Measurement and Convergence Analysis of the Green Total Factor Productivity of Citrus in China
Abstract
1. Introduction
2. Literature Review
2.1. Studies on Green Total Factor Productivity in Agriculture
2.1.1. Indicator System Construction for Agricultural Green Total Factor Productivity
2.1.2. Methodological Approaches for Agricultural Green TFP Measurement
2.1.3. Factors Influencing Green Total Factor Productivity in Agriculture
2.2. Studies on the Efficiency of Citrus Production
2.2.1. Studies on Citrus Production Efficiency from the Perspective of Traditional Input Factors
2.2.2. Studies on Citrus Production Efficiency from the Perspective of Ecosystem Services
2.3. Summary
3. Research Methods
3.1. Super-Efficiency EBM Model
3.2. Global Malmquist–Luenberger Index
3.3. Convergence Test
4. Indicator Selection and Data Processing
4.1. Selection and Processing of Input Indicators
- (1)
- Labor input costs were quantified as the total expenditure per hectare, incorporating both implicit and explicit labor components: the opportunity cost of household labor (imputed at prevailing agricultural wage rates), and market-rate expenditures for hired labor;
- (2)
- Land cost: land cost per hectare is used as a measure, including the rent of transferred land and the discounted rent of self-camping;
- (3)
- Material and service costs: using material and service costs per mu as a measure, including direct agricultural inputs such as fertilizers, agricultural machinery, and irrigation, as well as indirect inputs such as depreciation and management fees.
4.2. Selection and Processing of Output Indicators
4.2.1. Desired Outputs
4.2.2. Undesired Outputs
5. Empirical Results and Analysis
5.1. Analysis of Technical Efficiency of Citrus Environment Based on Static Perspective
5.1.1. Overall Analysis
Period | Without Considering the Undesired Output | Consider the Undesired Output | ||||
---|---|---|---|---|---|---|
TE | PTE | SE | GTE | GPTE | GSE | |
2008 | 0.952 | 1.012 | 0.943 | 0.943 | 1.041 | 0.906 |
2009 | 0.972 | 1.001 | 0.972 | 0.960 | 0.995 | 0.962 |
2010 | 0.991 | 1.033 | 0.959 | 0.952 | 1.022 | 0.932 |
2011 | 0.990 | 1.054 | 0.937 | 0.975 | 1.054 | 0.923 |
2012 | 0.947 | 1.090 | 0.863 | 0.945 | 1.086 | 0.867 |
2013 | 1.031 | 1.096 | 0.947 | 1.006 | 1.120 | 0.912 |
2014 | 1.017 | 1.065 | 0.951 | 1.015 | 1.089 | 0.936 |
2015 | 0.966 | 1.048 | 0.921 | 1.042 | 1.105 | 0.946 |
2016 | 1.069 | 1.134 | 0.943 | 1.033 | 1.124 | 0.921 |
2017 | 1.003 | 1.094 | 0.912 | 1.013 | 1.096 | 0.926 |
2018 | 1.013 | 1.075 | 0.940 | 1.030 | 1.098 | 0.943 |
2019 | 0.932 | 1.078 | 0.859 | 1.009 | 1.084 | 0.933 |
2020 | 1.017 | 1.097 | 0.923 | 1.052 | 1.097 | 0.962 |
2021 | 0.990 | 1.056 | 0.937 | 0.978 | 1.050 | 0.935 |
Average | 0.992 | 1.067 | 0.929 | 0.997 | 1.076 | 0.929 |
5.1.2. Analysis of Regional Differences
5.2. Analysis of Citrus Green Total Factor Productivity from a Dynamic Perspective
5.2.1. Overall Analysis
5.2.2. Analysis of Regional Differences
5.3. Convergence Analysis
5.3.1. σ-Test and Result Analysis
5.3.2. β-Test and Result Analysis
- (1)
- Absolute β-convergence
- (2)
- Conditional β-Convergence
5.3.3. Comprehensive Discussion
6. Discussion
6.1. International Comparative Insights
6.2. Main Findings and Limitations
7. Conclusions and Suggestion
7.1. Research Conclusions
7.2. Suggestion
7.2.1. Strengthen Green-Technology Innovation to Foster “Efficiency-Plus-Technology” Synergy
7.2.2. Design Differentiated Regional Pathways and Promote Interregional Coordination
7.2.3. Institutionalize Long-Term Green-Development Safeguards
7.2.4. Deepen International Cooperation to Enhance Global Competitiveness
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GTFP | Green Total Factor Productivity |
EBM | Epsilon-Based Measure |
GML | Global Malmquist–Luenberger Index |
DEA | Data Envelopment Analysis |
SFA | Stochastic Frontier Analysis |
ML | Malmquist Index |
TFP | Total Factor Productivity |
TE | Technical Efficiency |
PTE | Pure Technical Efficiency |
SE | Scale Efficiency |
GTE | Green Technical Efficiency |
GPTE | Green Pure Technical Efficiency |
GSE | Green Scale Efficiency |
GEC | Green Efficiency Change |
GTC | Green Technical Change |
TC | Technical Change |
EC | Efficiency Change |
DDF | Directional Distance Function |
SBM | Slacks-Based Measure |
ENSO | El Niño–Southern Oscillation |
IPCC | Intergovernmental Panel on Climate Change |
RCEP | Regional Comprehensive Economic Partnership |
MOA | Ministry of Agriculture |
DRC | Development and Reform Commission |
FB | Forestry Bureau |
ADPZs | Advantageous Districts of Characteristic Agricultural Products |
Appendix A
Area | Variable | Skewness | Kurtosis | w | D’Agostino | Shapiro–Wilk |
---|---|---|---|---|---|---|
National | 0.3781 (0.5051) | 0.4549 (0.5051) | 0.98485 (0.3374) | 0.5051 | 0.33747 | |
0.2681 (0.2001) | 0.1680 (0.2001) | 0.98120 (0.18473) | 0.2001 | 0.18473 | ||
Yangtze river Region | 0.6118 (0.3136) | 0.1640 (0.3116) | 0.97459 (0.37807) | 0.3136 | 0.37807 | |
0.4803 (0.6380) | 0.5446 (0.6380) | 0.98818 (0.90614) | 0.638 | 0.90614 | ||
Zhejiang–Fujian | 0.9719 (0.01105) | 0.0009 (0.01105) | 0.90175 (0.02345) | 0.01105 | 0.02345 | |
Hilly Region | 0.2441 (0.1433) | 0.1350 (0.1433) | 0.96217 (0.48364) | 0.1433 | 0.48364 | |
Guangdong–Guangxi Hilly Region | 0.9501 (0.1101) | 0.0387 (0.1101) | 0.94502 (0.21078) | 0.1101 | 0.21078 | |
0.6358 (0.8815) | 0.8674 (0.8815) | 0.96794 (0.61647) | 0.8815 | 0.61645 |
References
- Zhang, B.L. Input and Output Efficiency of China’s Citrus Industry: The Measurement, Trends and Improvement. Guangdong Agric. Sci. 2014, 41, 219–223. [Google Scholar]
- Wang, Z.B.; Tang, R.L. Empirical Analysis of Technical Efficiency of Citrus Production in China. Explor. Econ. Issues 2011, 12, 185–190. [Google Scholar]
- Yang, M.; Long, Q.; Li, W.; Wang, Z.; He, X.; Wang, J.; Wang, X.; Xiong, H.; Guo, C.; Zhang, G.; et al. Mapping the Environmental Cost of a Typical Citrus-Producing County in China: Hotspot and Optimization. Sustainability 2020, 12, 1827. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, A.; Liu, M.; Li, H. Impacts of Citrus Orchard Expansion on Ecosystem Services and Landscape Patterns—A Case Study of Xinfeng County, Jiangxi Province. Acta Ecol. Sin. 2022, 42, 7845–7857. [Google Scholar]
- Pei, Y.; Wu, Y.; Zhang, W.; Jiang, Y.B.; Sun, F.L.; Chen, Y.F. Effects of Chemical Fertilizer Reduction Combined with Organic Substitution on Citrus Fruits, Leaves, and Orchard Soil. Chin. J. Soil. Fertil. 2021, 4, 88–95. [Google Scholar]
- He, Y.; Chen, W. Evaluation of Sustainable Development Policy of Sichuan Citrus Industry in China Based on DEA–Malmquist Index and DID Model. Sustainability 2023, 15, 4260. [Google Scholar] [CrossRef]
- Chen, Y.; Fu, W.; Wang, J. Evaluation and Influencing Factors of China’s Agricultural Productivity from the Perspective of Environmental Constraints. Sustainability 2022, 14, 2807. [Google Scholar] [CrossRef]
- Zhao, M.X.; Zhang, J.Y. Temporal and Spatial Characteristics and Spatial Mismatch of Green Total Factor Productivity of Vegetables in China. Trans. Chin. Soc. Agric. Eng. 2024, 40, 344–355. [Google Scholar]
- Zhang, S.X.; Wang, H.; Xu, R.N. Analysis of the Relationship among Scientific and Technological Progress, Green Total Factor Productivity and Agricultural Carbon Emissions—Based on Panel Data of 26 Cities in Pan-Yangtze River Delta. Sci. Technol. Manag. Res. 2021, 41, 211–218. [Google Scholar]
- Chen, Y.J.; Wang, Y.Y. The Impact of Agricultural Products Import and Export Trade on China’s Agricultural Green Total Factor Productivity. J. Commer. Econ. 2022, 9, 141–144. [Google Scholar]
- Zhang, A.X.; Deng, R.R. The Impact of Digital Inclusive Finance on Agricultural Green Total Factor Productivity and Its Spatial Spillover Effect. Wuhan Financ. 2022, 1, 65–74. [Google Scholar]
- Ge, P.F.; Wang, S.J.; Huang, X.L. Measurement for China’s Agricultural Green TFP. China Popul. Resour. Environ. 2018, 28, 66–74. [Google Scholar]
- Hong, M.; Tian, M.; Wang, J. Digital Inclusive Finance, Agricultural Industrial Structure Optimization and Agricultural Green Total Factor Productivity. Sustainability 2022, 14, 11450. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, H.; Wu, G. Agricultural Green Total Factor Productivity under the Distortion of the Factor Market in China. Sustainability 2022, 14, 9309. [Google Scholar] [CrossRef]
- Yang, L.; Li, H.F. Agricultural Total Factor Productivity and Influencing Factors in Guangdong Province: Based on Triple Perspectives of Carbon Source, Carbon Sink and Surface Pollution. J. South China Agric. Univ. 2024, 45, 975–981. [Google Scholar]
- Yao, W.; Zhu, Y.; Liu, S.; Zhang, Y. Can Agricultural Socialized Services Promote Agricultural Green Total Factor Productivity? From the Perspective of Production Factor Allocation. Sustainability 2024, 16, 8425. [Google Scholar] [CrossRef]
- Li, C.; Lu, Y.Q.; Meng, Y. The Impact of Environmental Regulation on Green Total Factor Productivity: Evidence from China’s Provincial Level. Process Saf. Environ. Prot. 2025, 198, 107106. [Google Scholar]
- Wang, Z.; Zhu, J.; Liu, X.; Ge, D.; Liu, B. Research on Spatial-Temporal Characteristics and Affecting Factors of Agricultural Green Total Factor Productivity in Jiangxi Province. Sustainability 2023, 15, 9073. [Google Scholar] [CrossRef]
- Wang, L.; Tang, J.; Tang, M.; Su, M.; Guo, L. Scale of Operation, Financial Support, and Agricultural Green Total Factor Productivity: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 9043. [Google Scholar] [CrossRef]
- Aigner, D.; Lovell, C.K.; Schmidt, P. Formulation and Estimation of Stochastic Frontier Production Function Models. J. Econom. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Meeusen, W.; Julien, V. Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error. Int. Econ. Rev. 1977, 18, 435–444. [Google Scholar] [CrossRef]
- Chung, Y.H.; Färe, R.; Grosskopf, S. Productivity and Undesirable Outputs: A Directional Distance Function Approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef]
- Tone, K.; Tsutsui, M. An Epsilon-Based Measure of Efficiency in DEA: A Third Pole of Technical Efficiency. Eur. J. Oper. Res. 2010, 207, 1554–1563. [Google Scholar] [CrossRef]
- Andersen, P.; Petersen, N.C. A Procedure for Ranking Efficient Units in Data Envelopment Analysis. Manag. Sci. 1993, 39, 1261–1265. [Google Scholar] [CrossRef]
- Peng, X.H.; Zhang, J.F.; Song, P.F. Analysis of Regional Differences and Temporal-Spatial Evolution of Inclusive Green Efficiency in Chinese Cities. Inq. Econ. Issues 2025, 2, 124–143. [Google Scholar]
- Myeki, L.W.; Matthews, N.; Bahta, Y.T. Decomposition of Green Agriculture Productivity for Policy in Africa: An Application of Global Malmquist–Leuenberger Index. Sustainability 2023, 15, 1645. [Google Scholar] [CrossRef]
- Oh, D.-H. A Global Malmquist-Leuenberger Productivity Index. J. Product. Anal. 2010, 34, 183–197. [Google Scholar] [CrossRef]
- Zhu, L.; Shi, R.; Mi, L.; Liu, P.; Wang, G. Spatial Distribution and Convergence of Agricultural Green Total Factor Productivity in China. Int. J. Environ. Res. Public Health 2022, 19, 8786. [Google Scholar] [CrossRef]
- Xu, Y.H.; Yin, Z.J. Measuring Green Total Factor Productivity in Chinese Agriculture Under Environmental Regulation. Stat. Decis. Mak. 2021, 18, 50–54. [Google Scholar]
- Jin, S.R.; Wang, P.P. Population Aging, Agricultural Land Transfer and Green Total Factor Productivity in Agriculture. Macroecon. Res. 2023, 1, 101–117. [Google Scholar]
- Deng, Y.J.; Liu, P. Impact of Rural Demography on Green Total Factor Productivity in Agriculture. Chin. Agric. Sci. 2024, 57, 4725–4745. [Google Scholar]
- Wang, Y.Q.; Xu, L.; Cao, L. Agricultural Mechanization and Green Agricultural Development under the “Dual Carbon” Goal–A Green Total Factor Productivity Perspective. J. Huazhong Agric. Univ. (Soc. Sci. Ed.) 2023, 6, 56–69. [Google Scholar]
- Han, H.B.; Yang, D.Y. Study on the Spatial Spillover Effect of Agricultural Industry Agglomeration on the Growth of Green Total Factor Productivity in Agriculture. Arid Zone Resour. Environ. 2023, 37, 29–37. [Google Scholar]
- Liu, S.; Zhang, H.Y.; Cai, W.J. Spatial Pattern and Dynamic Evolution of Agricultural Green Total Factor Productivity in the Yellow River Basin. J. Ecol. Rural Environ. 2022, 38, 1557–1566. [Google Scholar]
- Liu, Y.W.; Ou, Y.Y.; Cai, H.Y. Evaluation of China’s Agricultural Green TFP and Its Spatiotemporal Evolution Characteristics. Quant. Technol. Econ. 2021, 38, 39–56. [Google Scholar]
- Ji, C.J.; Xia, H.M. Study on the Impact of Agricultural Science and Technology Service on Agricultural Green Total Factor Productivity in China. J. China Agric. Resour. Reg. Plan. 2020, 41, 136–143. [Google Scholar]
- Wing, I.S.; De Cian, E.; Mistry, M.N. Global Vulnerability of Crop Yields to Climate Change. J. Environ. Econ. Manag. 2021, 106, 102405. [Google Scholar] [CrossRef]
- Shmelev, S.E.; Salnikov, V.; Turulina, G.; Polyakova, S.; Tazhibayeva, T.; Schnitzler, T.; Shmeleva, I.A. Climate Change and Food Security: The Impact of Some Key Variables on Wheat Yield in Kazakhstan. Sustainability 2021, 13, 8583. [Google Scholar] [CrossRef]
- Li, D.; Zeng, G.; Chen, C. Measuring the Total Factor Productivity of Citus in China and Studying Its Influence Factors the Empirical Analysis Based on the Malmquist-Tobit Method. J. Sichuan Agric. Univ. 2018, 36, 118–124. [Google Scholar]
- Xu, X.; Yang, J.X. Change Analysis of Citrus Total Factor Productivity in China. Acta Agric. Zhejiang Ensis. 2018, 30, 470–478. [Google Scholar]
- Fang, G.Z.; Qi, C.Q.; Lei, Q.Y. Calculation of Total Factor Productivity of Citrus in China and the Difference of Region—Based on the DEA-Malmquist Index Method. J. China Agric. Resour. Reg. Plan. 2019, 40, 29–34. [Google Scholar]
- Lin, C.T.; Wang, M.X.; Fan, S.S.; Su, B.C. Tangerines Production Efficiency and Its Spatio-Temporal Difference Based on Undesired Output. J. China Agric. Resour. Reg. Plan. 2020, 41, 76–83. [Google Scholar]
- Shmelev, S.E.; Agbleze, L.; Spangenberg, J.H. Multidimensional Ecosystem Mapping: Towards a More Comprehensive Spatial Assessment of Nature’s Contributions to People in France. Sustainability 2023, 15, 7557. [Google Scholar] [CrossRef]
- Díaz, S.; Settele, J.; Brondízio, E.S.; Ngo, H.T.; Guèze, M.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.A.; Butchart, S.H.M.; et al. (Eds.) Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2019; 56p. [Google Scholar]
- Keith, D.A.; Ferrer-Paris, J.R.; Nicholson, E.; Bishop, M.J.; Polidoro, B.A.; Ramirez-Llodra, E.; Tozer, M.G.; Nel, J.L.; Mac Nally, R.; Gregr, E.J.; et al. A Function-based Typology for Earth’s Ecosystems. Nature 2022, 610, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.C.; Zhou, J.H.; Wang, J.Q. Measurement of Green Total Factor Productivity and Regional Differences of Apple in China. J. China Agric. Resour. Reg. Plan. 2022, 43, 10–19. [Google Scholar]
- Dai, R.X.; Xu, S.W. Spatiotemporal Characteristics and Influencing Factors of the Green Total Factor Productivity of Wheat in China. Trans. Chin. Soc. Agric. Eng. 2022, 38, 304–314. [Google Scholar]
- Li, H.P.; Luo, L.; Zhang, X.; Zhang, J.B. Dynamic Change of Agricultural Energy Efficiency and Its Influencing Factors in China. China Popul. Resour. Environ. 2020, 30, 105–115. [Google Scholar] [CrossRef]
- Liu, H.J.; Guo, L.X.; Qiao, L.C.; Shi, Y. Spatial-Temporal Pattern and Dynamic Evolution of Logistics Efficiency in China. Quant. Technol. Econ. 2021, 38, 57–74. [Google Scholar]
- Bai, Z.M.; Zhang, X.C.; Li, C.X. The Impacts of Cross-Region Operation of Agricultural Machine Development on the Agricultural Green Total Factor Productivity: From the Perspective of the Spatial Spillover Effects. Res. Agric. Mod. 2024, 45, 443–454. [Google Scholar]
- Zhu, G.Q. Research on the Impact of Green Finance Development on Industrial Green Total Factor Productivity. Master’s Thesis, Northwest A&F University, Xianyang, China, 2023. [Google Scholar]
- Ma, B.; Zhou, R. Spatio-Temporal Pattern and Convergence Analysis of Science and Technology Innovation Efficiency in the Yangtze River Economic Belt. China Soft Sci. 2024, s1, 401–413. [Google Scholar]
- Wang, Z.L.; Li, T.; Luo, R. Measurement of Development Level, Regional Differences and Convergence Analysis of China’s Agricultural Digital Supply Chain Finance. J. Econ. Issues Explor. 2025, 6, 140–155. [Google Scholar]
- Xu, M.Z.; Li, J.X.; Liu, T.F.; Zhang, C.; Wang, H.C. Difference Evolution and Convergence of Environmental Governance Performance in Three Major River Basins of China. Econ. Geogr. 2023, 43, 1–12. [Google Scholar]
- Chen, X.J.; Zeng, J.W.; Jin, Y.; Yi, G.J. Analysis of the Technical Efficiency on Citrus Production-Empirical Study by Stochastic Frontier Production Function. Acta Agric. Zhejiang Ensis. 2011, 23, 1038–1043. [Google Scholar]
- Lin, C.T.; Wang, M.X.; Su, B.C. Análise Da Eficiência Da Produção De Citros E Da Variabilidade Interprovincial Na China Sob As Restrições Da Poluição De Fonte Difusa. Ciência Rural 2024, 54, e20230147. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, J.B. Regional Differentiation Research on Net Carbon Effect of Agricultural Production in China. J. Nat. Resour. 2013, 28, 1298–1309. [Google Scholar]
- Lin, Q.S. Research on Carbon Sequestration Potential and Ecological Service Value of Citrus Forest. Ph.D. Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, 2010. CLC Number: S181. [Google Scholar]
- Yu, H.X.; Pan, X.X.; Zhu, X.; Ye, Z.F.; Zhu, Z.H.; Liu, J.H. Detecting Water Content of Satsuma Mandarin Based on Transmission Spectroscopy. J. Huazhong Agric. Univ. 2021, 40, 86–92. [Google Scholar]
- Dai, F.; Huang, G.Y.; Hong, T.S. Research on Nondestructive Testing Method of Sugar Orange Quality Based on Spectroscopy Technology. In Chinese Society of Agricultural Engineering (CSAE), Proceedings of the 2011 Academic Annual Meeting of the Chinese Society of Agricultural Engineering, Chongqing, China, 22–24 October 2011; College of Engineering, South China Agricultural University: Guangzhou, China, 2011; pp. 1646–1652. [Google Scholar]
- Han, Z.Y.; Meng, Y.L.; Xu, J.; Wu, Y.; Zhou, Z.G. Temporal and Spatial Difference in Carbon Footprint of Regional Farmland Ecosystem—Taking Jiangsu Province as a Case. J. Agro-Environ. Sci. 2012, 31, 1034–1041. [Google Scholar]
- Ding, B.G.; Zhao, Y.; Deng, J.H. Calculation, Decoupling Effects and Driving Factors of Carbon Emission from Planting Industry in China. J. China Agric. Resour. Reg. Plan. 2022, 43, 1–11. [Google Scholar]
- Duan, H.P.; Zhang, Y.; Zhao, J.B.; Bian, X. Carbon Footprint Analysis of Farmland Ecosystem in China. J. Soil Water Conserv. 2011, 25, 203–208. [Google Scholar] [CrossRef]
- Li, B.; Wang, C.Y.; Zhang, J.B. Dynamic Evolution and Spatial Spillover Effects of China’s Agricultural Net Carbon Sink Efficiency. China Popul. Resour. Environ. 2019, 29, 68–76. [Google Scholar]
- Chen, Y.; Li, H.; Ke, Y.F.; Cheng, J. Experience and Enlightenment of Machine-friendly Transformation in Hilly and Mountainous Areas. Agric. Mach. Technol. Promot. 2020, 11, 15–18+23. [Google Scholar]
- Wang, D.; Guo, W.Y. Analysis of Climatic Factors Affecting Citrus Yield in Subtropical Monsoon Region. Agric. Meteorol. 1987, 1, 15–18. [Google Scholar]
- Han, Y.S.; Wang, K.; Qiu, P.H. Development Status and Prospect of Orchard Mechanization in Hilly Mountains of Guangdong. Grain Oil Feed. Technol. 2023, 1, 178–180. [Google Scholar]
- Weining, M.; Koo, W.W. Productivity Growth, Technological Progress, and Efficiency Change in Chinese Agriculture After Rural Economic Reforms: A DEA Approach. China Econ. Rev. 1997, 8, 157–174. [Google Scholar] [CrossRef]
- Huang, W.; Wang, X. The Impact of Technological Innovations on Agricultural Productivity and Environmental Sustainability in China. Sustainability 2024, 16, 8480. [Google Scholar] [CrossRef]
- Ji, Y.F.; He, Z.J.; Xu, T. High-Quality Development of Animal Husbandry: Level Measurement, Regional Differences and Convergence Analysis. J. China Agric. Resour. Reg. Plan. 2024, 45, 190–203. [Google Scholar]
- Ministry of Agriculture Citrus Study Group to Brazil. Analysis of Success Factors in Brazil’s Citrus Industry. World Agric. 2003, 6, 12–15. [Google Scholar]
- Han, B.; Chen, T.; Liu, H.; Cui, Z.J.; Liu, G.Y. Citrus Orchard Based on Agricultural IoT. Agric. Dev. Equip. 2021, 2, 100–101. [Google Scholar]
- Tong, T. United States: Water Disputes Affect Citrus Production in Texas. China Fruit News 2024, 41, 46–47. [Google Scholar]
- Yan, Z.; Luo, X. Key points of green pest control and cultivation management techniques for citrus. Agric. Sci.-Technol. Inf. 2022, 18, 52–55. [Google Scholar]
- Lin, Z.; Chen, Q.; Deng, L.; Li, X.; He, P.; Liao, G.T.; Fei, J.B. Spatial shift of citrus production in China and its driving factors. Trop. Geogr. 2021, 41, 374–387. [Google Scholar]
- Chen, F.; Wu, F.; Pan, X.; Li, Z.Q. Discussion on green citrus cultivation and integrated management of citrus Huanglongbing. Agric. Dev. Equip. 2022, 4, 192–194. [Google Scholar]
- Zhao, H. Current situation, problems and countermeasures of China’s citrus export. Pract. Foreign Econ. Relat. Trade 2022, 3, 48–51. [Google Scholar]
Distance Function | Traditional DEA/Malmquist Index | Super-EBM + GML Index |
---|---|---|
Distance function | Purely radial adjustment → upward bias in efficiency scores | Radial + non-radial slacks → unbiased “true” efficiency |
Undesirable outputs | Ignored → environmental costs omitted | Explicitly incorporates CO2 emissions and non-point-source pollution → green efficiency |
Frontier | Contemporaneous frontier → intertemporal distortion | Global frontier → stable intertemporal comparison |
Efficiency > 1 | Cannot discriminate → frontier crowding | Super-efficiency ranking → further differentiation of leading provinces |
Carbon Sources | Carbon Emission Factor | Reference Source |
---|---|---|
Diesel | 0.59 kg/kg | IPCC2013 |
Fertilizers | 0.89 kg/kg | Oak Ridge National Laboratory in the United States |
Agrochemical | 4.93 kg/kg | Oak Ridge National Laboratory in the United States |
Agricultural film | 5.18 kg/kg | Institute of Agricultural Resources and Ecological Environment, Nanjing Agricultural University |
Irrigated | 266.48 kg/hm2 | Duan et al. [63] |
plow | 312.60 kg/km2 | Li et al. [64] |
Indicator Name | Maximum | Minimum | Average | Standard Deviation | Unit |
---|---|---|---|---|---|
labor cost | 5.65 | 0.66 | 1.49 | 2 | Ten thousand yuan (CNY) per hectare |
land cost | 0.41 | 0.06 | 0.21 | 0.09 | Ten thousand yuan (CNY) per hectare |
material and service costs | 3.12 | 0.39 | 1.28 | 0.71 | Ten thousand yuan (CNY) per hectare |
surface pollution | 29.27 | 17.67 | 22.14 | 2.99 | Kilogram per hectare |
carbon footprint | 1.68 | 0.49 | 1.05 | 0.33 | t per hectare |
carbon credits | 30.39 | 4.97 | 14.83 | 3.66 | t per hectare |
value of citrus pro-duction | 13.87 | 1.52 | 5.37 | 2.80 | Ten thousand yuan (CNY) per hectare |
Region | Without Considering the Undesired Output | Consider the Undesired Output | ||||
---|---|---|---|---|---|---|
TE | PTE | SE | GTE | GPTE | GSE | |
Chongqing | 0.974 | 1.063 | 0.915 | 0.942 | 1.049 | 0.987 |
Hubei | 0.873 | 1.006 | 0.869 | 0.968 | 1.074 | 0.904 |
Hunan | 1.129 | 1.185 | 0.955 | 1.074 | 1.251 | 0.864 |
Jiangxi | 0.908 | 1 | 0.908 | 0.95 | 1.024 | 0.928 |
Yangtze River Region | 0.971 | 1.064 | 0.912 | 0.984 | 1.1 | 0.921 |
Zhejiang | 1.068 | 1.111 | 0.961 | 1.035 | 1.091 | 0.95 |
Fujian | 0.968 | 1.012 | 0.956 | 0.985 | 1.035 | 0.951 |
Zhejiang–Fujian Hilly Region | 1.018 | 1.062 | 0.956 | 1.01 | 1.063 | 0.951 |
Guangdong | 1.093 | 1.155 | 0.946 | 1.073 | 1.087 | 0.988 |
Guangxi | 0.925 | 1.003 | 0.922 | 0.946 | 0.996 | 0.949 |
Guangdong–Guangxi Hilly Region | 1.009 | 1.079 | 0.934 | 1.009 | 1.042 | 0.969 |
National Region | 0.992 | 1.067 | 0.929 | 0.997 | 1.076 | 0.940 |
Period | Without Considering the Undesired Output | Consider The Undesired Output | ||||
---|---|---|---|---|---|---|
ML | TC | EC | GML | GTC | GEC | |
2008–2009 | 0.939 | 0.885 | 1.057 | 0.917 | 0.885 | 1.043 |
2009–2010 | 0.980 | 0.901 | 1.091 | 0.956 | 0.926 | 1.050 |
2010–2011 | 1.123 | 1.018 | 1.105 | 1.081 | 1.013 | 1.089 |
2011–2012 | 0.965 | 0.917 | 1.063 | 0.942 | 0.907 | 1.062 |
2012–2013 | 1.168 | 1.000 | 1.181 | 1.106 | 0.980 | 1.149 |
2013–2014 | 1.160 | 0.990 | 1.180 | 1.120 | 0.977 | 1.162 |
2014–2015 | 1.038 | 0.932 | 1.122 | 1.060 | 0.897 | 1.203 |
2015–2016 | 0.977 | 0.775 | 1.299 | 0.984 | 0.831 | 1.194 |
2016–2017 | 1.040 | 0.892 | 1.224 | 1.037 | 0.894 | 1.177 |
2017–2018 | 1.082 | 0.907 | 1.256 | 1.097 | 0.923 | 1.212 |
2018–2019 | 1.032 | 0.941 | 1.154 | 1.057 | 0.906 | 1.189 |
2019–2020 | 1.021 | 0.843 | 1.278 | 1.048 | 0.856 | 1.249 |
2020–2021 | 1.011 | 0.859 | 1.258 | 1.038 | 0.913 | 1.160 |
Average | 1.041 | 0.912 | 1.174 | 1.034 | 0.916 | 1.149 |
Parameters | National Region | The Yangtze River Region | Zhejiang–Fujian Hilly Region | Guangdong–Guangxi Hilly Region |
---|---|---|---|---|
β1 | −0.167 *** (0.063) | −0.307 *** (0.100) | −0.065 (0.093) | −0.064 (0.115) |
σ1 | −0.013 (0.017) | −0.028 (0.021) | 0.013 (0.032) | −0.037 (0.037) |
White test | 0.67 | 1.20 | 3.99 | 2.12 |
Reset test | 0.72 | 0.77 | 0.19 | 0.53 |
R2 | 0.431 | 0.565 | 0.437 | 0.5748 |
F statistic | 7.060 *** | 9.350 *** | 0.490 | 0.310 |
Parameters | National Region | The Yangtze River Region | Zhejiang–Fujian Hilly Region | Guangdong–Guangxi Hilly Region |
---|---|---|---|---|
β2 | −0.177 *** (0.066) | −0.306 *** (0.104) | −0.305 (0.214) | −0.633 * (0.318) |
σ2 | 0.078 (0.147) | 0.940 (0.636) | 7.361 (3.486) | 0.833 (0.464) |
White test | 12.01 | 6.01 | 13.57 | 10.43 |
Reset test | 4.37 | 0.47 | 0.88 | 1.51 |
R2 | 0.436 | 0.251 | 0.370 | 0.310 |
F statistic | 2.460 * | 3.690 ** | 1.760 | 1.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, B.; Li, Z.; Zeng, Q. Measurement and Convergence Analysis of the Green Total Factor Productivity of Citrus in China. Sustainability 2025, 17, 7291. https://doi.org/10.3390/su17167291
Fan B, Li Z, Zeng Q. Measurement and Convergence Analysis of the Green Total Factor Productivity of Citrus in China. Sustainability. 2025; 17(16):7291. https://doi.org/10.3390/su17167291
Chicago/Turabian StyleFan, Bin, Ziyue Li, and Qingmei Zeng. 2025. "Measurement and Convergence Analysis of the Green Total Factor Productivity of Citrus in China" Sustainability 17, no. 16: 7291. https://doi.org/10.3390/su17167291
APA StyleFan, B., Li, Z., & Zeng, Q. (2025). Measurement and Convergence Analysis of the Green Total Factor Productivity of Citrus in China. Sustainability, 17(16), 7291. https://doi.org/10.3390/su17167291