables from 2000 to 2009 in Naqu, Tibet, China. Can. J. Remote Sens. 2014, 40, 67–74. [Google Scholar] [CrossRef]
- Chun, X.; Su, R.G.G.; Liu, J.Y.; Liang, W.J.; Yong, M.; Ulambadrakh, K. Climatic implications on variations of Qehan Lake in the arid regions of Inner Mongolia during the recent five decades. Environ. Monit. Assess. 2017, 189, 14. [Google Scholar] [CrossRef]
- Zhan, Y.J.; Ma, C.Y.; Yan, Y.; Zhu, J.Y.; Ji, Y.X.; Ma, C.Q.; Luo, Y. Spatial differentiation characteristics of vegetation greening rates and climate attribution in China’s arid and semi-arid region. Glob. Ecol. Conserv. 2023, 46, 02563. [Google Scholar] [CrossRef]
- Du, H.S.; Hasi, E. Sandy Land-lake-vegetation landscape of Songnen sandy land of China: Pattern, process and mechanism. Chin. Geogr. Sci. 2022, 32, 580–591. [Google Scholar] [CrossRef]
- Zhang, B.J.; Xiong, D.H.; Liu, L.; Tang, Y.F. Wind erodibility indices of aeolian sandy soils impacted by different vegetation restoration: A case study from the Shannan valley of the Yarlung Zangbo River. J. Mt. Sci. 2022, 19, 2830–2845. [Google Scholar] [CrossRef]
- Chen, J.P.; Chen, Z.P.; Sha, Z.Y.; Yin, J.H.; Chen, Z.T. Quantifying the contributions of climate factors and human activities to variations of net primary productivity in China from 2000 to 2020. Front. Earth Sci. 2023, 11, 1084399. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, J.Y.; Hou, X.T.; Fan, P.Y.; Qian, Z.H.; Li, L.; Zhang, Z.S.; Feng, G.L.; Li, B.L.; Sun, G.Q. Detection and Attribution of Greening and Land Degradation of Dryland Areas in China and America. Remote Sens. 2023, 15, 2688. [Google Scholar] [CrossRef]
- Sardiña, L.C.; Irisarri, G.; Texeira, M. Climate factors rather than human activities controlled NDVI trends across wet meadow areas in the Andes Centrales of Argentina. J. Arid Environ. 2023, 21, 104983. [Google Scholar] [CrossRef]
- Banerjee, A.; Kang, S.C.; Meadows, E.M.; Xia, Z.L.; Sengupta, D.; Kumar, V. Quantifying climate variability and regional anthropogenic influence on vegetation dynamics in northwest India. Environ. Res. 2023, 234, 116541. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Zhao, R.; Liu, Y.J.; Huang, K.; Zhu, J.T. Sustainable wildlife protection on the Qingzang Plateau. Geogr. Sustain. 2021, 2, 40–47. [Google Scholar] [CrossRef]
- Li, G.S.; Yu, L.X.; Liu, T.X.; Bao, Y.L.; Yu, J.X.; Xin, B.X.; Bao, L.; Li, X.; Chang, X.Y.; Zhang, S.W. Spatial and temporal variations of grassland vegetation on the Mongolian Plateau and its response to climate change. Front. Ecol. Evol. 2023, 2023, 11. [Google Scholar] [CrossRef]
- Yu, W.H.; Zhang, L.J.; Zhang, H.W.; Jiang, L.Q.; Zhang, A.K.; Pan, T. Effect of farmland expansion on drought over the past century in Songnen Plain, Northeast China. J. Geogr. Sci. 2020, 30, 439–454. [Google Scholar] [CrossRef]
- Zhao, Y.B.; Wang, J.; Zhang, G.L.; Liu, L.; Yang, J.L.; Wu, X.C.; Chandrashekhar, B.; Dong, J.W.; Xiao, X.M. Divergent trends in grassland degradation and desertification under land use and climate change in Central Asia from 2000 to 2020. Ecol. Indic. 2023, 154, 110737. [Google Scholar] [CrossRef]
- Qi, L.; Wang, F.; Ge, W.Y.; Jiao, F.; Han, J.Q.; Chen, H.; Roig, F.A.; Abraham, E.M.; Xie, M.X.; Cai, L. Temporal and Spatial Change in Vegetation and Its Interaction with Climate Change in Argentina from 1982 to 2015. Remote Sens. 2023, 15, 1926. [Google Scholar] [CrossRef]
- Zhang, Y.R.; Wuriliga; Ding, Y.; Li, F.; Zhang, Y.J.; Su, M.; Li, S.H.; Liu, L. Effectiveness of Grassland Protection and Pastoral Area Development under the Grassland Ecological Conservation Subsidy and Reward Policy. Agriculture 2022, 12, 1177. [Google Scholar] [CrossRef]
- Wang, C.X.; Yan, J.W.; Liang, W.; Sun, S.B.; Gou, F.; Li, X.F.; Luo, Y.Y.; Wang, F.J. Assessing the impacts of natural conditions and human activities on terrestrial water storage in Loess Plateau, China. J. Mt. Sci. 2023, 20, 1921–1939. [Google Scholar] [CrossRef]
- Bai, J.; Chen, X.; Li, J.L.; Liao, Y.; Hui, F. Changes in the area of inland lakes in arid regions of central Asia during the past 30 years. Environ. Monit. Assess. 2011, 178, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Shang, G.X.; Wang, X.G.; Li, Y.; Han, Q.; He, W.; Chen, K.X. Heterogeneity Analysis of Spatio-Temporal Distribution of Vegetation Cover in Two-Tider Administrative Regions of China. Sustainability 2023, 15, 13305. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, M.; Pan, S.; Jin, F.X.; Zou, D.X.; Zhang, L.X. Spatio-temporal distribution and trends monitoring of land desertification based on time-series remote sensing data in northern China. Remote Sens. 2023, 82, 263. [Google Scholar] [CrossRef]
- Wang, Z.X. Correlation analysis of sequences with interval grey numbers based on the kernel and greyness degree. Kybernetes 2013, 42, 309–317. [Google Scholar] [CrossRef]
- Long, X.; Wu, S.G.; Wang, J.Y.; Wu, P.Z.; Wang, Z. Urban water environment carrying capacity based on VPOSR-coefficient of variation-grey correlation model: A case of Beijing, China. Ecol. Indic. 2022, 138, 100863. [Google Scholar] [CrossRef]
- Li, C.J.; Fu, B.J.; Wang, S.; Lindsay, C.S.; Wang, Y.P.; Li, Z.D.; Liu, Y.X.; Zhou, W.X. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2021, 2, 858–873. [Google Scholar] [CrossRef]
- Tian, S.; Xiong, K.N.; Zhang, N. Response of the Desertification Landscape Patterns to Spatial–Temporal Changes of Land Use: A Case Study of Salaxi in South China Karst. Land 2023, 12, 1557. [Google Scholar] [CrossRef]
- Liu, H.Z.; Hao, T.T.; Sun, H.G.; Li, H. Spatial-temporal evolution pattern and driving factors of ecological vulnerability in agro-pastoral region in northern China: A case of Yanchi County in Ningxia. Arid Land Geogr. 2021, 44, 1829. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Zhang, C.F.; Li, J.P.; Jiang, H.B.; Sheng, L.X.; Li, Z.X. Stand Structure Management and Tree Diversity Conservation Based on Using Stand Factors: A Case Study in the Longwan National Nature Reserve. Forests 2023, 14, 750. [Google Scholar] [CrossRef]
- Ma, M.Y.; Wang, Q.M.; Liu, R.; Zhao, Y.; Zhang, D.Q. Effects of climate change and human activities on vegetation coverage change in northern China considering extreme climate and time lag and accumulation effects. Sci. Total Environ. 2022, 860, 160527. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Sheng, Y. An automated scheme for glacial lake dynamics mapping using Landsatimagery and digital elevation models: A case study in the Himalayas. Remote Sens. 2012, 33, 5194–5213. [Google Scholar] [CrossRef]
- Zhang, M.A.; Borjigin, E.; Zhang, H.P. Mongolian nomadic culture and ecological culture: On the ecological reconstruction in the agro-pastoral mosaic zone in Northern China. Ecol. Econ. 2007, 62, 19–26. [Google Scholar] [CrossRef]
- Liu, H.C.; Fan, J.; Liu, B.Y.; Wang, L.; Qiao, Q. Practical exploration of ecological restoration and management of the mountains-rivers-forests-farmlands-lakes-grasslands system in the Irtysh River Basin in Altay, Xin jiang. J. Resour. Ecol. 2021, 12, 766–776. [Google Scholar] [CrossRef]
- Li, X.; Yu, K.X.; Zhang, X.; Zhang, G.J.; Li, Z.B.; Li, P.; Zhang, X.M.; Zhao, Y.; Ma, W.T. Spatial and Temporal Evolutionary Characteristics of Vegetation in Different Geomorphic Zones of Loess Plateau and Its Driving Factor Analysis. Sustainability 2023, 15, 12200. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, K.D.; Liu, C.C.; Zou, X.Y.; Kang, L.Q.; Chen, T.L.; He, W.W.; Fang, Y. Wind tunnel study of airflow recovery on the lee side of single plants. Agric. For. Meteorol. 2018, 263, 362–372. [Google Scholar] [CrossRef]
- Liu, J.M.; Pei, X.T.; Zhu, W.Y.; Jiao, J.Z. Simulation of the Ecological Service Value and Ecological Compensation in Arid Area: A Case Study of Ecologically Vulnerable Oasis. Remote Sens. 2023, 15, 3927. [Google Scholar] [CrossRef]
- Yang, M.; Gong, J.G.; Zhao, Y.; Wang, H.; Zhao, C.P.; Yang, Q.; Yin, Y.S.; Wang, Y.; Tian, B. Landscape Pattern Evolution Processes of Wetlands and Their Driving Factors in the Xiong’an New Area of China. Int. J. Environ. Res. Public Health 2021, 18, 4403. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, D.; Tian, L. Aeolian Activities and Protective Effects of Artificial Plants in Re-vegetated Sandy Land of Qinghai Lake, China. Chin. Geogr. Sci. 2020, 30, 1129–1142. [Google Scholar] [CrossRef]
- Zhang, M.M.; Wu, X.Q. The rebound effects of recent vegetation restoration projects in Mu Us Sandy land of China. Ecol. Indic. 2020, 113, 106228. [Google Scholar] [CrossRef]
- Zhang, Y.R.; Tong, X.; Liu, T.X.; Duan, L.M.; Hao, L.N.; Singh, V.P.; Jia, T.Y.; Lun, S. Spatio-Temporal Evolution of Inland Lakes and Their Relationship with Hydro-Meteorological Factors in Horqin Sandy Land, China. Remote Sens. 2023, 15, 2719. [Google Scholar] [CrossRef]
- Liu, Z.H.; Wang, J.J.; Ding, J.L.; Xie, X.L. Analysis of spatial–temporal evolution trends and influential factors of desert-oasis thermal environment in typical arid zone: The case of Turpan–Hami region. Ecol. Indic. 2023, 154, 110747. [Google Scholar] [CrossRef]
- Ma, Y.Y.; Huang, N.N.; Ma, C. Heterogeneity, marginality, stagementation and driving forces in the Otindag Sandy Land and its ecotones based on GIMMS NDVI3g V1.0. Ecol. Inform. 2023, 77, 102187. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, K.L.; Deng, B.W.; Sun, X.K.; Zeng, D.H. Effects of fire and grazing on above-ground biomass and species diversity in recovering grasslands in northeast China. J. Veg. Sci. 2018, 29, 629–639. [Google Scholar] [CrossRef]
- Bruno, F.D.S.; Rodrigo, Z.D.S.R.; Janne, H.; Temesgen, A.A.; Suelen, C.G.; Adriele, G.B.; Maria, V.R.B.; Yhasmin, M.D.M.; Sônia, M.D.S.P.; Andrezza, K.D.O.S.; et al. Evaluating the temporal patterns of land use and precipitation under desertification in the semi-arid region of Brazil. Ecol. Inform. 2023, 77, 102192. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Yan, C.Z.; Li, S.; Wang, Y.H. Remote sensing monitoring of the recent rapid increase in cultivation activities and its effects on desertification in the Mu Us Desert, China. J. Arid Land. 2023, 15, 812–826. [Google Scholar] [CrossRef]
- Gaowen, Y.; Masahiro, R.; Julien, R.; Stefan, H.C.R.M. Plant and soil biodiversity have non-substitutable stabilising effects on biomass production. Ecol. Lett. 2021, 24, 1582–1593. [Google Scholar] [CrossRef]
- Huiqin, L.; Tinghong, G.; Peter, N.; Xuelian, X.; Jingjing, L. Farmers’ livelihood adaptability in rural tourism destinations: An evaluation study of rural revitalization in China. Sustainability 2020, 12, 9544. [Google Scholar] [CrossRef]
- Zhao, X.F.; Xu, H.L.; Zhang, P. Changes of Lake Area, Groundwater Level and Vegetation under the Influence of Ecological Water Conveyance—A Case Study of the Tail Lake of Tarim River in China. Water 2022, 14, 1026. [Google Scholar] [CrossRef]
- Chi, Y.K.; Song, S.Z.; Xiong, K.N. Effects of different grassland use patterns on soil bacterial communities in the karst desertification areas. Front. Microbiol. 2023, 14, 1208971. [Google Scholar] [CrossRef] [PubMed]
- David, L.C.; Narcisa, G.P.; Kevin, M.M.; Gabriel, A.D.; Alex, Z. A Conceptual Approach towards Improving Monitoring of Living Conditions for Populations Affected by Desertification, Land Degradation, and Drought. Sustainability 2023, 15, 9400. [Google Scholar] [CrossRef]
- Korneeva, E.A. Evaluation of Environmental Damage Associated with Desertification of Arid Territories on the South of European Russia. Arid Ecosyst. 2023, 13, 59–64. [Google Scholar] [CrossRef]
- Sriroop, C.; Mimi, R.; Louis, M.M.; Yves, E. Land Degradation–Desertification in Relation to Farming Practices in India: An Overview of Current Practices and Agro-Policy Perspectives. Sustainability 2023, 15, 6383. [Google Scholar] [CrossRef]
- Kaymaz, A.K.; Birinci, S.; Kzlkan, Y. Sustainable development goals assessment of Erzurum province with SWOT-AHP analysis. Environ. Dev. Sustain. 2021, 24, 2986–3012. [Google Scholar] [CrossRef] [PubMed]
- Abou, S.S.; Maud, L.; Nouhou, S.J.; Hassane, B.A.I.; Jean, L.C. Standardized Description of Degraded Land Reclamation Actions and Mapping of Actors’ Roles: A Key Step for Action in Combatting Desertification (Niger). Land 2023, 12, 1064. [Google Scholar] [CrossRef]
- Rajendran, S.; Hamad, A.S.A.K.; Sadooni, F.N.; Nasir, S.; Govil, H.; Ghrefat, H. Remote sensing of desertification and study of temporal variability of aeolian deposits in parts of the Arabian Desert for sustainable development in an arid environment. Environ. Res. 2023, 232, 116279. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.X.; Liu, Y.X.; Xu, J.Y.; Fan, F.F. Identification of the geographical factors influencing the relationships between ecosystem services in the Belt and Road region from 2010 to 2030. J. Clean. Prod. 2020, 275, 124153. [Google Scholar] [CrossRef]
- Ji, X.Y.; Yang, J.Z.; Liu, J.Y.; Du, X.M.; Zhang, W.K.; Liu, J.F.; Guo, J.K. Analysis of Spatial-Temporal Changes and Driving Forces of Desertification in the Mu Us Sandy Land from 1991 to 2021. Sustainability 2023, 15, 10399. [Google Scholar] [CrossRef]
- Wang, T.H.; Yang, D.W.; Yang, Y.T.; Piao, S.L.; Li, X.; Cheng, G.D.; Fu, B.J. Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau. Sci. Adv. 2020, 6, 19. [Google Scholar] [CrossRef]
- Huang, W.; Wang, W.; Cao, M.; Fu, G.; Xia, J.; Wang, Z.; Li, J. Local climate and biodiversity affect the stability of China’s grasslands in response to drought. Sci. Total Environ. 2021, 768, 145482. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.; Liyang, X.; Guoan, T.; Josef, S.; Kaikai, X. Spatial–temporal variation of land use and land cover change in the glacial affected area of the Tianshan Mountains. Catena 2021, 202, 105256. [Google Scholar] [CrossRef]
- Gao, Y.; Dang, P.; Zhao, Q.X.; Liu, J.L.; Liu, J.B. Effects of vegetation rehabilitation on soil organic and inorganic carbon stocks in deserts: A meta-analysis. Catena 2018, 29, 1031–1040. [Google Scholar] [CrossRef]
- He, J.L.; Zhang, Q.I.; Xifeng, J.U.; Adilai, S. Evolution pattern and driving mechanism of eco-environmental quality in arid oasis belt--A case study of oasis core area in Kashgar Delta. Ecol. Indic. 2023, 154, 110866. [Google Scholar] [CrossRef]
- Chang, J.X.; Wang, L.; He, B.; Guo, A.J.; Wang, Y.M. Analysis of oasis land ecological security and influencing factors in arid areas. Land Degrad. Dev. 2023, 34, 3550–3567. [Google Scholar] [CrossRef]
- Sun, D.; Yang, H.; Guan, D.X.; Yang, M.; Wu, J.B.; Yuan, F.H.; Jin, C.J.; Wang, A.Z.; Zhang, Y.S. The effects of land use change on soil infiltration capacity in China: A meta- analysis. Sci. Total Environ. 2018, 626, 1394–1401. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Dong, K.; Luloff, A.E.; Wang, L.; Xiao, J. Impact of land use intensity on sandy desertification: An evidence from Horqin Sandy Land, China. Ecol. Indic. 2016, 61, 346–358. [Google Scholar] [CrossRef]
- Fu, B.J.; Stafford-Smith, M.; Wang, Y.F.; Wu, B.Y.; Yu, X.B.; Lv, N.; Ojima, D.S.; Lv, Y.H.; Fu, C.; Liu, Y.; et al. The Global- DEP conceptual framework-research on dryland ecosystems to promote sustainability. Environ. Sustain. 2021, 48, 17–28. [Google Scholar] [CrossRef]
- Han, X.Y.; Jia, G.P.; Yang, G.; Wang, N.; Liu, F.; Chen, H.Y.; Guo, X.Y.; Yang, W.B.; Liu, J. Spatiotemporal dynamic evolution and driving factors of desertification in the Mu Us Sandy Land in 30 years. Sci. Rep. 2020, 10, 21734. [Google Scholar] [CrossRef]
- Ren, Y.; Liu, X.J.; Zhang, B.; Chen, X.D. Sensitivity Assessment of Land Desertification in China Based on Multi-Source Remote Sensing. Remote Sens. 2023, 15, 2674. [Google Scholar] [CrossRef]
- Lu, J.Q.; Zhang, X.F.; Liang, S.M.; Cui, X.W. Spatiotemporal dynamics of vegetation index in an oasis-desert transition zone and relationship with environmental factors. Sustainability 2023, 15, 3503. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, W.; Teni, G.; Du, H. Vegetation–Lake–Sand Landscape of Northeast China Sandy Land between 1980 and 2022: Pattern, Evolution, and Driving Forces. Sustainability 2024, 16, 3382. https://doi.org/10.3390/su16083382
Lu W, Teni G, Du H. Vegetation–Lake–Sand Landscape of Northeast China Sandy Land between 1980 and 2022: Pattern, Evolution, and Driving Forces. Sustainability. 2024; 16(8):3382. https://doi.org/10.3390/su16083382
Chicago/Turabian StyleLu, Weiyi, Geer Teni, and Huishi Du. 2024. "Vegetation–Lake–Sand Landscape of Northeast China Sandy Land between 1980 and 2022: Pattern, Evolution, and Driving Forces" Sustainability 16, no. 8: 3382. https://doi.org/10.3390/su16083382
APA StyleLu, W., Teni, G., & Du, H. (2024). Vegetation–Lake–Sand Landscape of Northeast China Sandy Land between 1980 and 2022: Pattern, Evolution, and Driving Forces. Sustainability, 16(8), 3382. https://doi.org/10.3390/su16083382