Establishing the Characteristic Compressive Strength Parallel to Fiber of Four Local Philippine Bamboo Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Compression Testing
2.3. Moisture Content Determination
2.4. Characteristic Strength Calculation
3. Results and Discussion
3.1. Geometric, Physical, and Compressive Properties
3.2. Failure Modes
3.3. Characteristic Strength
3.4. Effect of Nodes on Compressive Strength
3.5. Correlation Models
3.6. Comparative Analysis
3.7. Comparison to Other Studies and NSCP Section 6—Wood
Average Compressive Strength Parallel to Fiber (MPa) | |||||
---|---|---|---|---|---|
Species | This Study | Other Studies | |||
B. vulgaris | Widjaja and Risyad (1987) [21] | Onche et al. (2020) [23] | Acma (2017) [22] | ||
Node | 55.59 | - | - | - | |
Internode | 66.73 | - | - | 44.74 * | |
Both | 61.16 | 44.62 | 98 ± 5 | - | |
D. asper | De Jesus et al. (2021) [24] | Sompoh et al. (2013) [25] | Acma (2017) [22] | ||
Node | 58.64 | 55.55 | - | - | |
Internode | 60.34 | 63.42 | - | 130.40 * | |
Both | 59.49 | - | 68.67 | - | |
B. blumeana | Sompoh et al. (2013) [25] | Janssen (1981) [26] | Candelaria and Hernandez Jr. (2019) [27] | ||
Node | 66.24 | - | - | - | |
Internode | 75.00 | - | - | - | |
Both | 70.67 | 66.50 | 60–176 | 62.49–76.84 | |
Espiloy (1987) [28] | Salzer et al. (2018) [8] | Acma (2017) [22] | |||
36.40 * | - | - | |||
38.30 * | - | 61.75 * | |||
- | 36.40 * | - | |||
G. angustifolia Kunth | Omaliko and Uzodimma (2021) [29] | Trujillo and López. (2010) [15] | Trujillo and López (2010) [15] | ||
Node | 56.29 | 68–81 | - | - | |
Internode | 58.76 | 60–68 | - | - | |
Both | 57.53 | - | 54.8–56.2 | 32.00 * | |
Bahtiar, Trujillo, and Nugroho (2020) [18] | |||||
- | |||||
- | |||||
78.3 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clark, L.G.; Londoño, X.; Ruiz-Sanchez, E. Bamboo Taxonomy and Habitat. In Bamboo Tropical Forestry; Liese, W., Köhl, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 10. [Google Scholar] [CrossRef]
- Manandhar, R.; Kim, J.; Kim, J. Environmental, social, and economic sustainability of bamboo and bamboo-based construction materials in buildings. J. Asian Archit. Build. Eng. 2019, 18, 49–50. [Google Scholar] [CrossRef]
- Virtucio, F.D. General overview of bamboo in the Philippines. In Silvicultural Management of Bamboo in the Philippines and Australia for Shoots and Timber, Proceedings of a Workshop, Los Banos, Philippines, 22–23 November 2006; ACIAR: Canberra, Australia, 2009; pp. 18–23. [Google Scholar]
- Nurdiah, E.A. The Potential of Bamboo as Building Material in Organic Shaped Buildings. Procedia Soc. Behav. Sci. 2016, 216, 30–38. [Google Scholar] [CrossRef]
- Atanda, J. Environmental impacts of bamboo as a substitute constructional material in Nigeria. Case Stud. Constr. Mater. 2015, 3, 33–39. [Google Scholar] [CrossRef]
- Kassahun, T. Review of Bamboo Value Chain in Ethiopia. J. Biol. Agric. Healthc. 2014, 4, 179–190. [Google Scholar]
- Sharma, B.; Gatóo, A.; Bock, M.; Ramage, M. Engineered bamboo for structural applications. Constr. Build. Mater. 2015, 81, 66–73. [Google Scholar] [CrossRef]
- Salzer, C.; Wallbaum, H.; Alipon, M.; López, L.F. Determining Material Suitability for Low-Rise Housing in the Philippines: Physical and Mechanical Properties of the Bamboo Species Bambusa bluemeana. BioResources 2018, 13, 346–369. [Google Scholar] [CrossRef]
- Bautista, B.E.; Garciano, L.E.O.; López, L.F. Comparative analysis of shear strength parallel to fiber of different local bamboo species in the Philippines. Sustainability 2021, 13, 8164. [Google Scholar] [CrossRef]
- Vicencio, M.A. Developing Mechanical Properties for Flexure and Capacity-Based Grading Using Measurable Indicating Properties (IPs) for Selected Local Bamboo Species. 2021. Available online: https://animorepository.dlsu.edu.ph/etdm_civ (accessed on 30 March 2022).
- Bureau of Philippine Standards. DTI-BPS Adopts International Standards on Bamboo Structures. Available online: http://www.bps.dti.gov.ph/index.php/press-releases/24-2020/214-dti-bps-adopts-international-standards-on-bamboo-structures (accessed on 30 June 2022).
- ISO 19624:2020; Bamboo Structures—Grading of Bamboo Culms—Basic Principles and Procedures. ISO: Geneva, Switzerland, 2020.
- ISO 22157-1; Bamboo Structures—Determination of Physical and Mechanical Properties of Bamboo Culms—Test Methods. ISO: Geneva, Switzerland, 2017.
- Wakchaure, M.; Kute, S. Effect of Moisture Content on Physical and Mechanical Properties of Bamboo. Asian J. Civ. Eng. 2012, 13, 753–763. [Google Scholar]
- Trujillo, D.J.; López, L.F. 18 Bamboo material characterisation. In Nonconventional and Vernacular Construction Materials; Woodhead Publishing: Sawston, UK, 2016; pp. 491–520. [Google Scholar]
- ISO 12122-1; Timber Structures Determination of Characteristic Values Part 1: Basic Requirements. ISO: Geneva, Switzerland, 2014.
- Nurmadina; Nugroho, N.; Bahtiar, E. Structural grading of Gigantochloa apus bamboo based on its flexural properties. Constr. Build. Mater. 2017, 157, 1173–1189. [Google Scholar] [CrossRef]
- Bahtiar, E.; Trujillo, D.; Nugroho, N. Compression resistance of short members as the basis for structural grading of Guadua angustifolia. Constr. Build. Mater. 2020, 249, 118759. [Google Scholar] [CrossRef]
- Mitch, D.; Harries, K.; Sharma, B. Characterization of splitting behavior of bamboo culms. J. Mater. Civ. Eng. 2010, 22, 1195–1199. [Google Scholar] [CrossRef]
- Li, H.-T.; Su, J.-W.; Zhang, Q.-S.; Deeks, A.; Hui, D. Mechanical performance of laminated bamboo column under axial compression. Compos. Part B 2015, 79, 374–382. [Google Scholar] [CrossRef]
- Widjaja, E.; Risyad, Z. Anatomical properties of some bamboos utilized in Indonesia. In Recent Research on Bamboos, Proceedings of the International Bamboo Workshop, Hangzhou, China, 6–14 October 1985; The Chinese Academy of Forestry, People’s Republic of China: Beijing, China; International Development Research Centre: Ottawa, ON, Canada, 1987; pp. 244–246. [Google Scholar]
- Acma, L.M. Comparative mechanical properties of selected bamboo species. Int. J. Precious Eng. Res. Appl. 2017, 2, 1–8. [Google Scholar]
- Onche, E.; Azeko, S.; Obayemi, J.; Oyewole, O.; Ekwe, N.; Rahbar, N.; Soboyejo, W. Compressive deformation of Bambusa vulgaris-Schrad in the transverse and longitudinal orientations. J. Mech. Behav. Biomed. Mater. 2020, 108, 103750. [Google Scholar] [CrossRef]
- De Jesus, A.; Garciano, L.E.O.; López, L.F.; Ong, D.; Roxas, M.; Tan, M.; De Jesus, R. Establishing the Strength Parameters Parallel to Fiber of Dendrocalamus asper (Giant Bamboo). Int. J. GEOMATE 2021, 20, 22–27. [Google Scholar] [CrossRef]
- Sompoh, B.; Fueangvivat, V.; Bauchongkol, P.; Ratcharoen, W. Physical and Mechanical Properties of Some Thai Bamboo for House Construction; Forest Research and Development Office, Royal Forest Department: Bangkok, Thailand, 2013.
- Janssen, J.A. Bamboo in Building Structures. Ph.D. Thesis, Technische Hogeschool Eindhoven, Eindhoven, The Netherlands, 1981. [Google Scholar] [CrossRef]
- Candelaria, M.E.; Hernandez, J.Y. Determination of the Properties of Bambusa blumeana Using Full-culm Compression Tests and Layered Tensile Tests for Finite Element Model Simulation Using Orthotropic Material Modeling. ASEAN Eng. J. 2019, 9, 54–71. [Google Scholar] [CrossRef]
- Espiloy, Z.B. Physico-mechanical properties and anatomical relationships of some Philippine bamboos. In Recent Research on Bamboos, Proceedings of the International Bamboo Workshop, Hangzhou, China, 6–14 October 1985; The Chinese Academy of Forestry, People’s Republic of China: Beijing, China; International Development Research Centre: Ottawa, ON, Canada, 1987; pp. 257–265. ISBN 9971-84-732-9. [Google Scholar]
- Omaliko, I.K.; Uzodimma, U.O. Evaluation of compressive strength of bamboo culms under node and internode conditions. Saudi J. Civ. Eng. 2021, 5, 251–258. [Google Scholar] [CrossRef]
Number of Specimens | k0.05,0.75 |
---|---|
5 | - |
10 | - |
30 | 2.01 |
50 | 1.94 |
100 | 1.85 |
>100 | 1.76 |
Geometric Properties | L (mm) | D (mm) | δ (mm) | A (mm2) |
---|---|---|---|---|
B. vulgaris (Node) (n = 18) | ||||
Min | 69.95 | 71.60 | 5.55 | 1192.18 |
Max | 102.20 | 107.80 | 11.29 | 3153.79 |
Mean | 88.75 | 89.41 | 7.24 | 1899.49 |
St dev | 10.26 | 10.82 | 1.53 | 585.69 |
COV | 0.12 | 0.12 | 0.21 | 0.31 |
B. vulgaris (Internode) (n = 18) | ||||
Min | 68.30 | 71.13 | 5.85 | 1199.64 |
Max | 109.60 | 108.48 | 9.16 | 2858.69 |
Mean | 90.30 | 89.60 | 7.13 | 1873.91 |
St dev | 11.06 | 10.62 | 1.04 | 474.83 |
COV | 0.12 | 0.12 | 0.15 | 0.25 |
B. vulgaris (n = 36) | ||||
Min | 68.30 | 71.13 | 5.55 | 1192.18 |
Max | 109.60 | 108.48 | 11.29 | 3153.79 |
Mean | 89.53 | 89.51 | 7.19 | 1886.70 |
St dev | 10.54 | 10.57 | 1.29 | 525.64 |
COV | 0.12 | 0.12 | 0.18 | 0.28 |
D. asper (Node) (n = 18) | ||||
Min | 104.75 | 109.15 | 8.20 | 2723.26 |
Max | 137.25 | 133.78 | 15.63 | 4903.83 |
Mean | 119.92 | 117.13 | 10.33 | 3458.99 |
St dev | 8.43 | 6.22 | 2.10 | 679.19 |
COV | 0.07 | 0.05 | 0.20 | 0.20 |
D. asper (Internode) (n = 18) | ||||
Min | 108.25 | 109.35 | 7.74 | 2772.64 |
Max | 137.35 | 135.15 | 15.49 | 4779.79 |
Mean | 122.89 | 120.49 | 10.96 | 3754.87 |
St dev | 8.22 | 7.43 | 2.06 | 632.03 |
COV | 0.07 | 0.06 | 0.19 | 0.17 |
D. asper (n = 36) | ||||
Min | 104.75 | 109.15 | 7.74 | 2723.26 |
Max | 137.35 | 135.15 | 15.63 | 4903.83 |
Mean | 121.40 | 118.81 | 10.65 | 3606.93 |
St dev | 8.34 | 6.97 | 2.08 | 663.77 |
COV | 0.07 | 0.06 | 0.20 | 0.18 |
B. blumeana (Node) (n = 46) | ||||
Min | 73.45 | 76.90 | 5.66 | 1305.78 |
Max | 110.40 | 110.20 | 10.45 | 2960.54 |
Mean | 94.93 | 95.03 | 7.68 | 2113.08 |
St dev | 8.19 | 7.35 | 1.09 | 372.24 |
COV | 0.09 | 0.08 | 0.14 | 0.18 |
B. blumeana (Internode) (n = 47) | ||||
Min | 73.40 | 77.28 | 5.58 | 1255.78 |
Max | 108.55 | 108.10 | 9.94 | 2796.09 |
Mean | 91.27 | 92.88 | 7.46 | 2008.03 |
St dev | 8.73 | 8.74 | 1.06 | 379.22 |
COV | 0.10 | 0.09 | 0.14 | 0.19 |
B. blumeana (n = 93) | ||||
Min | 73.40 | 76.90 | 5.58 | 1255.78 |
Max | 110.40 | 110.20 | 10.45 | 2960.54 |
Mean | 93.08 | 93.94 | 7.57 | 2059.99 |
St dev | 8.62 | 8.11 | 1.07 | 377.45 |
COV | 0.09 | 0.09 | 0.14 | 0.18 |
G. angustifolia Kunth (Node) (n = 15) | ||||
Min | 58.00 | 57.63 | 6.28 | 1012.29 |
Max | 93.70 | 90.90 | 13.98 | 3071.85 |
Mean | 75.13 | 75.91 | 9.51 | 1989.12 |
St dev | 9.63 | 9.26 | 2.83 | 634.72 |
COV | 0.13 | 0.12 | 0.30 | 0.32 |
G. angustifolia Kunth (Internode) (n = 15) | ||||
Min | 52.00 | 56.25 | 5.30 | 869.57 |
Max | 88.20 | 91.70 | 12.88 | 2809.76 |
Mean | 74.05 | 74.87 | 8.75 | 1833.40 |
St dev | 9.47 | 9.62 | 2.70 | 628.84 |
COV | 0.13 | 0.13 | 0.31 | 0.34 |
G. angustifolia Kunth (n = 30) | ||||
Min | 52.00 | 56.25 | 5.30 | 869.57 |
Max | 93.70 | 91.70 | 13.98 | 3071.85 |
Mean | 74.59 | 75.39 | 9.13 | 1911.26 |
St dev | 9.40 | 9.29 | 2.74 | 625.83 |
COV | 0.13 | 0.12 | 0.30 | 0.33 |
Geometric Properties | q (kg/m) | ω (%) | ρ (kg/m3) |
---|---|---|---|
B. vulgaris (Node) (n = 18) | |||
Min | 1.18 | 10.12% | 585.13 |
Max | 2.23 | 11.69% | 1002.43 |
Mean | 1.61 | 11.25% | 795.24 |
St dev | 0.37 | 0.00407 | 121.75 |
COV | 0.23 | 0.03621 | 0.15 |
B. vulgaris (Internode) (n = 18) | |||
Min | 0.91 | 9.93% | 455.67 |
Max | 1.71 | 11.52% | 985.47 |
Mean | 1.30 | 10.86% | 683.63 |
St dev | 0.26 | 0.00466 | 144.99 |
COV | 0.20 | 0.04287 | 0.21 |
B. vulgaris (n = 36) | |||
Min | 0.91 | 9.93% | 455.67 |
Max | 2.23 | 11.69% | 1002.43 |
Mean | 1.45 | 11.05% | 739.43 |
St dev | 0.35 | 0.00473 | 143.57 |
COV | 0.24 | 0.04281 | 0.19 |
D. asper (Node) (n = 18) | |||
Min | 1.89 | 9.86% | 559.24 |
Max | 4.69 | 11.68% | 979.88 |
Mean | 2.87 | 10.93% | 756.82 |
St dev | 0.83 | 0.00503 | 135.15 |
COV | 0.29 | 0.04600 | 0.18 |
D. asper (Internode) (n = 18) | |||
Min | 1.54 | 9.04% | 453.89 |
Max | 3.75 | 11.55% | 858.21 |
Mean | 2.56 | 10.41% | 643.29 |
St dev | 0.72 | 0.00634 | 123.88 |
COV | 0.28 | 0.06090 | 0.19 |
D. asper (n = 36) | |||
Min | 1.54 | 9.04% | 453.89 |
Max | 4.69 | 11.68% | 979.88 |
Mean | 2.71 | 10.67% | 700.06 |
St dev | 0.78 | 0.00622 | 140.14 |
COV | 0.29 | 0.05830 | 0.20 |
B. blumeana (Node) (n = 46) | |||
Min | 1.33 | 10.41% | 641.93 |
Max | 3.16 | 14.11% | 1060.84 |
Mean | 2.09 | 11.40% | 889.19 |
St dev | 0.45 | 0.00742 | 106.69 |
COV | 0.22 | 0.06505 | 0.12 |
B. blumeana (Internode) (n = 47) | |||
Min | 1.00 | 9.23% | 465.63 |
Max | 2.56 | 11.66% | 881.43 |
Mean | 1.68 | 10.40% | 726.27 |
St dev | 0.41 | 0.00488 | 98.12 |
COV | 0.24 | 0.04694 | 0.14 |
B. blumeana (n = 93) | |||
Min | 1.00 | 9.23% | 465.63 |
Max | 3.16 | 14.11% | 1060.84 |
Mean | 1.88 | 10.90% | 806.85 |
St dev | 0.48 | 0.00801 | 130.72 |
COV | 0.25 | 0.07350 | 0.16 |
G. angustifolia Kunth (Node) (n = 15) | |||
Min | 0.94 | 11.16% | 730.54 |
Max | 2.70 | 12.35% | 981.35 |
Mean | 1.87 | 11.81% | 859.84 |
St dev | 0.53 | 0.00360 | 64.38 |
COV | 0.28 | 0.03051 | 0.07 |
G. angustifolia Kunth (Internode) (n = 15) | |||
Min | 0.70 | 11.11% | 580.80 |
Max | 2.26 | 12.05% | 933.68 |
Mean | 1.45 | 11.52% | 728.26 |
St dev | 0.50 | 0.002902 | 83.66 |
COV | 0.34 | 0.025178 | 0.11 |
G. angustifolia Kunth (n = 30) | |||
Min | 0.70 | 11.11% | 580.80 |
Max | 2.70 | 12.35% | 981.35 |
Mean | 1.66 | 11.67% | 794.05 |
St dev | 0.55 | 0.00354 | 99.29 |
COV | 0.33 | 0.03032 | 0.13 |
Species | Mechanical Property fc,0 | ||||||
---|---|---|---|---|---|---|---|
n | Min (MPa) | Max (MPa) | µ (MPa) | σ | COV | σ2 | |
B. vulgaris (Node) | 18 | 39.98 | 73.56 | 55.59 | 10.03 | 0.18 | 100.67 |
B. vulgaris (Internode) | 18 | 44.35 | 84.96 | 66.73 | 13.32 | 0.20 | 177.50 |
B. vulgaris | 36 | 39.98 | 84.96 | 61.16 | 12.92 | 0.21 | 167.03 |
D. asper (Node) | 18 | 39.16 | 81.75 | 58.64 | 11.62 | 0.20 | 135.14 |
D. asper (Internode) | 18 | 41.84 | 87.08 | 60.34 | 12.85 | 0.21 | 165.18 |
D. asper | 36 | 39.16 | 87.08 | 59.49 | 12.11 | 0.20 | 146.61 |
B. blumeana (Node) | 46 | 40.46 | 86.30 | 66.24 | 11.87 | 0.18 | 140.89 |
B. blumeana (Internode) | 47 | 46.51 | 136.33 | 75.00 | 14.10 | 0.19 | 198.76 |
B. blumeana | 93 | 40.46 | 136.33 | 70.67 | 13.70 | 0.19 | 187.69 |
G. angustifolia Kunth (Node) | 15 | 33.43 | 70.78 | 56.29 | 10.82 | 0.19 | 117.03 |
G. angustifolia Kunth (Internode) | 15 | 40.56 | 79.66 | 58.76 | 11.70 | 0.20 | 136.79 |
G. angustifolia Kunth | 30 | 33.43 | 79.66 | 57.53 | 11.14 | 0.19 | 124.12 |
Failure Type | Figure | Frequency | |||||||
---|---|---|---|---|---|---|---|---|---|
BV (N) | BV (WN) | DA (N) | DA (WN) | BB (N) | BB (WN) | G (N) | G (WN) | ||
Splitting | 5a | 8 | 4 | 8 | 8 | 15 | 0 | 6 | 0 |
Crushing | 5b | 0 | 5 | 3 | 2 | 8 | 11 | 2 | 8 |
Combined | 5c | 6 | 6 | 4 | 6 | 21 | 35 | 7 | 4 |
No Failure | 4 | 3 | 3 | 2 | 2 | 1 | 0 | 3 | |
Total | 8 | 4 | 8 | 8 | 15 | 0 | 6 | 0 |
Species | n | COV | 5th Percentile X0.05 (MPa) | Multiplier k0.05,0.75 | Characteristic Strength fc,0,k X0.05,0.75 (MPa) | Average Strength fc,0 (MPa) |
---|---|---|---|---|---|---|
B. vulgaris | 36 | 0.21 | 43.43 | 2.01 | 40.35 | 61.16 |
D. asper | 36 | 0.20 | 43.15 | 2.01 | 40.21 | 59.49 |
B. blumeana | 93 | 0.19 | 48.53 | 1.94 | 46.63 | 70.67 |
G. angustifolia Kunth | 30 | 0.19 | 39.82 | 2.01 | 36.99 | 57.53 |
Species | t-Test Parameters | |||
---|---|---|---|---|
df | t Stat | t Crit (Two-Tailed) | p-Value * | |
B. vulgaris | 32 | −2.834 | 2.037 | 0.008 |
D. asper | 34 | −0.416 | 2.032 | 0.680 |
B. blumeana | 89 | −3.244 | 1.987 | 0.002 |
G. angustifolia Kunth | 28 | −0.602 | 2.048 | 0.552 |
fc,0 | L | D | δ | A | q | ω | ρ |
---|---|---|---|---|---|---|---|
BV-N | 0.3293 | 0.4113 | 0.1567 | 0.2525 | 0.0887 | 0.1575 | 0.4600 |
BV-WN | 0.4246 | 0.4637 | 0.2502 | 0.3601 | 0.0050 | 0.3286 | 0.5168 |
DA-N | 0.0309 | 0.0906 | 0.0345 | 0.0767 | 0.5722 | 0.4387 | 0.8857 |
DA-WN | 0.0027 | 0.0190 | 0.0048 | 0.0000 | 0.4248 | 0.5695 | 0.8375 |
BB-N | 0.0775 | 0.1130 | 0.0238 | 0.0812 | 0.4696 | 0.2652 | 0.5753 |
BB-WN | 0.0016 | 0.0055 | 0.0018 | 0.0019 | 0.3838 | 0.2652 | 0.3974 |
G-N | 0.0385 | 0.0777 | 0.0022 | 0.0032 | 0.0236 | 0.4754 | 0.4477 |
G-WN | 0.2469 | 0.2389 | 0.0727 | 0.1374 | 0.0255 | 0.3390 | 0.3703 |
0 < R2 ≤ 0.3 | 0.5 < R2 ≤ 0.7 | ||||||
0.3 < R2 ≤ 0.5 | R2 > 0.7 |
fc,0 | L | D | δ | A | q | ω | ρ |
---|---|---|---|---|---|---|---|
BV | 0.2707 | 0.3437 | 0.1578 | 0.2434 | 0.0813 | 0.3498 | 0.1665 |
DA | 0.0150 | 0.0478 | 0.0040 | 0.0211 | 0.4478 | 0.4573 | 0.6578 |
BB | 0.0005 | 0.0162 | 0.0001 | 0.0093 | 0.1686 | 0.3199 | 0.0927 |
GA | 0.1257 | 0.1545 | 0.0163 | 0.0529 | 0.0023 | 0.3824 | 0.1498 |
0 < R2 ≤ 0.3 | 0.5 < R2 ≤ 0.7 | ||||||
0.3 < R2 ≤ 0.5 | R2 > 0.7 |
Summary | ||||||
Groups | Count | Sum | Average | Variance | ||
B. vulgaris | 36 | 2201.63 | 61.16 | 167.03 | ||
D. asper | 36 | 2141.49 | 59.49 | 146.61 | ||
B. blumeana | 93 | 6571.92 | 70.67 | 187.69 | ||
G. angustifolia Kunth | 30 | 1725.77 | 57.53 | 124.12 | ||
ANOVA | ||||||
Source of Variation | SS | df | MS | F stat | p-Value | F crit |
Between Groups | 6281.86 | 3 | 2093.95 | 12.56 | 1.5712 × 10−7 | 2.65 |
Within Groups | 31,843.92 | 191 | 166.72 | |||
Total | 38,125.78 | 194 |
Species | Comparison | t-Test Parameters | ||||
---|---|---|---|---|---|---|
df | t Stat | t Crit (Two-Tail) | p-Value | Conclusion | ||
B. vulgaris | ||||||
D. asper | 70 | 0.566 | 1.994 | 0.5732 | C | |
B. blumeana | 67 | −3.685 | 1.996 | 0.0005 | NC | |
G. angustifolia Kunth | 64 | 1.226 | 1.998 | 0.2249 | C | |
D. asper | ||||||
B. blumeana | 72 | −4.530 | 1.994 | 2.29 × 10−5 | NC | |
G. angustifolia Kunth | 63 | 0.684 | 1.998 | 0.4964 | C | |
B. blumeana | ||||||
G. angustifolia Kunth | 60 | 5.296 | 2.000 | 1.77 × 10−6 | NC |
This Study | Compressive Strength (MPa) of Unseasoned Structural Timber High-Strength Group (80% Stress Grade) (NSCP 2015) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Bamboo Species | Characteristic Compressive Strength | Agoho | Liusin | Malabayabas | Manggachapui | Molave | Narig | Sasalit | Yakal |
14.50 | 15.60 | 15.80 | 16.00 | 15.40 | 13.70 | 21.60 | 15.80 | ||
Percent Difference to Characteristic Strength Value of Bamboo (%) | |||||||||
BV | 40.35 | 94.27 | 88.48 | 87.45 | 86.43 | 89.52 | 98.62 | 60.54 | 87.45 |
DA | 40.21 | 93.99 | 88.20 | 87.17 | 86.15 | 89.23 | 98.35 | 60.22 | 87.17 |
BB | 46.63 | 105.12 | 99.73 | 98.77 | 97.82 | 100.70 | 109.17 | 73.38 | 98.77 |
G | 36.99 | 87.36 | 81.35 | 80.28 | 79.22 | 82.42 | 91.89 | 52.53 | 80.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panti, C.A.T.; Cañete, C.S.; Navarra, A.R.; Rubinas, K.D.; Garciano, L.E.O.; López, L.F. Establishing the Characteristic Compressive Strength Parallel to Fiber of Four Local Philippine Bamboo Species. Sustainability 2024, 16, 3845. https://doi.org/10.3390/su16093845
Panti CAT, Cañete CS, Navarra AR, Rubinas KD, Garciano LEO, López LF. Establishing the Characteristic Compressive Strength Parallel to Fiber of Four Local Philippine Bamboo Species. Sustainability. 2024; 16(9):3845. https://doi.org/10.3390/su16093845
Chicago/Turabian StylePanti, Christine A. T., Christy S. Cañete, Althea R. Navarra, Kerby D. Rubinas, Lessandro E. O. Garciano, and Luis F. López. 2024. "Establishing the Characteristic Compressive Strength Parallel to Fiber of Four Local Philippine Bamboo Species" Sustainability 16, no. 9: 3845. https://doi.org/10.3390/su16093845
APA StylePanti, C. A. T., Cañete, C. S., Navarra, A. R., Rubinas, K. D., Garciano, L. E. O., & López, L. F. (2024). Establishing the Characteristic Compressive Strength Parallel to Fiber of Four Local Philippine Bamboo Species. Sustainability, 16(9), 3845. https://doi.org/10.3390/su16093845