The Field Cultivation Index, a New Method for Assessing Agricultural Practices’ Sustainability and Moving Towards Regenerative Agriculture—Application to Cosmetic Supply Chains
Abstract
1. Introduction
2. Materials and Methods
2.1. Constitution of Agricultural Practices List
2.1.1. Global Impact on the Environment
2.1.2. Specific Impact on the 5 Environmental Outcomes
2.2. Agricultural Practices Assessment and Scoring
2.3. Assignment of the 31 Agricultural Practices Scores to the 5 Environmental Outcomes
2.4. Environmental Outcomes Index Calculation
2.5. Field Cultivation Index Calculation
2.6. Practices Improvement Recommendations
2.7. Methodology Adaptation for Annual and Perennial Crops
3. Results
3.1. Polyvalence and Discriminating Character of FCI
3.2. FCI Is a Simple and Easy-to-Use Tool
3.3. Use Cases
3.3.1. Production Systems Comparison and Regeneration Process Initiation
3.3.2. Production Systems Comparison in One Cooperative
3.3.3. Comparison of Production Systems for a Crop Sourced from Two Different Cooperatives
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
FCI | Field Cultivation Index |
References
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; et al. Réchauffement planétaire de 1,5 °C, Résumé à l’intention des décideurs, résumé technique et foire aux questions. In Groupe D’experts Intergouvernemental sur L’évolution du Climat; GIEC, Ed.; Organisation Météorologique Mondiale: Geneva, Switzerland, 2019; ISBN 92-9169-253-8. [Google Scholar]
- Bom, S.; Jorge, J.; Ribeiro, H.M.; Marto, J. A Step Forward on Sustainability in the Cosmetics Industry: A Review. J. Clean. Prod. 2019, 225, 270–290. [Google Scholar] [CrossRef]
- Jaffee, S.; Siegel, P.; Andrews, C. Rapid Agricultural Supply Chain Risk Assessment: A Conceptual Framework. In Agriculture and Rural Development Discussion Paper; The World Bank: Washington, DC, USA, 2010; Volume 47, pp. 1–64. [Google Scholar]
- Mondello, A.; Salomone, R.; Mondello, G. Exploring Circular Economy in the Cosmetic Industry: Insights from a Literature Review. Environ. Impact Assess. Rev. 2024, 105, 107443. [Google Scholar] [CrossRef]
- L’Oréal. L’Oréal for the Future, Our Sustainability Commitments for 2030; L’Oréal: Paris, France, 2020; p. 17. [Google Scholar]
- OCDE; Organisation des Nations Unies pour L’alimentation et L’agriculture. Guide OCDE-FAO Pour des Filières Agricoles Responsables; OECD: Paris, France, 2016; ISBN 978-92-64-26402-1. [Google Scholar]
- Vermeire, M.-L.; Belmin, R. Les Sept Familles de L’agriculture Durable. Available online: http://theconversation.com/les-sept-familles-de-lagriculture-durable-227407 (accessed on 2 June 2024).
- Steffen, W.; Broadgate, W.; Deutsch, L.; Gaffney, O.; Ludwig, C. The Trajectory of the Anthropocene: The Great Acceleration. Anthr. Rev. 2015, 2, 81–98. [Google Scholar] [CrossRef]
- Husson, O.; Sarthou, J.-P.; Duru, M. Référentiels et nouveaux indicateurs pour fonder une agriculture régénératrice. Agron. Environ. Soc. 2023, 13, 1–18. [Google Scholar] [CrossRef]
- Duru, M.; Sarthou, J.-P.; Therond, O. L’agriculture régénératrice: Summum de l’agroécologie ou greenwashing? Cah. Agric. 2022, 31, 17. [Google Scholar] [CrossRef]
- Gordon, E.; Davila, F.; Riedy, C. Regenerative Agriculture: A Potentially Transformative Storyline Shared by Nine Discourses. Sustain. Sci. 2023, 18, 1833–1849. [Google Scholar] [CrossRef]
- Tittonell, P.; El Mujtar, V.; Felix, G.; Kebede, Y.; Laborda, L.; Luján Soto, R.; De Vente, J. Regenerative Agriculture—Agroecology without Politics? Front. Sustain. Food Syst. 2022, 6, 844261. [Google Scholar] [CrossRef]
- FAIRR Initiative. The Four Labours of Regenerative Agriculture. Paving the Way towards Meaningful Commitments; FAIRR Initiative: London, UK, 2023; p. 40. [Google Scholar]
- Kelley, S.; Jensen, B.; Shepard, S.; Denes, H.; Kniestedt, Z. Regenerative Agriculture Landscape Analysis; Textile Exchange Burbank: California, CA, USA, 2022. [Google Scholar]
- Lal, R.; Follett, R.F.; Stewart, B.A.; Kimble, J.M. Soil Carbon Sequestration to Mitigate Climate Change and Advance Food Security. Soil Sci. 2007, 172, 943–956. [Google Scholar] [CrossRef]
- Mougin, C.; Caquet, T. Plan Écophyto. Pesticides et biodiversité: Premiers enseignements. Sci. Pseudo-Sci. Hors-Série 2016, 316, 81–85. Available online: https://www.afis.org/IMG/pdf/sps315-316-hs_pesticides.pdf#page=83 (accessed on 2 June 2024).
- Coteur, I.; Marchand, F.; Debruyne, L.; Dalemans, F.; Lauwers, L. Participatory Tuning Agricultural Sustainability Assessment Tools to Flemish Farmer and Sector Needs. Environ. Impact Assess. Rev. 2018, 69, 70–81. [Google Scholar] [CrossRef]
- Trabelsi, M. Comment mesurer la performance agroécologique d’une exploitation agricole pour l’accompagner dans son processus de transition? Ph.D. Thesis, Université Paul Valéry-Montpellier III, Montpellier, France, 2017. [Google Scholar]
- Girardin, P.; Bockstaller, C.; Van der Werf, H. Assessment of Potential Impacts of Agricultural Practices on the Environment: The AGRO* ECO Method. Environ. Impact Assess. Rev. 2000, 20, 227–239. [Google Scholar] [CrossRef]
- Binder, C.R.; Feola, G.; Steinberger, J.K. Considering the Normative, Systemic and Procedural Dimensions in Indicator-Based Sustainability Assessments in Agriculture. Environ. Impact Assess. Rev. 2010, 30, 71–81. [Google Scholar] [CrossRef]
- Jayasiri, M.M.J.G.C.N.; Dayawansa, N.D.K.; Ingold, K.; Yadav, S. Are Rice Systems Sustainable in Sri Lanka?—A Case of Deduru Oya Reservoir Irrigation Scheme. Environ. Impact Assess. Rev. 2024, 106, 107503. [Google Scholar] [CrossRef]
- Soulé, E.; Michonneau, P.; Michel, N.; Bockstaller, C. Environmental Sustainability Assessment in Agricultural Systems: A Conceptual and Methodological Review. J. Clean. Prod. 2021, 325, 129291. [Google Scholar] [CrossRef]
- L’Oréal 4—Rapport de Durabilité 2024. In L’Oréal—Document D’enregistrement Universel 2024; L’Oréal: Paris, France, 2024; p. 98.
- Zahm, F.; Girard, S.; Alonso Ugaglia, A.; Barbier, J.-M.; Boureau, H.; Carayon, D.; Cohen, S.; Del’homme, B.; Gafsi, M.; Gasselin, P.; et al. La Méthode IDEA4—Indicateurs de Durabilité des Exploitations Agricoles. Principes et Guide D’utilisation; Educagri: Dijon, France, 2023; ISBN 979-10-275-0544-9. [Google Scholar]
- Mottet, A.; Bicksler, A.; Lucantoni, D.; De Rosa, F.; Scherf, B.; Scopel, E.; López-Ridaura, S.; Gemmil-Herren, B.; Bezner Kerr, R.; Sourisseau, J.-M. Assessing Transitions to Sustainable Agricultural and Food Systems: A Tool for Agroecology Performance Evaluation (TAPE). Front. Sustain. Food Syst. 2020, 4, 579154. [Google Scholar] [CrossRef]
- Magnard, A. Mesurez le “score agroécologique” de Votre Ferme. Pleinchamp. Available online: https://www.pleinchamp.com/actualite/mesurez-le-score-agroecologique-de-votre-ferme (accessed on 29 February 2024).
- Générations Futures. HVE: Quelles Différences Avec L’agriculture Bio? Générations Futures: Paris, France, 2023; p. 26. [Google Scholar]
- ACTA DiaAgroEco, Votre Outil de Diagnostic Agro-Ecologique. Diagnostic de L’engagement D’une Exploitation Dans une Démarche Agro-Ecologique. Available online: https://diagagroeco.org/ (accessed on 29 February 2024).
- Regenerative Organic Alliance Framework for Regenerative Organic Certified. Version 4.1. 2023. Available online: https://regenorganic.org/wp-content/uploads/2023/03/Regenerative-Organic-Certified-Framework.pdf (accessed on 2 June 2024).
- Regenagri. Regenagri Standard Criteria. Version 2.1. 2022. Available online: https://regenagri.org/wp-content/uploads/2022/02/regenagri-standard-criteria-v2.1.pdf (accessed on 2 June 2024).
- Danone. Danone Regenerative Agriculture Scorecard; Danone: Paris, France, 2021; p. 25. [Google Scholar]
- Viaux, P. Systèmes Intégrés: Une Troisième Voie En Grande Culture, 2nd ed.; Agri Production; La France Agricole: Paris, France, 2013. [Google Scholar]
- Karlen, D.L.; Varvel, G.E.; Bullock, D.G.; Cruse, R.M. Crop Rotations for the 21st Century. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 1994; Volume 53, pp. 1–45. ISBN 978-0-12-000753-0. [Google Scholar]
- Meynard, J.-M.; Messéan, A.; Charlier, A.; Charrier, F.; Fares, M.; Le Bail, M.; Magrini, M.-B. Freins et Leviers à la Diversification des Cultures. Étude au Niveau des Exploitations Agricoles et des Filières; Auto-saisine: Synthèse du rapport d’étude; INRA: Paris, France, 2013; p. 52. [Google Scholar]
- Bennett, A.J.; Bending, G.D.; Chandler, D.; Hilton, S.; Mills, P. Meeting the Demand for Crop Production: The Challenge of Yield Decline in Crops Grown in Short Rotations. Biol. Rev. 2012, 87, 52–71. [Google Scholar] [CrossRef] [PubMed]
- Balue, M. Court-Noué Attention au Repos du sol. 2013. AREDVI, IFV, Chambre D’agriculture. Available online: https://www.vignevin.com/wp-content/uploads/2019/01/Court_noue_repos_sol_AREDVI.pdf (accessed on 2 June 2024).
- Laget, E.; Guadagnini, M.; Plénet, D.; Simon, S.S.; Assie, G.; Billotte, B.; Borioli, P.; Bourguoin, B.; Fratantuono, M.; Guérin, A. Guide Ecophyto Fruits-Guide Pour la Conception de Systèmes de Production Fruitière Economes en Produits Phytopharmaceutiques. 2015. Available online: https://www.ecophyto-pro.fr/documents/view/875/guide_ecophyto_fruits_guide_pour_la_conception_de_systemes_de_production_fruitiere_economes_en_produits_phytopharmaceutiques (accessed on 2 June 2024).
- Beillouin, D.; Ben-Ari, T.; Malézieux, E.; Seufert, V.; Makowski, D. Positive but Variable Effects of Crop Diversification on Biodiversity and Ecosystem Services. Glob. Change Biol. 2021, 27, 4697–4710. [Google Scholar] [CrossRef]
- Tamburini, G.; Bommarco, R.; Wanger, T.C.; Kremen, C.; Van Der Heijden, M.G.A.; Liebman, M.; Hallin, S. Agricultural Diversification Promotes Multiple Ecosystem Services without Compromising Yield. Sci. Adv. 2020, 6, eaba1715. [Google Scholar] [CrossRef]
- Le Roux, X.; Barbault, R.; Baudry, J.; Burel, F.; Chauvel, B.; Couvet, D.; Deverre, C.; Doussan, I.; Farrugia, A.; Fleury, P. Agriculture et Biodiversité: Valoriser Les Synergies: Expertise Scientifique Collective INRA Juillet 2008; INRA: Paris, France, 2009; ISBN 2-7592-0309-3. [Google Scholar]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover Crops and Ecosystem Services: Insights from Studies in Temperate Soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef]
- Arrouays, D.; Balesdent, J.; Germon, J.C.; Jayet, P.-A.P.-A.; Soussana, J.-F.; Stengel, P. Stocker du Carbone Dans les Sols Agricoles de France? Synthèse du Rapport D’expertise; INRA: Paris, France, 2002; p. 32. [Google Scholar]
- Garcia, L.; Celette, F.; Gary, C.; Metral, R.; Metay, A. Vers des systèmes de culture agroécologiques—Usage des couverts végétaux semés ou spontanés comme cultures de services dans les vignobles—Comment raisonner leur pilotage en viticulture? La Rev. Anol. Des Tech. Vitivinic. Anol. 2020, 177, 28–31. [Google Scholar]
- Tibi, A.; Martinet, V.; Vialatte, A.; Alignier, A.; Angeon, V.; Bohan, D.; Bougherara, D.; Cordeau, S.; Courtois, P.; Deguine, J.-P.; et al. Protéger les cultures en augmentant la diversité végétale des espaces agricoles. In Synthèse de L’expertise Scientifique Collective; INRAE: Paris, France, 2022; 86p. [Google Scholar] [CrossRef]
- Chambre d’agriculture Bourgogne. Cultures intermédiaires—Fiches de conseil collectif 2015. Available online: https://saoneetloire.chambres-agriculture.fr/fileadmin/user_upload/232_chambre_dagriculture_de_saone-et-loire/6-Documents/2015_Cultures_intermediaires_VFinale.pdf (accessed on 2 June 2024).
- Charles, R.; Montfort, F.; Sarthou, J.-P. Effets biotiques des cultures intermédiaires sur les adventices, la microflore et la faune. In Réduire les Fuites de Nitrate au Moyen de Cultures Intermédiaires: Conséquences sur Les Bilans D’eau et D’azote, Autres Services Ecosystémiques; Ministère de l’Ecologie, du Développement Durable et de l’Energie: Paris, France, 2012; pp. 193–261. [Google Scholar]
- Chambre d’agriculture Bretagne. Référentiel Agronomique Régional. Guide Cultures Intermédiaires Pièges A Nitrates (CIPAN); 2009; p. 16, Chambre d’agriculture Bretagne; Available online: https://geco.ecophytopic.fr/documents/20182/21720/pdf_Implanter_des_cultures_interm_diaires_pi_ges___nitrates_4.pdf (accessed on 2 June 2024).
- Escudier, J.-L.; de Cortazar Atauri, I.G.; Giraud-Heraud, E.E.; Le Roux, R.; Ollat, N.; Quénol, H.; Touzard, J.-M. Le vignoble français à l’épreuve du changement climatique. La Rech. 2016, 513–514, 60–63. [Google Scholar]
- Jeuffroy, M.-H.; Meynard, J.-M.; de Vallavieille-Pope, C.; Fraj, M.B.; Saulas, P. Les associations de variétés de blé: Performances et maîtrise des maladies. Le Sélectionneur Français 2010, 61, 75–84. [Google Scholar]
- Zomer, R.J.; Neufeldt, H.; Xu, J.; Ahrends, A.; Bossio, D.; Trabucco, A.; Van Noordwijk, M.; Wang, M. Global Tree Cover and Biomass Carbon on Agricultural Land: The Contribution of Agroforestry to Global and National Carbon Budgets. Sci. Rep. 2016, 6, 29987. [Google Scholar] [CrossRef] [PubMed]
- Foucaud-Scheunemann, C. Agroforesterie: Des Arbres Pour une Agriculture Durable. Available online: https://www.inrae.fr/actualites/agroforesterie-arbres-agriculture-durable (accessed on 2 June 2024).
- Verboom, B.; Spoelstra, K. Effects of Food Abundance and Wind on the Use of Tree Lines by an Insectivorous Bat, Pipistrellus pipistrellus. Can. J. Zool. 1999, 77, 1393–1401. [Google Scholar] [CrossRef]
- Morriën, E.; Hannula, S.E.; Snoek, L.B.; Helmsing, N.R.; Zweers, H.; De Hollander, M.; Soto, R.L.; Bouffaud, M.-L.; Buée, M.; Dimmers, W.; et al. Soil Networks Become More Connected and Take up More Carbon as Nature Restoration Progresses. Nat. Commun. 2017, 8, 14349. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, C.; Georges, R.; Aviron, S.; Baudry, J.; Burel, F. Projet FarmLand: Quel est le rôle de l’hétérogénéité spatiale de la mosaïque des cultures sur la biodiversité et les services écosystémiques? In Proceedings of the IVe Journées IALE France, Rennes, France, 11–14 June 2013; p. 1. [Google Scholar]
- Siriwardena, G.M.; Cooke, I.R.; Sutherland, W.J. Landscape, Cropping and Field Boundary Influences on Bird Abundance. Ecography 2012, 35, 162–173. [Google Scholar] [CrossRef]
- Pellerin, S.; Bamière, L.; Angers, D.; Béline, F.; Benoît, M.; Butault, J.-P.; Chenu, C.; Colnenne-David, C.; de Cara, S.; Delame, N.; et al. Quelle Contribution de L’agriculture Française à la Réduction des Emissions de gaz à Effet de Serre? Potentiel D’atténuation et Coût de dix Actions Techniques; INRA: Paris, France, 2013; p. 92. [Google Scholar]
- Kleijn, D.; Winfree, R.; Bartomeus, I.; Carvalheiro, L.G.; Henry, M.; Isaacs, R.; Klein, A.-M.; Kremen, C.; M’gonigle, L.K.; Rader, R. Delivery of Crop Pollination Services Is an Insufficient Argument for Wild Pollinator Conservation. Nat. Commun. 2015, 6, 7414. [Google Scholar] [CrossRef]
- Perrot, T.; Bretagnolle, V.; Gaba, S. Environmentally Friendly Landscape Management Improves Oilseed Rape Yields by Increasing Pollinators and Reducing Pests. J. Appl. Ecol. 2022, 59, 1825–1836. [Google Scholar] [CrossRef]
- Garibaldi, L.A.; Carvalheiro, L.G.; Vaissière, B.E.; Gemmill-Herren, B.; Hipólito, J.; Freitas, B.M.; Ngo, H.T.; Azzu, N.; Sáez, A.; Åström, J.; et al. Mutually Beneficial Pollinator Diversity and Crop Yield Outcomes in Small and Large Farms. Science 2016, 351, 388–391. [Google Scholar] [CrossRef]
- Villenave, C.; Chauvin, C.; Puissant, J.; Henaux, M.; Trap, J. Impact des pratiques agricoles sur l’état biologique du sol: SIPANEMA, un outil d’aide à la décision basé sur les nématodes. Etude Gest. Sols 2022, 29, 199–209. [Google Scholar]
- Bodin, E.; Bodin, D.; Chaigne, C.; Desmoulin, F.; Gnagni, R.; Jame, A.; Mouclier, F. La Lutte Biologique, Une Solution Viable Pour L’avenir? Barot, S., Ed.; Société Française d’Écologie et d’Évolution, 2021; Available online: https://sfecologie.org/regard/re3-mars-2021-bodin-et-al-lutte-biologique/ (accessed on 2 June 2024).
- Attoumani-Ronceaux, A.; Jouy, L.; Mischler, P.; Omon, B.; Petit, M.-S.; Pleyber, E.; Reau, R.; Seiler, A.; Guichard, L.; Aubertot, J.-N. Guide Pratique Pour la Conception de Systèmes de Culture Plus Economes en Produits Phytosanitaires—Application Aux Systèmes de Polyculture; Ecophyto 2018; MEDDTL, MAAPRAT, RMT Système de Culture Innovants: Paris, France, 2018; p. 116. [Google Scholar]
- Eckert, C.; Rougier, M.; Chartier, N.; Houdin, A. Le Réseau DEPHY EXPE en Cultures Légumières—Un Premier Bilan à Mi-Parcours; Info CTIFL: Paris, France, 2017; p. 10. [Google Scholar]
- Pradel, M.; de Fays, M.; Seguineau, C. Analyse du Cycle de Vie des Pratiques de Désherbage Intra-Rang et Inter-Rang Avec des Systèmes Robotisés Autonomes Dans Trois Vignobles Français; INRAE—TSCF, NAÏO Technologies: Escalquens, France, 2022; p. 91. [Google Scholar]
- Maillot, T.; Jones, G.; Vioix, J.-B.; Colbach, N. Des technologiques innovantes pour optimiser le désherbage de précision. Innov. Agron. 2020, 81, 101–116. [Google Scholar] [CrossRef]
- AGRESTE. Enquête Pratiques Culturales 2011—Principaux Résultats; AGRESTE: Paris, France, 2014; p. 70. [Google Scholar]
- Schneider, A.; Huyghe, C. Les Légumineuses Pour Des Systèmes Agricoles et Alimentaires Durables; Editions Quae: Versailles, France, 2015; ISBN 978-2-7592-2335-0. [Google Scholar]
- ARVALIS—Institut du végétal. Les Légumineuses, Comment ça Marche? 2010; ISBN 978-2-8179-0037-7; Available online: https://agriculture-de-conservation.com/sites/agriculture-de-conservation.com/IMG/pdf/legumineuses-elevage.pdf (accessed on 2 June 2024).
- ADEME. Fiche n°5—Cultiver des légumineuses pour réduire l’utilisation d’intrants de synthèse. In Agriculture & Environnement, des Pratique clefs Pour la Préservation du Climat, des sols et de l’air, et les Economies D’énergie; Références; ADEME: Angers, France, 2015; pp. 55–66. ISBN 978-2-35838-614-2. [Google Scholar]
- Dumont, B.; Basso, B.; Destain, J.-P.; Meza Morales, W.; Bodson, B. Développement d’un système d’aide à la décision multicritère pour l’optimisation de la fertilisation azotée. In Proceedings of the Phloeme 2018-Premieres Biennales de l’innovation céréalière, 2018; p. 9. Available online: https://hdl.handle.net/2268/220356 (accessed on 2 June 2024).
- Hocdé, A.; Joly, P. Fertilisation Azotée et Outils D’aide à la Décision—Executive Summary; ASIRPA Analyse Socio-économique des Impacts de la Recherche Publique Agricole; INRA: Paris, France, 2013; p. 9. [Google Scholar]
- Recous, S.; Jeuffroy, M.-H.; Hénault, C.; Bamière, L. Réduire le recours aux engrais azotés de synthèse: Quel potentiel et quel impact sur les émissions de N2O à l’échelle France ? Innov. Agron. 2014, 37, 11–22. [Google Scholar] [CrossRef]
- Chambre d’agriculture Normandie. Guide de Calcul des Doses D’azote—Références Normandie; Fertilisation azotée en Zone Vulnérable; Chambre d’agriculture Normandie: Bois Guillaume, France, 2021; p. 51. [Google Scholar]
- Peyraud, J.-L.; Cellier, P.; Donnars, C.; Réchauchère, O. Les flux d’azote liés aux élevages: Réduire les pertes, rétablir les équilibres. In Synthèse du Rapport D’expertise Scientifique Collective; Expertises collectives; INRA: Paris, France, 2012; p. 68. [Google Scholar]
- Hagemann, N.; Joseph, S.; Schmidt, H.-P.; Kammann, C.I.; Harter, J.; Borch, T.; Young, R.B.; Varga, K.; Taherymoosavi, S.; Elliott, K.W.; et al. Organic Coating on Biochar Explains Its Nutrient Retention and Stimulation of Soil Fertility. Nat. Commun. 2017, 8, 1089. [Google Scholar] [CrossRef] [PubMed]
- Agence de l’environnement et de la maîtrise de l’énergie; CITEPA. Guide des Bonnes Pratiques Agricoles Pour L’amélioration de la Qualité de l’air; Clés pour agir; ADEME: Montrouge, France, 2020; p. 84. [Google Scholar]
- CITEPA. Organisation et Méthodes des Inventaires Nationaux des Emissions Atmosphériques en France—OMINEA—18ème Edition; Ministère de la transition écologique, CITEPA: Paris, France, 2021; p. 1044. [Google Scholar]
- Saliu, F.; Luqman, M.; Alkhaz’leh, H.S. A Review on the Impact of Sustainable Agriculture Practices on Crop Yields and Soil Health. Int. J. Res. Adv. Agric. Sci. 2023, 2, 1–13. [Google Scholar]
- Gloria, C.; Nicolas, D.; Baratte, E.; Vincent, M.-H. Les vertus du non-labour. Réussir Céréales Gd. Cult. 2007, 26–39. [Google Scholar]
- Uri, N.D.; Atwood, J.D.; Sanabria, J. An Evaluation of the Environmental Costs and Benefits of Conservation Tillage. Environ. Impact Assess. Rev. 1998, 18, 521–550. [Google Scholar] [CrossRef]
- Solagro; Oréade Brèche; Cereg. Etude Pour le Renforcement des Actions D’économies d’eau en Irrigation Dans le Bassin Adour-Garonne; Agence de l’eau Adour-Garonne: Toulouse, France, 2017; p. 20. [Google Scholar]
- Barta, R.; Broner, I.; Schneekloth, J.; Waskom, R. Colorado High Plains Irrigation Practices Guide. Water Saving Options for Irrigators in Eastern Colorado; Colorado Water Resources Research Institute: Fort Collins, CO, USA, 2004; p. 80. [Google Scholar]
- Chambre d’agriculture de la Mayenne, Infiltr’eau 53, Phyt’eau Propre 53, Département de la Mayenne. Guide Agricole Pour la Préservation des Ressources en eau, 2020. p. 90. Available online: https://www.calameo.com/read/0020054844e05850edecf (accessed on 2 June 2024).
- Ayphassorho, H.; Bertrand, N.; Mitteault, F.; Pujos, C.; Rollin, D.; Sallenave, M. Changement Climatique, eau, Agriculture. Quelles Trajectoires d’ici 2050? In Rapport CGEDD; Ministère de la Transition Ecologique, Ministère de L’Agriculture et de l’Alimentation: Paris, France, 2020; p. 333, n° 012819-01, CGAAER n° 19056. [Google Scholar]
- Pellerin, S.; Bamière, L. Stocker du Carbone dans les Sols Français. Quel Potentiel au Regard de L’objectif 4 Pour 1000 et à Quel Coût? INRA: Paris, France, 2019; p. 114. [Google Scholar]
- Gendre, S.; Tscheiller, R.; Moynier, J.-L.; Deschamps, T. Teneur en eau des sols: Quel est l’effet des couverts d’interculture? Perspectives Agricoles 2021, N°489. Available online: https://www.perspectives-agricoles.com/conduite-de-cultures/teneur-en-eau-des-sols-quel-est-leffet-des-couverts-dinterculture (accessed on 2 June 2024).
- Amigues, J.-P.; Debaeke, P.P.; Itier, B.B.; Lemaire, G.G.; Seguin, B.; Tardieu, F.F.; Thomas, A.; Uesc, E.S.C.; Pêche, M.d.L.E.d.L. Sécheresse et Agriculture. Réduire la Vulnérabilité de L’agriculture à un Risque Accru de Manque d’eau. Expertise Scientifique Collective. Synthèse du Rapport; INRA: Paris, France, 2006; p. 77. [Google Scholar]
- Boé, J.; Terray, L.; Martin, E.; Habets, F. Projected Changes in Components of the Hydrological Cycle in French River Basins during the 21st Century. Water Resour. Res. 2009, 45, W0842. [Google Scholar] [CrossRef]
- Rodrigues, G.S.; Campanhola, C.; Kitamura, P.C. An Environmental Impact Assessment System for Agricultural R&D. Environ. Impact Assess. Rev. 2003, 23, 219–244. [Google Scholar] [CrossRef]
Agricultural Practices | Impact of Agricultural Practices on the 5 Environmental Outcomes | Refs | ||||||
---|---|---|---|---|---|---|---|---|
# | Designation | Cat | I SOIL | II WAT | III BIO | IV PES | V C | |
1 | Duration of the rotation | A/B * | 0.5 | 1 | 1 | [32,33,34,35,36,37] | ||
2 | Number of different species grown in rotation | A | 0.5 | 1 | 1 | [38,39,40] | ||
3 | Associated crop production | C | 1 | 0.5 | [38] | |||
4 | Proportion of soil surface covered during cultivation | A | 1 | 1 | 1 | 0.5 | 0.5 | [41,42,43] |
5 | Incorporating intermediate cover crops into rotation for agronomic purposes | A | 1 | 1 | 0.5 | 0.5 | 0.5 | [42,44,45,46,47] |
6 | Growing endangered plant varieties or species | C | 1 | [48,49] | ||||
7 | Inter-parcel agroforestry practice | A | 1 | 0.5 | 1 | 0.5 | 1 | [42,50,51,52] |
8 | Intra-parcel agroforestry practice | A | 1 | 0.5 | 1 | 0.5 | 1 | [42,50,51] |
9 | Fallowing | B | 1 | 1 | 1 | [53,54] | ||
10 | Presence of borders, grassed strips and buffer zones | B | 1 | 1 | 0.5 | [54,55,56,57,58] | ||
11 | Presence of beehives or nest boxes on the farm | C | 1 | [59] | ||||
12 | Practices favoring melliferous species for pollinating insects and allowing flowering to be staggered throughout the year | C | 1 | [59] | ||||
13 | Types of products used to manage weeds and pests | A | 0.5 | 1 | 1 | 1 | [39] | |
14 | Using biocontrol solutions against pests and diseases | B | 1 | 1 | 1 | [60,61] | ||
15 | Implementation of specific agronomic practices in the weed management strategy | B | 1 | 0.5 | 1 | [62,63] | ||
16 | Use of precision weeding | C | 0.5 | 0.5 | 1 | [64,65] | ||
17 | Use of a decision-making tool to manage weed control | C | 0.5 | 0.5 | 1 | [66] | ||
18 | Proportion of legumes in the rotation | A | 0.5 | 1 | 1 | [67,68,69] | ||
19 | Use of a decision-making tool to manage fertilization | C | 1 | 1 | 0.5 | [70] | ||
20 | Use of precision fertilization | C | 1 | 1 | 0.5 | [71] | ||
21 | Drawing up a nitrogen balance sheet to manage fertilization | B | 1 | 1 | 0.5 | [72,73,74] | ||
22 | Use of biological solutions to stimulate soil fertility | C | 1 | 1 | 0.5 | 0.5 | [75] | |
23 | Use of organic fertilizers | A | 1 | 1 | 0.5 | 1 | [39,56] | |
24 | Crop residue management type | B | 1 | 1 | [76,77] | |||
25 | Use of deep tillage (>20 cm) | A/B * | 1 | 1 | 1 | [56,78,79,80] | ||
26 | Type of irrigation used on parcel | A | 1 | [81,82] | ||||
27 | Existence of a device to measure the amount of water applied to the plot | B | 1 | [82,83] | ||||
28 | Use of a decision-support tool to control irrigation | C | 1 | [83,84] | ||||
29 | Mulching the rows | B | 1 | 1 | 1 | [85,86] | ||
30 | Growing drought-tolerant varieties/species | B | 1 | [87] | ||||
31 | Evolution of irrigation water volumes brought to the plot during periods of water shortage (drought, etc.) | B | 1 | [84,88] |
Agricultural Practices | |||||
---|---|---|---|---|---|
# | Designation | Cat/Weight | Pre-Established Entries for Assessment | Grade | Score (Grade × Weight) |
16 | Use of precision weeding | C/1 | Yes | 100 | 100 (100 × 1) |
No | 0 | 0 (0 × 1) | |||
10 | Presence of borders, grassed strips and buffer zones | B/2 | Yes with ecological maintenance | 100 | 200 (100 × 2) |
Yes with intensive maintenance | 50 | 100 (50 × 2) | |||
No | 0 | 0 (0 × 2) | |||
23 | Use of organic fertilizers | A/4 | Yes | 100 | 400 (100 × 4) |
Partially | 50 | 200 (50 × 4) | |||
No | 0 | 0 (0 × 4) |
Agricultural Practices | Agricultural Practices Scores Assignment to the 5 Environmental Outcomes | |||||||
---|---|---|---|---|---|---|---|---|
# | Designation | Entry | Score | I SOIL | II WAT | III BIO | IV PES | V C |
16 | Use of precision weeding | Yes | 100 | 50 Indirect 0.5 | 50 Indirect 0.5 | 100 Direct 1 | ||
23 | Use of organic fertilizers | Yes partially | 200 | 200 Direct 1 | 200 Direct 1 | 100 Indirect 0.5 | 200 Direct 1 |
Agricultural Practices Recommendation | Production Sites | ||||
---|---|---|---|---|---|
# | Description | W | X | Y | Z |
2 | Integrate 5 additional plant species in the cultural system | ||||
2 | Integrate 2 additional plant species in the cultural system | ||||
4 | Increase the proportion of soil surface covered during cultivation | ||||
18 | Include legumes in the cultural system (for example as cover crop) | ||||
1 | Extend the interculture duration by 2 years | ||||
7 | Developing inter-parcel agroforestry | ||||
10 | Integrate grassed strips around the plots with ecological maintenance | ||||
27 | Instal a device to measure the amount of water applied to the plot | ||||
29 | Mulching the rows |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouvier, D.; Bayot, M.; Girard, S.; Lacroix, B.; Ogé, E.; Dieu, A.; Carrasco, M.; Hazoumé, D. The Field Cultivation Index, a New Method for Assessing Agricultural Practices’ Sustainability and Moving Towards Regenerative Agriculture—Application to Cosmetic Supply Chains. Sustainability 2025, 17, 8223. https://doi.org/10.3390/su17188223
Bouvier D, Bayot M, Girard S, Lacroix B, Ogé E, Dieu A, Carrasco M, Hazoumé D. The Field Cultivation Index, a New Method for Assessing Agricultural Practices’ Sustainability and Moving Towards Regenerative Agriculture—Application to Cosmetic Supply Chains. Sustainability. 2025; 17(18):8223. https://doi.org/10.3390/su17188223
Chicago/Turabian StyleBouvier, Delphine, Mathieu Bayot, Sydney Girard, Bertrand Lacroix, Elsa Ogé, Aurore Dieu, Magda Carrasco, and David Hazoumé. 2025. "The Field Cultivation Index, a New Method for Assessing Agricultural Practices’ Sustainability and Moving Towards Regenerative Agriculture—Application to Cosmetic Supply Chains" Sustainability 17, no. 18: 8223. https://doi.org/10.3390/su17188223
APA StyleBouvier, D., Bayot, M., Girard, S., Lacroix, B., Ogé, E., Dieu, A., Carrasco, M., & Hazoumé, D. (2025). The Field Cultivation Index, a New Method for Assessing Agricultural Practices’ Sustainability and Moving Towards Regenerative Agriculture—Application to Cosmetic Supply Chains. Sustainability, 17(18), 8223. https://doi.org/10.3390/su17188223