Crumb Rubber (CR) and Low-Density Polyethylene (LDPE)-Modified Asphalt Pavement Assessment: A Mechanical, Environmental, and Life Cycle Cost Analysis Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Properties & Processing
2.2. Research Methodology
2.2.1. Waste-Modified Binder Blend Development and Rheological Testing
2.2.2. Superpave HMA Design
2.2.3. HMA Mechanical Testing
2.2.4. Cost Analysis
2.2.5. Environmental Analysis
3. Results
3.1. Waste Modified Binder Blends Development and Characterizaton
3.2. Superpave HMA Design Resuls and Analysis
3.3. HMA Mechanical Characterization
3.4. Cost Analysis Results
3.5. Environmental Analysis Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CR | Crumb Rubber. |
LDPE | Low-Density Polyethylene. |
CR+LDPE | A combination of CR and LDPE. |
LCCA | Life Cycle Cost Analysis. |
LCCF | Life Cycle Carbon Footprint. |
WS | Wearing Surface. |
TB | Treated Base. |
RTFO | Rolling Thin Film Oven. |
PAV | Pressure Aging Vessel. |
IDT | Indirect Tensile. |
SCB | Semi-circular Bending. |
TSR | Tensile Ratio. |
References
- Federal Highway Administration (FHWA). User Guidelines for Waste and Byproduct Materials in Pavement Construction; Publication No. FHWA-RD-97-148; Turner-Fairbank Highway Research Center: McLean, VA, USA, 2016. Available online: https://highways.dot.gov/sites/fhwa.dot.gov/files/FHWA-RD-97-148.pdf (accessed on 12 May 2025).
- Jin, D.; Ge, D.; Wang, J.; Malburg, L.; You, Z. Reconstruction of Asphalt Pavements with Crumb Rubber Modified Asphalt Mixture in Cold Region: Material Characterization, Construction, and Performance. Materials 2023, 16, 1874. [Google Scholar] [CrossRef] [PubMed]
- Losa, M.; Leandri, P.; Cerchiai, M. Improvement of Pavement Sustainability by the Use of Crumb Rubber Modified Asphalt Concrete for Wearing Courses. Int. J. Pavement Res. Technol. 2012, 5, 395. [Google Scholar]
- Deng, Z.; Li, W.; Dong, W.; Sun, Z.; Kodikara, J.; Sheng, D. Multifunctional asphalt concrete pavement toward smart transport infrastructure: Design, performance and perspective. Compos. B Eng. 2023, 265, 110937. [Google Scholar] [CrossRef]
- Mohamed, M. Urbanization and Heat Island Effect: A Comparative Study in Egypt. Int. J. Clim. Stud. 2024, 3, 12–23. [Google Scholar] [CrossRef]
- Chan, S.; Lane, B.; Kazmierowski, T.; Lee, W. Pavement preservation: A Solution for Sustainability. Transp. Res. Rec. J. Transp. Res. Board 2011, 2235, 36–42. [Google Scholar] [CrossRef]
- Bamigboye, G.O.; Bassey, D.E.; Olukanni, D.O.; Ngene, B.U.; Adegoke, D.; Odetoyan, A.O.; Kareem, M.A.; Enabulele, D.O.; Nworgu, A.T. Waste materials in highway applications: An overview on generation and utilization implications on sustainability. J. Clean Prod. 2021, 283, 124581. [Google Scholar] [CrossRef]
- Hemed, A.; Ouadif, L.; Bahi, L.; Lahmili, A. Impact of climate change on pavements. E3S Web Conf. 2020, 150, 01008. [Google Scholar] [CrossRef]
- Milad, A.; Babalghaith, A.M.; Al-Sabaeei, A.M.; Dulaimi, A.; Ali, A.; Reddy, S.S.; Bilema, M.; Yusoff, N.I.M. A Comparative Review of Hot and Warm Mix Asphalt Technologies from Environmental and Economic Perspectives: Towards a Sustainable Asphalt Pavement. Int. J. Environ. Res. Public Health 2022, 19, 14863. [Google Scholar] [CrossRef]
- Hasan, U.; Whyte, A.; Al Jassmi, H.; Hasan, A. Lifecycle Cost Analysis of Recycled Asphalt Pavements: Determining Cost of Recycled Materials for an Urban Highway Section. CivilEng 2022, 3, 316–331. [Google Scholar] [CrossRef]
- Choudhary, J.; Kumar, B.; Gupta, A. Utilization of solid waste materials as alternative fillers in asphalt mixes: A review. Constr. Build. Mater. 2020, 234, 117271. [Google Scholar] [CrossRef]
- Datta, S.D.; Rana, M.J.; Assafi, M.N.; Mim, N.J.; Ahmed, S. Investigation on the generation of construction wastes in Bangladesh. Int. J. Constr. Manag. 2023, 23, 2260–2269. [Google Scholar] [CrossRef]
- Islam, N.F.; Gogoi, B.; Saikia, R.; Yousaf, B.; Narayan, M.; Sarma, H. Encouraging circular economy and sustainable environmental practices by addressing waste management and biomass energy production. Reg. Sustain. 2024, 5, 100174. [Google Scholar] [CrossRef]
- Alaghemandi, M. Sustainable Solutions Through Innovative Plastic Waste Recycling Technologies. Sustainability 2024, 16, 10401. [Google Scholar] [CrossRef]
- Awasthi, A.K.; Cheela, V.S.; D’adamo, I.; Iacovidou, E.; Islam, M.R.; Johnson, M.; Miller, T.R.; Parajuly, K.; Parchomenko, A.; Radhakrishan, L.; et al. Zero waste approach towards a sustainable waste management. Resour. Environ. Sustain. 2021, 3, 100014. [Google Scholar] [CrossRef]
- Köfteci, S. Effect of HDPE Based Wastes on the Performance of Modified Asphalt Mixtures. Procedia Eng. 2016, 161, 1268–1274. [Google Scholar] [CrossRef]
- Mushtaq, F.; Huang, Z.; Shah, S.A.R.; Zhang, Y.; Gao, Y.; Azab, M.; Hussain, S.; Anwar, M.K. Performance Optimization Approach of Polymer Modified Asphalt Mixtures with PET and PE Wastes: A Safety Study for Utilizing Eco-Friendly Circular Economy-Based SDGs Concepts. Polymers 2022, 14, 2493. [Google Scholar] [CrossRef]
- Pyshye, S.; Lypko, Y.; Demchuk, Y.; Kukhar, O.; Korchak, B.; Pochapska, I.; Zhytnetskyi, I. Characteristics and Applications of Waste Tire Pyrolysis Products: A Review. Chem. Chem. Technol. 2024, 18, 244–257. [Google Scholar] [CrossRef]
- Nagurskyy, A.; Grynyshyn, O.; Khlibyshyn, Y.; Korchak, B. Use of Rubber Crumb Obtained from Waste Car Tires for the Production of Road Bitumen and Roofing Materials from Residues of Ukrainian Oil Processing. Chem. Chem. Technol. 2023, 17, 674–680. [Google Scholar] [CrossRef]
- Jin, D.; Xin, K.; Yin, L.; Mohammadi, S.; Cetin, B.; You, Z. Performance of rubber modified asphalt mixture with tire-derived aggregate subgrade. Constr. Build. Mater. 2024, 449, 138261. [Google Scholar] [CrossRef]
- Tang, N.; Huang, W.; Xiao, F. Chemical and rheological investigation of high-cured crumb rubber-modified asphalt. Constr. Build. Mater. 2016, 123, 847–854. [Google Scholar] [CrossRef]
- Irfan, M.; Ali, Y.; Ahmed, S.; Hafeez, I. Performance Evaluation of Crumb Rubber-Modified Asphalt Mixtures Based on Laboratory and Field Investigations. Arab. J. Sci. Eng. 2017, 43. [Google Scholar] [CrossRef]
- Aljarrah, M.F.; Roja, K.L.; Masad, E.; Ouederni, M.; Ibikunle, O.B. Nanostructural and Nanomechanical Properties of LDPE-Modified Binders. J. Mater. Civ. Eng. 2022, 34, 04022081. [Google Scholar] [CrossRef]
- Kumar, L. Effect of ldpe/cr admixture on the properties of bituminous binder used in paving applications. Int. J. Adv. Res. 2022, 10, 253–263. [Google Scholar] [CrossRef]
- Farahani, H.; Palassi, M.; Sadeghpour, S. Thermal analysis of bitumen modified with LDPE and CR. Pet Sci. Technol. 2017, 35, 1570–1575. [Google Scholar] [CrossRef]
- Zanjirani Farahani, H.; Palassi, M.; Sadeghpour Galooyak, S. Rheology investigation of waste LDPE and crumb rubber modified bitumen. Eng. Solid Mech. 2018, 6, 27–38. [Google Scholar] [CrossRef]
- Saudy, M.; Khedr, S.; Ibrahim, Y.; Nasr, R.; Salem, H.; Said, A.; Doss, B.; Khedr, S.; Faheem, A. LDPE Waste versus Crumb Rubber Waste Potential Use in Asphalt Pavement. In The Canadian Society for Civil Engineering CSCE Transportation Specialty Annual Conference; Springer Nature: Niagara Falls, ON, Canada, 2024. [Google Scholar]
- Ibrahim, Y.; Nasr, R.; Salem, H.; Said, A.; Doss, B.; Khedr, S.; Faheem, A.; Saudy, M. Potential Use of LDPE and Crumb Rubber Waste in Asphalt Binders. In The Canadian Society for Civil Engineering CSCE Structural Specialty Annual Conference; Springer Nature: Niagara Falls, ON, Canada, 2023. [Google Scholar]
- Zhang, Y.; Deng, X.; Xiao, P.; Qian, P.; Zhang, Y.; Kang, A. Properties and interaction evolution mechanism of CR modified asphalt. Fuel 2024, 371, 131886. [Google Scholar] [CrossRef]
- ARA, Inc., ERES Consultants Division. Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures: Final Report for NCHRP Project 1-37A; National Cooperative Highway Research Program, Transportation Research Board: Washington, DC, USA, 2004; Available online: https://apps.trb.org/cmsfeed/TRBNetProjectDisplay.asp?ProjectID=218 (accessed on 12 May 2025).
- Croney, D.; Croney, P. The Design and Performance of Road Pavements; McGraw Hill New York: New York, NY, USA, 1998; Chapter 9. [Google Scholar]
- Zapata, C.E.; Andrei, D.; Witczak, M.W.; Houston, W.N. Incorporation of Environmental Effects in Pavement Design. J. Road Mater. Pavement Des. 2007, 8, 667–693. [Google Scholar] [CrossRef]
- Das, B.P.; Bhargava, N.; Siddagangaiah, A.K. Influence of Environmental Conditions on the Performance of Bituminous Mixtures. Adv. Civ. Eng. Mater. 2018, 7, 163–180. [Google Scholar] [CrossRef]
- Zhang, S.; Yan, Y.; Yang, Y.; Guo, R. Study on the Physical and Rheological Characterisation of Low-Density Polyethylene (LDPE)/Recycled Crumb Rubber (RCR) on Asphalt Binders. Molecules 2024, 29, 716. [Google Scholar] [CrossRef]
- Pouranian, M.R.; Shishehbor, M. Sustainability Assessment of Green Asphalt Mixtures: A Review. Environments 2019, 6, 73. [Google Scholar] [CrossRef]
- Yasanthi, R.G.N.; Rengarasu, T.M.; Bandara, W.M.K.R.T.W. Study on the Performance of Waste Materials in Hot Mix Asphalt Concrete. Technol. Sci. (ASRJETS) Am. Sci. Res. J. Eng. 2016, 23, 252–267. [Google Scholar]
- Tahmoorian, F. Application of Waste Materials in Asphalt Mixtures. Ph.D. Thesis, Western Sydney University, Sydney, Australia, 2018. Available online: https://researchers.westernsydney.edu.au/files/94893984/uws_48086.pdf (accessed on 12 May 2025).
- Weigel, S.; Stephan, D. Bitumen Characterization with Fourier Transform Infrared Spectroscopy and Multivariate Evaluation: Prediction of Various Physical and Chemical Parameters. Energy Fuels 2018, 32, 10437–10442. [Google Scholar] [CrossRef]
- Nizamuddin, S.; Jamal, M.; Gravina, R.; Giustozzi, F. Recycled plastic as bitumen modifier: The role of recycled linear low-density polyethylene in the modification of physical, chemical and rheological properties of bitumen. J. Clean Prod. 2020, 266. [Google Scholar] [CrossRef]
- Saleh, A.; Saudy, M.; AbouZeid, M. Effect of Waste-Based Geopolymers on Asphalt Binder Performance. In The Canadian Society for Civil Engineering CSCE Structural Specialty Conference; Springer Nature: Moncton, NB, Canada, 2023. [Google Scholar]
- Sargand, S.; Green, R.; Russ, A.; Buss, A.; Guirguis, M. Best Practices for Chip Sealing Low-Volume Roads in Ohio. Transportation Research Circular; U.S. National Academy of Sciences Transportation Research Board: Washington, DC, USA, 2023; pp. 69–95. [Google Scholar]
- Buss, A.; Guirguis, M. Chip seal Aggregate Evaluation and Successful Roads Preservation. Constr. Build. Mater. 2018, 180, 396–404. [Google Scholar] [CrossRef]
- Gierhart, D. Reviewing Asphalt Test Results; Asphalt Magazine; Asphalt Institute: Lexington, KY, USA, 2013; Available online: https://www.asphaltmagazine.com/reviewing-asphalt-test-results/ (accessed on 12 May 2025).
- Yin, F.; Arámbula-Mercado, E.; Martin, A.E.; Newcomb, D.; Tran, N. Long-term ageing of asphalt mixtures. Road Mater. Pavement Des. 2017, 18, 2–27. [Google Scholar] [CrossRef]
- Valtorta, D.; Poulikakos, L.D.; Partl, M.N.; Mazza, E. Rheological properties of polymer modified bitumen from long-term field tests. Fuel 2007, 86, 938–948. [Google Scholar] [CrossRef]
- Harvey, J.; Tsai, B.-W. Long-Term Oven-Aging Effects on Fatigue and Initial Stiffness of Asphalt Concrete. Transp. Res. Rec. J. Transp. Res. Board 1997, 1590, 89–98. [Google Scholar] [CrossRef]
- Evaluation of Asphalt Concrete’s Fatigue Behavior Using Cyclic Semi-Circular Bending Test—ScienceDirect n.d. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0950061823024881 (accessed on 29 January 2025).
- Kaseer, F.; Yin, F.; Arámbula-Mercado, E.; Epps Martin, A.; Daniel, J.S.; Salari, S. Development of an index to evaluate the cracking potential of asphalt mixtures using the semi-circular bending test. Constr. Build. Mater. 2018, 167, 286–298. [Google Scholar] [CrossRef]
- Meng, Y.; Lu, Y.; Kong, W.; Chen, J.; Zhang, C.; Meng, F. Study on the influence factors of fatigue properties of large-stone asphalt mixtures based on semi-circular bending tests. Constr. Build. Mater. 2024, 414, 134947. [Google Scholar] [CrossRef]
- Marín-Uribe, C.R.; Restrepo-Tamayo, L.M. Experimental study of the tensile strength of hot asphalt mixtures measured with indirect tensile and semi-circular bending tests. Constr. Build. Mater. 2022, 339, 127651. [Google Scholar] [CrossRef]
- Huang, B.; Shu, X.; Zuo, G. Using notched semi circular bending fatigue test to characterize fracture resistance of asphalt mixtures. Eng. Fract. Mech. 2013, 109, 78–88. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, J.; Sun, L.; Liu, L.; Zhang, Y. Fatigue behaviours of asphalt mixture at different temperatures in four-point bending and indirect tensile fatigue tests. Constr. Build. Mater. 2021, 273, 121675. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, W.; Liu, P.; Huang, Q.; Luo, S. Study on fracture characteristics of recycled aggregates asphalt concrete. Constr. Build. Mater. 2024, 419, 135431. [Google Scholar] [CrossRef]
- Wang, J.; Qin, Y.; Xu, J.; Zeng, W.; Zhang, Y.; Wang, W.; Wang, P. Crack resistance investigation of mixtures with reclaimed SBS modified asphalt pavement using the SCB and DSCT tests. Constr. Build. Mater. 2020, 265, 120365. [Google Scholar] [CrossRef]
- Ren, X.; Ma, J.; Hesp, S.A.M. Another look at the semi-circular bend test for the performance ranking of hot mix asphalt. Constr. Build. Mater. 2023, 395, 132367. [Google Scholar] [CrossRef]
- Boz, I.; Habbouche, J.; Diefenderfer, S. The use of the indirect tensile test to evaluate the resistance of asphalt mixtures to cracking and moisture-induced damage. Airfield Highw. Pavements 2021, 2021, 104–114. [Google Scholar] [CrossRef]
- FHWA Pavement Division. FHWA-SA-98-079; Life-Cycle Cost Analysis in Pavement Design. U.S. Department of Transportation, Federal Highway Administration: Washington, DC, USA, 1998. Available online: https://rosap.ntl.bts.gov/view/dot/41999/dot_41999_DS1.pdf (accessed on 12 May 2025).
- Rafiq, W.; Musarat, M.A.; Altaf, M.; Napiah, M.; Sutanto, M.H.; Alaloul, W.S.; Javed, M.F.; Mosavi, A. Life Cycle Cost Analysis Comparison of Hot Mix Asphalt and Reclaimed Asphalt Pavement: A Case Study. Sustainability 2021, 13, 4411. [Google Scholar] [CrossRef]
- Guirguis, M. Towards Promoting Sustainable Construction in Egypt: A Life-Cycle Cost Approach. Master’s Thesis, The American University in Cairo, Cairo, Egypt, 2011. [Google Scholar]
- Guirguis, M.; Buss, A. Chip seal design framework with life-cycle cost analysis for local agencies. Road Mater. Pavement Des. 2021, 22, 478–491. [Google Scholar] [CrossRef]
- Guirguis, M.; Hosny, O.; Elhakeem, A.; El Haggar, S. Sustainable Building Envelope Design: A Thermal, Energy and Life Cycle Costs Analysis/Optimization; RICS Construction and Property Conference: Las Vegas, NV, USA, 2012. [Google Scholar]
- Guirguis, M.; Hosny, O.; Elhakeem, A.; El Haggar, S. Green Building Design in Egypt from Cost and Energy Perspectives. Archit. Eng. Des. Manag. J. 2015, 11, 21–40. [Google Scholar]
- ASTM C128-22; Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate. ASTM International: West Conshohocken, PA, USA, 2022.
- Saudy, M.; Guirguis, M.; Madkour, T.; El-Badawy, S.; AbouZeid, M. A Comprehensive Rheological, Thermal, Chemical, and Morphological Characterization of the LDPE-Modified Asphalt Binder. J. Mater. Civ. Eng. ASCE 2025, in press. [Google Scholar]
- ASTM D 2872-70; Standard Test Method for Effect of Heat and Air on a Moving Film of Asphalt Binder (Rolling Thin-Film Oven Test). ASTM International: West Conshohocken, PA, USA, 1970.
- ASTM D6521-22; Standard Practice for Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel (PAV). ASTM International: West Conshohocken, PA, USA, 2022.
- AASHTO T 316; Standard Method of Test for Viscosity Determination of Asphalt Binder Using Rotational Viscometer. AASHTO: Washington, DC, USA, 2022.
- AASHTO T 315; Standard Method of Test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). AASHTO: Washington, DC, USA, 2022.
- AASHTO T 313; Standard Method of Test for Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR). AASHTO: Washington, DC, USA, 2022.
- ASTM D6931-17; Standard Test Method for Indirect Tensile (IDT) Strength of Asphalt Mixtures. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D8044-16; Standard Test Method for Evaluation of Asphalt Mixture Cracking Resistance Using the Semi-Circular Bend Test (SCB) at Intermediate Temperature. ASTM International: West Conshohocken, PA, USA, 2016.
- Lu, D.X.; Bui, H.H.; Saleh, M.; Giustozzi, F. Compaction method and specimen geometry effect on the fracture properties of asphalt concrete in the SCB test at intermediate temperature. Int. J. Pavement Eng. 2024, 25, 2381059. [Google Scholar] [CrossRef]
- Khedr, S.; Aguib, A. The Mechanistic-Empirical Pavement Design: An Egyptian Perspective. In Functional Pavement Design; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2016; pp. 933–942. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/9781315643274-102/mechanistic-empirical-pavement-design-egyptian-perspective-ashraf-ayman-aguib-safwan-khedr (accessed on 12 May 2025).
- Elshaeb, M.; El-Badawy, S.; Shawaly, E.-S. Development and Impact of the Egyptian Climatic Conditions on Flexible Pavement Performance. Am. J. Civ. Eng. Archit. 2014, 2, 115–121. [Google Scholar] [CrossRef]
- Mirhashem, S.A.; Ravanshadnia, M. Carbon Footprint of Road Pavements: A Scientometric Review. Int. J. Pavement Res. Technol. 2022, 15, 221–232. [Google Scholar] [CrossRef]
- ASTM C 131-06; Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. ASTM International: West Conshohocken, PA, USA, 2006.
- ASTM D4791-19; Standard Test Method for Flat Particles, Elongated Particles, or Flat-and-Elongated Particles in Coarse Aggregate. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM C 127-24; Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. ASTM International: West Conshohocken, PA, USA, 2024.
- Little, D.N.; Epps, J.A. The Benefits of Hydrated Lime in Hot Mix Asphalt; National Lime Association: Arlington, VA, USA, 2001. [Google Scholar]
Material | Properties |
---|---|
Asphalt Binder | Egyptian asphalt binder is sourced from the Alexandria Oil Company in Alexandria. Penetration Grade 60/70, with penetration depth of 6.5 mm at 25 °C. Softening point temperature of 51 °C. Rotational viscosity of 0.797 Pa.s at 135 °C, and performance grade of PG 64-22. |
LDPE | Shredded LDPE from second-grade plastic bags of particle size passing sieve #50 and retained on sieve #100. The material has a density of 0.93 g/cm3, a melting point of 115 °C, a thickness of 0.024 mm, and a tensile strength of 10.2 MPa. |
CR | Ground CR with particle size passing sieve #50 and retained on sieve #100. The material has a density of 1.15 g/cm, a thickness of 0.5 mm, and a tensile strength of 8 MPa. |
Aggregates | Limestone coarse aggregates were obtained from a local limestone quarry in Egypt. The Bulk Specific Gravity of coarse aggregates is 2.439. The fine aggregates were obtained by crushing larger aggregates; no natural sand was used. Fine aggregates’ Bulk Specific Gravity is 2.535 (ASTM C128-22 [63]). Powder mineral filler used passes sieve #200. |
Binder | Performance Grade | Apparent Viscosity in cP @ 135 °C |
---|---|---|
Virgin Asphalt | 64–22 | 796.7 |
CR-Modified Asphalt | 64–12 | 315 |
LDPE-Modified Asphalt | 70–18 | 650 |
CR + LDPE-Modified Asphalt | 76–22 | 2361 |
Mix Type | Virgin Asphalt Mix (Control Mix) | CR-Modified Asphalt Mix | LDPE-Modified Asphalt Mix | CR+LDPE-Modified Asphalt Mix | ||||
---|---|---|---|---|---|---|---|---|
Layer Type | TB | WS | TB | WS | TB | WS | TB | WS |
OAC, % | 3.2 | 5 | 3.4 | 4.9 | 3.5 | 5.5 | 4.5 | 5 |
VMA % (<13%) | 10.4 | 11.7 | 10.5 | 13 | 11 | 13 | 10.6 | 12 |
VFA % (65–75) | 65 | 70 | 65 | 75 | 65 | 75 | 70 | 70 |
Gmm @Ni % (<=89) | 88 | 89 | 88.4 | 87 | 88.8 | 87 | 88.5 | 88 |
Gmm @Nm % (<=98) | 97.2 | 97.4 | 96.9 | 97.3 | 97 | 97 | 97.4 | 97.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saudy, M.; Guirguis, M.; Saeed, A.; Elshenawy, A.; Elkaramany, F.; Dawoud, N.; Darwish, M.; AbouZeid, M. Crumb Rubber (CR) and Low-Density Polyethylene (LDPE)-Modified Asphalt Pavement Assessment: A Mechanical, Environmental, and Life Cycle Cost Analysis Study. Sustainability 2025, 17, 5785. https://doi.org/10.3390/su17135785
Saudy M, Guirguis M, Saeed A, Elshenawy A, Elkaramany F, Dawoud N, Darwish M, AbouZeid M. Crumb Rubber (CR) and Low-Density Polyethylene (LDPE)-Modified Asphalt Pavement Assessment: A Mechanical, Environmental, and Life Cycle Cost Analysis Study. Sustainability. 2025; 17(13):5785. https://doi.org/10.3390/su17135785
Chicago/Turabian StyleSaudy, Maram, Minas Guirguis, Ayman Saeed, Abdallah Elshenawy, Farida Elkaramany, Nadeen Dawoud, Mohamed Darwish, and Mohamed AbouZeid. 2025. "Crumb Rubber (CR) and Low-Density Polyethylene (LDPE)-Modified Asphalt Pavement Assessment: A Mechanical, Environmental, and Life Cycle Cost Analysis Study" Sustainability 17, no. 13: 5785. https://doi.org/10.3390/su17135785
APA StyleSaudy, M., Guirguis, M., Saeed, A., Elshenawy, A., Elkaramany, F., Dawoud, N., Darwish, M., & AbouZeid, M. (2025). Crumb Rubber (CR) and Low-Density Polyethylene (LDPE)-Modified Asphalt Pavement Assessment: A Mechanical, Environmental, and Life Cycle Cost Analysis Study. Sustainability, 17(13), 5785. https://doi.org/10.3390/su17135785