Defining a Method for Mapping Aeolian Sand Transport Susceptibility Using Bivariate Statistical and Machine Learning Methods—A Case Study of the Seqale Watershed, Eastern Iran
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset and Data Treatment
2.3. Modelling Techniques
2.4. Validation
2.5. Wind Analysis and Sand Drift Potential
3. Results and Discussion
3.1. Spatial Variability of the Dataset
3.2. Application of Information Value (IV) and Density Area (DA) Bivariate Methods
3.3. Accuracy and Validation
3.4. Wind Analysis and Sand Drift Potential
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pye, K.; Tsoar, H. The Formation of Sand Seas and Dune Fields. In Aeolian Sand and Sand Dunes; Pye, K., Tsoar, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 141–173. [Google Scholar] [CrossRef]
- Lancaster, N. Geomorphology of Desert Dunes; Routledge: Oxfordshire, UK, 1995; p. 312. [Google Scholar]
- Mabbut, J.A. Desert Landform; Australian National University Press: Canberra, Australia, 1977. [Google Scholar]
- Perry, R.A.; Goodall, D.W. Arid Land Ecosystems: Volume 1: Structure, Functioning and Management; Cambridge University Press: Cambridge, UK, 1979. [Google Scholar]
- Gili, S.; Vanderstraeten, A.; Chaput, A.; King, J.A.; Gaiero, D.; Delmonte, B.; Vallelonga, P.T.; Formenti, P.; Di Biagio, C.; Cazanau, M.; et al. South African dust contribution to the high southern latitudes and East Antarctica during interglacial stages. Commun. Earth Environ. 2022, 3, 129. [Google Scholar] [CrossRef]
- Hesse, P.P.; Magee, J.W.; van der Kaars, S. Late Quaternary climates of the Australian arid zone: A review. Quat. Int. 2004, 118, 87–102. [Google Scholar] [CrossRef]
- Chen, B.; Yang, X.; Jiang, Q.; Liang, P.; Lattin Mackenzie, L.; Zhou, Y. Geochemistry of aeolian sand in the Taklamakan Desert and Horqin Sandy Land, northern China: Implications for weathering, recycling, and provenance. Catena 2022, 208, 105769. [Google Scholar] [CrossRef]
- Badapalli, P.K.; Kottala, R.B.; Pujari, P.S. Process of Aeolian Action. In Aeolian Desertification: Disaster with Visual Impact in Semi-arid Regions of Andhra Pradesh, South India; Badapalli, P.K., Kottala, R.B., Pujari, P.S., Eds.; Springer Nature: Singapore, 2023; pp. 51–72. [Google Scholar] [CrossRef]
- Okin, G.; Gillette, D.; Herrick, J. Multi-scale controls on and consequences of aeolian processes in landscape change in arid and semi-arid environments. J. Arid Environ. 2006, 65, 253–275. [Google Scholar] [CrossRef]
- Hesse, P. Sand Seas. In Aeolian Geomorphology; Livingstone, I., Warren, A., Eds.; Wiley: Hoboken, NJ, USA, 2019; pp. 179–208. [Google Scholar] [CrossRef]
- FavalliM, M.; Karátson, D.; Mazzuoli, R.; Pareschi, M.T.; Ventura, G. Volcanic geomorphology and tectonics of the Aeolian archipelago (Southern Italy) based on integrated DEM data. Bull. Volcanol. 2005, 68, 157–170. [Google Scholar] [CrossRef]
- Ziyaee, A.; Hirmas, D.R.; Karimi, A.; Kehl, M.; Macpherson, G.; Lakzian, A.; Roshanizarmehri, M. Geogenic and anthropogenic sources of potentially toxic elements in airborne dust in northeastern Iran. Aeolian Res. 2019, 41, 100540. [Google Scholar] [CrossRef]
- Maman, S.; Blumberg, D.G.; Tsoar, H.; Mamedov, B.; Porat, N. The Central Asian ergs: A study by remote sensing and geographic information systems. Aeolian Res. 2011, 3, 353–366. [Google Scholar] [CrossRef]
- Stammler, M.; Stevens, T.; Hölbling, D. Geographic object-based image analysis (GEOBIA) of the distribution and characteristics of aeolian sand dunes in Arctic Sweden. Permafr. Periglac. Process. 2023, 34, 22–36. [Google Scholar] [CrossRef]
- Khalaf, F.I.; Misak, R.; Al-Dousari, A. Sedimentological and morphological characteristics of some nabkha deposits in the northern coastal plain of Kuwait, Arabia. J. Arid Environ. 1995, 29, 267–292. [Google Scholar] [CrossRef]
- Spalding, J.B. The Aeolian Ecology of White Mountain Peak, California: Windblown Insect Fauna. Arct. Alp. Res. 1979, 11, 83–94. [Google Scholar] [CrossRef]
- Zhang, J.A. New Ecological-Wind Erosion Model to Simulate the Impacts of Aeolian Transport on Dryland Vegetation Patterns. Acta Ecol. Sin. 2021, 41, 304–317. [Google Scholar] [CrossRef]
- Sommerville, A.; Sanderson, D.; Hansom, J.; Housley, R. Luminescence Dating of Aeolian Sands from Archaeological Sites in Northern Britain: A Preliminary Study. Quat. Sci. Rev. 2001, 20, 913–919. [Google Scholar] [CrossRef]
- Fryberger, S.G.; Dean, G.; McKee, E. Dune Forms and Wind Regime. In A Study of Global Sand Seas; U.S. Geological Survey Professional Paper 1052; Geological Survey (U.S.): Reston, VA, USA, 1979; pp. 137–170. [Google Scholar] [CrossRef]
- Al-Dousari, A.; Omar, A.; Al-Hemoud, A.; Aba, A.; Alrashedi, M.; Alrawi, M.; Rashki, A.; Petrov, P.; Ahmed, M.; Al-Dousari, N.; et al. A Success Story in Controlling Sand and Dust Storms Hotspots in the Middle East. Atmosphere 2022, 13, 1335. [Google Scholar] [CrossRef]
- Ahmady-Birgani, H.; Naseri, H.R. Deserts, Sand Dunes and Sand Seas of Iran. In Sand Dunes of the Northern Hemisphere: Distribution, Formation, Migration and Management; Volume 2: Characteristics, Dynamics and Provenance of Sand Dunes in the Northern Hemisphere; Qi, L., Gaur, M.K., Squires, V.R., Eds.; CRC Press: Boca Raton, FL, USA, 2024; pp. 219–234. [Google Scholar]
- Ebrahimi-Khusfi, Z.; Mirakbari, M.; Ebrahimi-Khusfi, M.; Taghizadeh-Mehrjardi, R. Impacts of Vegetation Anomalies and Agricultural Drought on Wind Erosion over Iran from 2000 to 2018. Appl. Geogr. 2020, 125, 102330. [Google Scholar] [CrossRef]
- Emadodin, I.; Narita, D.; Bork, H.R. Soil Degradation and Agricultural Sustainability: An Overview from Iran. Environ. Dev. Sustain. 2012, 14, 611–625. [Google Scholar] [CrossRef]
- Ekhtesasi, M.; Sepehr, A. Investigation of Wind Erosion Process for Estimation, Prevention, and Control of DSS in Yazd–Ardakan Plain. Environ. Monit. Assess. 2009, 159, 267–280. [Google Scholar] [CrossRef]
- Rahdari, M.R.; Gyasi-Agyei, Y.; Rodrigo-Comino, J. Sand Drift Potential Impacts within Desert Railway Corridors: A Case Study of the Sarakhs-Mashhad Railway Line. Arab. J. Geosci. 2021, 14, 810. [Google Scholar] [CrossRef]
- Rashki, A.; Middleton, N.J.; Goudie, A.S. Dust Storms in Iran–Distribution, Causes, Frequencies and Impacts. Aeolian Res. 2021, 48, 100655. [Google Scholar] [CrossRef]
- Sadeghiravesh, M.H.; Zehtabian, G.; Khosravi, H. Application of AHP and ELECTRE Models for Assessment of Dedesertification Alternatives. Desert 2014, 19, 141–153. [Google Scholar] [CrossRef]
- Maghsoudi, M. Introduction to Landscapes and Landforms of Iran. In Desert Landscapes and Landforms of Iran; Maghsoudi, M., Ed.; Springer International Publishing: Cham, Switzerland; Berlin/Heidelberg, Germany, 2021; pp. 1–43. [Google Scholar] [CrossRef]
- Javidan, N.; Kavian, A.; Pourghasemi, H.R.; Conoscenti, C.; Jafarian, Z.; Rodrigo-Comino, J. Evaluation of multi-hazard map produced using MaxEnt machine learning technique. Sci. Rep. 2021, 11, 6496. [Google Scholar] [CrossRef]
- Hateffard, F.; Mohammed, S.; Alsafadi, K.; Enaruvbe, G.O.; Heidari, A.; Abdo, H.G.; Rodrigo-Comino, J. CMIP5 climate projections and RUSLE-based soil erosion assessment in the central part of Iran. Sci. Rep. 2020, 11, 7273. [Google Scholar] [CrossRef] [PubMed]
- Jafari, M.; Tahmoures, M.; Ehteram, M.; Ghorbani, M.; Panahi, F. Soil Erosion Control in Drylands; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Sadeghi, S.H.; Hazbavi, Z. Land Degradation in Iran. In Global Degradation of Soil and Water Resources: Regional Assessment and Strategies; Li, R., Napier, T.L., El-Swaify, S.A., Sabir, M., Rienzi, E., Eds.; Springer Nature: Singapore, 2022; pp. 287–314. [Google Scholar] [CrossRef]
- Ekhtesasi, M.R.; Jahanbakhshi, F. Models and Tools for Estimating and Measuring Wind Erosion and Fine Dust; Yazd University Press: Yazd, Iran, 2016. [Google Scholar]
- Pourghasemi, H.R.; Honarmandnejad, F.; Rezaei, M.; Tarazkar, M.H.; Sadhasivam, N. Prioritization of Water Erosion–Prone Sub-Watersheds Using Three Ensemble Methods in Qareaghaj Catchment, Southern Iran. Environ. Sci. Pollut. Res. 2021, 28, 37894–37917. [Google Scholar] [CrossRef] [PubMed]
- Razavizadeh, S.; Solaimani, K.; Massironi, M.; Kavian, A. Mapping Landslide Susceptibility with Frequency Ratio, Statistical Index, and Weights of Evidence Models: A Case Study in Northern Iran. Environ. Earth Sci. 2017, 76, 499. [Google Scholar] [CrossRef]
- Sadeghi, S.H.; Hazbavi, Z.; Harchegani, M.K. Controllability of Runoff and Soil Loss from Small Plots Treated by Vi-nasse-Produced Biochar. Sci. Total Environ. 2016, 541, 483–490. [Google Scholar] [CrossRef]
- Vaezi, A.R.; Sadeghi, S.H.R.; Bahrami, H.A.; Mahdian, M.H. Modeling the USLE K-Factor for Calcareous Soils in North-western Iran. Geomorphology 2008, 97, 414–423. [Google Scholar] [CrossRef]
- Ahmadi, H. Report of Sand Seas National Project in Iran; University of Tehran: Tehran, Iran, 2004. (In Persian) [Google Scholar]
- Abbasi, H.R.; Opp, C.; Groll, M.; Rohipour, H.; Gohardoust, A. Assessment of the Distribution and Activity of Dunes in Iran Based on Mobility Indices and Ground Data. Aeolian Res. 2019, 41, 100539. [Google Scholar] [CrossRef]
- Lancaster, N. Development of Linear Dunes in the Southwestern Kalahari, Southern Africa. J. Arid Environ. 1988, 14, 233–244. [Google Scholar] [CrossRef]
- Zhao, H.; Feng, S.; Dang, X.; Meng, Z.; Chen, Z.; Gao, Y. Aeolian Sand Erosion and Deposition Patterns in the Arid Region of the Xiliugou Tributary on the Upper Reaches of the Yellow River. Sustainability 2023, 15, 11714. [Google Scholar] [CrossRef]
- Ren, H.; Gao, X.; Zhao, Y.; Lei, J.; De Maeyer, P.; De Wulf, A. Strong-wind events control barchan dune migration. Commun. Earth Environ. 2024, 5, 278. [Google Scholar] [CrossRef]
- Husemann, P.; Romão, F.; Lima, M.; Costas, S.; Coelho, C. Review of the Quantification of Aeolian Sediment Transport in Coastal Areas. J. Mar. Sci. Eng. 2024, 12, 755. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Ma, P.; Za, D. Aeolian Sediment Transport Rates in the Middle Reaches of the Yarlung Zangbo River, Tibet Plateau. Sci. Total Environ. 2022, 826, 154238. [Google Scholar] [CrossRef]
- Mir-Gual, M.; Pons, G.X.; Delgado-Fernández, I.; Smyth, T.A.G. Field-Measurement of Surface Wind and Sediment Transport Patterns in a Coastal Dune Environment, Case Study of Cala Tirant (Menorca, Spain). J. Mar. Sci. Eng. 2023, 11, 2361. [Google Scholar] [CrossRef]
- Huang, N.; Song, Y.; Li, X.; Han, B.; Xu, L.; Zhang, J. Spatial Characteristics of Aeolian Sand Transport Affected by Surface Vegetation along the Oshang Railway. Sustainability 2024, 16, 3940. [Google Scholar] [CrossRef]
- Torshizi, M.R.; Miri, A.; Shahriari, A.; Dong, Z.; Davidson-Arnott, R.G. The Effectiveness of a Multi-Row Tamarix Windbreak in Reducing Aeolian Erosion and Sediment Flux, Niatak Area, Iran. J. Environ. Manag. 2020, 265, 110486. [Google Scholar] [CrossRef] [PubMed]
- Wojcikiewicz, R.; Webb, N.P.; Edwards, B.L.; Van Zee, J.W.; Courtright, E.M.; Cooper, B.F.; Hanan, N.P. Aeolian Sediment Transport Responses to Vegetation Cover Change: Effects of Sampling Error on Model Uncertainty. J. Geophys. Res. Earth Surf. 2023, 128, e2023JF007319. [Google Scholar] [CrossRef]
- Abraham, K.; Abdelwahab, M.; Abo-Zahhad, M. Classification and Detection of Natural Disasters Using Machine Learning and Deep Learning Techniques: A Review. Earth Sci. Inform. 2024, 17, 869–891. [Google Scholar] [CrossRef]
- Deborah, N.; Rajiv, A.; Vinora, A.; Sivakarthi, G.; Soundarya, M. Machine Learning Algorithms for Natural Disasters. In Internet of Things and AI for Natural Disaster Management and Prediction; Satishkumar, D., Sivaraja, M., Eds.; IGI Global Scientific Publishing: Hershey, PA, USA, 2024; pp. 188–212. [Google Scholar] [CrossRef]
- Volke, M.I.; Abarca-Del-Rio, R. Comparison of Machine Learning Classification Algorithms for Land Cover Change in a Coastal Area Affected by the 2010 Earthquake and Tsunami in Chile. Nat. Hazards Earth Syst. Sci. Discuss. 2020. preprint. [Google Scholar] [CrossRef]
- Golla, B. Agricultural Production System in Arid and Semi-Arid Regions. J. Agric. Sc. Food Technol. 2021, 7, 234–244. [Google Scholar] [CrossRef]
- Mood, S.G.; Moody, M.; Hosseini, S.S.; Ronaghi, S.A. The Effect of Off-Road Vehicle Traffic on Desert Vegetation. In Proceedings of the 1st International Conference on LUT DESERT TOURISM (Local and International Opportunities), Birjand, Iran, 1 May 2019; pp. 50–51. [Google Scholar]
- Falsolyman, M.; Mikaniki, J.; Nikshoar, M. Desert Ecotourism and Sustainable Rural Development in South Khorasan Province. J. Green Dev. Manag. Stud. 2022, 1, 117–132. [Google Scholar] [CrossRef]
- van Westen, C.J. Chapter 5. Statistical landslide hazard analysis. In ILWIS 2.1 for Windows Application Guide; ITC Publication: Enschede, The Netherlands, 1997; pp. 73–84. [Google Scholar]
- Yalcin, A. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. Catena 2007, 72, 1–12. [Google Scholar] [CrossRef]
- Arabameri, A.; Saha, S.; Roy, J.; Chen, W.; Blaschke, T.; Tien Bui, D. Landslide Susceptibility Evaluation and Management Using Different Machine Learning Methods in The Gallicash River Watershed, Iran. Remote Sens. 2020, 12, 475. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Bilücan, F.; Teke, A. Comparison of Support Vector Machines, Random Forest and Decision Tree Methods for Classification of Sentinel-2A Image Using Different Band Combinations. In Proceedings of the 41st Asian Conference on Remote Sensing (ACRS 2020), Deqing, China, 9–11 November 2020. [Google Scholar]
- Bashiri, M.; Kavousi Davoudi, S.M.; Afzali, A. The Study and Zonation of the Effect of Geologic and Geomorphic Characteristics on the Pattern of Sliding Zones using Fractal Geometry (Case Study: Tooye-Darvar watershed). Hydrogeomorphology 2018, 5, 157–178. (In Persian) [Google Scholar]
- Liang, Z.; Wang, C.; Khan, K.U.J. Application and comparison of different ensemble learning machines combining with a novel sampling strategy for shallow landslide susceptibility mapping. Stoch. Environ. Res. Risk Assess. 2021, 35, 1243–1256. [Google Scholar] [CrossRef]
- Li, L.; Iskander, M. Use of machine learning for classification of sand particles. Acta Geotech. 2022, 17, 4739–4759. [Google Scholar] [CrossRef]
- Arabameri, A.; Chandra Pal, S.; Rezaie, F.; Chakrabortty, R.; Saha, A.; Blaschke, T.; Di Napoli, M.; Ghorbanzadeh, O.; Thao Thi Ngo, P. Decision Tree Based Ensemble Machine Learning Approaches for Landslide Susceptibility Mapping. Geocarto Int. 2021, 37, 4594–4627. [Google Scholar] [CrossRef]
- Giang, T.L.; Bui, Q.T.; Nguyen, T.D.L.; Dang, V.B.; Truong, Q.H.; Phan, T.T.; Nguyen, H.; Ngo, V.L.; Tran, V.T.; Yasir, M.; et al. Coastal landscape classification using convolutional neural network and remote sensing data in Vietnam. J. Environ. Manag. 2023, 335, 117537. [Google Scholar] [CrossRef] [PubMed]
- Lim, T.S.; Loh, W.Y.; Shih, Y.S. A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Mach. Learn. 2000, 40, 203–228. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Jirandeh, A.G.; Pradhan, B.; Xu, C.; Gokceoglu, C. Landslide Susceptibility Mapping Using Support Vector Machine and GIS at the Golestan Province, Iran. J. Earth Syst. Sci. 2013, 122, 349–369. [Google Scholar] [CrossRef]
- Pourhashemi, S.; Asadi, M.A.Z.; Boroughani, M.; Azadi, H. Mapping of Dust Source Susceptibility by Remote Sensing and Machine Learning Techniques (Case Study: Iran-Iraq Border). Environ. Sci. Pollut. Res. 2023, 30, 27965–27979. [Google Scholar] [CrossRef]
- IRIMO. Islamic Republic of Iran Meteorological Organization. 2020. Available online: http://www.irimo.ir (accessed on 1 February 2025).
- Al-Awadhi, J.M.; Al-Helal, A.; Al-Enezi, A. Sand drift potential in the desert of Kuwait. J. Arid Environ. 2005, 63, 425–438. [Google Scholar] [CrossRef]
- Hereher, M.E. Assessment of sand drift potential along the Nile Valley and Delta using climatic and satellite data. Appl. Geogr. 2014, 55, 39–47. [Google Scholar] [CrossRef]
- Rahdari, M.R.; Caballero-Calvo, A.; Kharazmi, R.; Rodrigo-Comino, J. Evaluating temporal sand drift potential trends in the Sistan region, Southeast Iran. Environ. Sci. Pollut. Res. 2023, 30, 120266–120283. [Google Scholar] [CrossRef] [PubMed]
- Chadaeva, V.; Pshegusov, R. Identification of Degradation Factors in Mountain Semiarid Rangelands Using Spatial Distri-bution Modelling and Ecological Niche Theory. Geocarto Int. 2022, 37, 15235–15251. [Google Scholar] [CrossRef]
- Haji, L.; Hayati, D. Causes of Conflict in Rangelands Exploitation: Evidence from Iran. J. Agric. Sci. Technol. 2023, 25, 785–801. Available online: http://jast.modares.ac.ir/article-23-61007-en.html (accessed on 26 July 2025).
- Moazam, F.; Bashari, H.; Mosaddeghi, M.R.; Jafari, R.; Tarkesh, M. Soil Quality Indicators along a Degradation Gradient in Central Iran: Comparison of Two Regions with Contrasting Grazing Systems. Arch. Agron. Soil Sci. 2023, 69, 615–631. [Google Scholar] [CrossRef]
- Sanaei, A.; Sayer, E.J.; Yuan, Z.; Saiz, H.; Delgado-Baquerizo, M.; Sadeghinia, M.; Ashouri, P.; Ghafari, S.; Kaboli, H.; Kargar, M.; et al. Grazing Intensity Alters the Plant Diversity–Ecosystem Carbon Storage Relationship in Rangelands across Topographic and Climatic Gradients. Funct. Ecol. 2023, 37, 703–718. [Google Scholar] [CrossRef]
- Zittis, G.; Almazroui, M.; Alpert, P.; Ciais, P.; Cramer, W.; Dahdal, Y.; Fnais, M.; Francis, D.; Hadjinicolaou, P.; Howari, F.M.; et al. Climate Change and Weather Extremes in the Eastern Mediterranean and Middle East. Rev. Geophys. 2022, 60, e2021RG000762. [Google Scholar] [CrossRef]
- Ma, B.; Gao, L.; Cheng, J.; Ding, B.; Ding, L.; Qu, L.; An, Y. Characteristics and Hazards of an Aeolian Sand Environment along Railways in the Southeastern Fringe of the Taklimakan Desert and Sand Control Measures. Appl. Sci. 2022, 12, 9186. [Google Scholar] [CrossRef]
- Esbati, M.; Farzadmehr, J.; Foroughi, A.; Rahdari, M.R.; Rodrigo-Comino, J. Assessment of the Nutritional Value of Gundelia tournefortii during its Growth Stages as a Key Element in the Senowbar Rangeland Ecosystem, Northeast of Iran. Int. J. Environ. Sci. Technol. 2021, 18, 1731–1738. [Google Scholar] [CrossRef]
- Park, E. Sand mining in the Mekong Delta: Extent and compounded impacts. Sci. Total Environ. 2024, 924, 171620. [Google Scholar] [CrossRef]
- Jones, M.L.M.; Sowerby, A.; Williams, D.L.; Jones, R.E. Factors controlling soil development in sand dunes: Evidence from a coastal dune soil chronosequence. Plant Soil 2008, 307, 219–234. [Google Scholar] [CrossRef]
- Wiggs, G.F.S.; Baird, A.J.; Atherton, R.J. The dynamic effects of moisture on the entrainment and transport of sand by wind. Geomorphology 2004, 59, 13–30. [Google Scholar] [CrossRef]
- Liu, B.; Coulthard, T.J. Mapping the interactions between rivers and sand dunes: Implications for fluvial and aeolian geo-morphology. Geomorphology 2015, 231, 246–257. [Google Scholar] [CrossRef]
- Han, F.; Wang, C.; Liu, Z.; Li, L.; Yin, W. Study on sand-accumulation changes of highway and formation mechanism of sand damage in drifting dunes areas. Appl. Sci. 2022, 12, 10184. [Google Scholar] [CrossRef]
- Zhou, L.; Xu, X.; Wang, Y.; Jia, J.; Yang, Y.; Li, G.; Tong, C.; Gao, S. Tracking historical storm records from high-barrier lagoon deposits on the southeastern coast of Hainan Island, China. Acta Oceanol. Sin. 2021, 40, 162–175. [Google Scholar] [CrossRef]
- Nieto, C.E.; Martínez-Graña, A.M.; Merchán, L. Soil Erosion Risk Analysis in the Ría de Arosa (Pontevedra, Spain) Using the RUSLE and GIS Techniques. Forests 2024, 15, 1481. [Google Scholar] [CrossRef]
- Ballante, E.; Galvani, M.; Uberti, P.; Figini, S. Polarized classification tree models: Theory and computational aspects. J. Class. 2021, 38, 481–499. [Google Scholar] [CrossRef]
- Choudhury, S.; Saha, A.K.; Majumder, M. Optimal location selection for installation of surface water treatment plant by Gini coefficient-based analytical hierarchy process. Env. Develop. Sust. 2020, 22, 4073–4099. [Google Scholar] [CrossRef]
- Defeo, O.; McLachlan, A.; Schoeman, D.S.; Schlacher, T.A.; Dugan, J.; Jones, A.; Lastra, M.; Scapini, F. Threats to Sandy Beach Ecosystems: A Review. Estuar. Coast. Shelf Sci. 2009, 81, 1–12. [Google Scholar] [CrossRef]
- Duan, H.; Wang, T.; Xue, X.; Yan, C. Dynamic Monitoring of Aeolian Desertification Based on Multiple Indicators in Horqin Sandy Land, China. Sci. Total Environ. 2019, 650, 2374–2388. [Google Scholar] [CrossRef]
- Okin, G.S.; Murray, B.; Schlesinger, W.H. Degradation of Sandy Arid Shrubland Environments: Observations, Process Modelling, and Management Implications. J. Arid Environ. 2001, 47, 123–144. [Google Scholar] [CrossRef]
- Li, X.R.; Ma, F.Y.; Xiao, H.L.; Wang, X.P.; Kim, K.C. Long-Term Effects of Revegetation on Soil Water Content of Sand Dunes in Arid Region of Northern China. J. Arid Environ. 2004, 57, 1–16. [Google Scholar] [CrossRef]
- Wang, F.; Xie, K.; Han, L.; Han, M.; Wang, Z. Research on Support Vector Machine Optimization Based on Improved Quantum Genetic Algorithm. Quantum Inf. Process. 2023, 22, 380. [Google Scholar] [CrossRef]
- Yu, M.-H.; Bao, Y.-F.; Ding, G.-D.; He, Y.; Wang, C.-Y. Formation Mechanism of Plant Diversity in Mechanical Sand-Control Technique-Implemented Dunes in China. Land Degrad. Dev. 2022, 33, 3199–3208. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Colkesen, I. A Kernel Functions Analysis for Support Vector Machines for Land Cover Classification. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 352–359. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Kariminejad, N.; Amiri, M.; Edalat, M.; Zarafshar, M.; Blaschke, T.; Cerda, A. Assessing and Mapping Multi-Hazard Risk Susceptibility Using a Machine Learning Technique. Sci. Rep. 2020, 10, 3203. [Google Scholar] [CrossRef] [PubMed]
- Baduge, S.K.; Thilakarathna, S.; Perera, J.S.; Arashpour, M.; Sharafi, P.; Teodosio, B.; Shringi, A.; Mendis, P. Artificial Intel-ligence and Smart Vision for Building and Construction 4.0: Machine and Deep Learning Methods and Applications. Autom. Constr. 2022, 141, 104440. [Google Scholar] [CrossRef]
- Gopi, A.P.; Jyothi, R.N.S.; Narayana, V.L.; Sandeep, K.S. Classification of Tweets Data Based on Polarity Using Improved RBF Kernel of SVM. Int. J. Inf. Technol. 2023, 15, 965–980. [Google Scholar] [CrossRef]
- Mohammady, M.; Pourghasemi, H.R.; Amiri, M. Assessment of Land Subsidence Susceptibility in Semnan Plain (Iran): A Comparison of Support Vector Machine and Weights of Evidence Data Mining Algorithms. Nat. Hazards 2019, 99, 951–971. [Google Scholar] [CrossRef]
- Hwang, H.; Bixler, R.P.; Brown, W.A.; Vedlitz, A. How to Activate Nonprofit Beneficiaries for Community Resilience? Examining the Role of Risk Perception and Evaluation of Nonprofit Services on Prosocial Behavior in the Context of Natural Hazards. Sociol. Spectr. 2024, 44, 16–37. [Google Scholar] [CrossRef]
- Khezri, S.; Ahmadi Dehrashid, A.; Nasrollahizadeh, B.; Moayedi, H.; Ahmadi Dehrashid, H.; Azadi, H.; Scheffran, J. Prediction of Landslides by Machine Learning Algorithms and Statistical Methods in Iran. Environ. Earth Sci. 2022, 81, 304. [Google Scholar] [CrossRef]
- Lana, J.C.; Castro, P.D.T.A.; Lana, C.E. Assessing Gully Erosion Susceptibility and Its Conditioning Factors in South-Eastern Brazil Using Machine Learning Algorithms and Bivariate Statistical Methods: A Regional Approach. Geomorphology 2022, 402, 108159. [Google Scholar] [CrossRef]
- Aryal, Y. Evaluation of Machine-Learning Models for Predicting Aeolian Dust: A Case Study over the South-Western USA. Climate 2022, 10, 78. [Google Scholar] [CrossRef]
- Pal, S.C.; Arabameri, A.; Blaschke, T.; Chowdhuri, I.; Saha, A.; Chakrabortty, R.; Lee, S.; Band, S.S. Ensemble of Machine-Learning Methods for Predicting Gully Erosion Susceptibility. Remote Sens. 2020, 12, 3675. [Google Scholar] [CrossRef]
- Wang, W.; Samat, A.; Abuduwaili, J.; De Maeyer, P.; Van de Voorde, T. Machine Learning-Based Prediction of Sand and Dust Storm Sources in Arid Central Asia. Int. J. Digit. Earth 2023, 16, 1530–1550. [Google Scholar] [CrossRef]
- Tehrani, F.S.; Calvello, M.; Liu, Z.; Zhang, L.; Lacasse, S. Machine Learning and Landslide Studies: Recent Advances and Applications. Nat. Hazards 2022, 114, 1197–1245. [Google Scholar] [CrossRef]
- Rahmati, O.; Tahmasebipour, N.; Haghizadeh, A.; Pourghasemi, H.R.; Feizizadeh, B. Evaluation of Different Machine Learning Models for Predicting and Mapping the Susceptibility of Gully Erosion. Geomorphology 2017, 298, 118–137. [Google Scholar] [CrossRef]
- Ahmed, A.N.; Othman, F.B.; Afan, H.A.; Ibrahim, R.K.; Fai, C.M.; Hossain, M.S.; Ehteram, M.; Elshafie, A. Machine Learning Methods for Better Water Quality Prediction. J. Hydrol. 2019, 578, 124084. [Google Scholar] [CrossRef]
- Lu, H.; Ma, X. Hybrid Decision Tree-Based Machine Learning Models for Short-Term Water Quality Prediction. Chemosphere 2020, 249, 126169. [Google Scholar] [CrossRef]
- Rafiei Sardooi, E.; Pourghasemi, H.R.; Azareh, A.; Soleimani Sardoo, F.; Clague, J.J. Comparison of Statistical and Machine Learning Approaches in Land Subsidence Modelling. Geocarto Int. 2022, 37, 6165–6185. [Google Scholar] [CrossRef]
- Rahmati, O.; Falah, F.; Naghibi, S.A.; Biggs, T.; Soltani, M.; Deo, R.C.; Cerdà, A.; Mohammadi, F.; Bui, D.T. Land Subsidence Modelling Using Tree-Based Machine Learning Algorithms. Sci. Total Environ. 2019, 672, 239–252. [Google Scholar] [CrossRef]
- Gholami, H.; Mohammadifar, A.; Fitzsimmons, K.E.; Li, Y.; Kaskaoutis, D.G. Modeling Land Susceptibility to Wind Erosion Hazards Using LASSO Regression and Graph Convolutional Networks. Front. Environ. Sci. 2023, 11, 1187658. [Google Scholar] [CrossRef]
- Rezaei, M.; Mohammadifar, A.; Gholami, H.; Mina, M.; Riksen, M.J.P.M.; Ritsema, C. Mapping of the Wind Erodible Fraction of Soil by Bidirectional Gated Recurrent Unit (BiGRU) and Bidirectional Recurrent Neural Network (BiRNN) Deep Learning Models. Catena 2023, 223, 106953. [Google Scholar] [CrossRef]
- Jafari, R.; Amiri, M.; Asgari, F.; Tarkesh, M. Dust Source Susceptibility Mapping Based on Remote Sensing and Machine Learning Techniques. Ecol. Inform. 2022, 72, 101872. [Google Scholar] [CrossRef]
- Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; ThaiPham, B.; Bui, D.T.; Avtar, R.; Abderrahmane, B. Machine Learning Methods for Landslide Susceptibility Studies: A Comparative Overview of Algorithm Performance. Earth Sci. Rev. 2020, 207, 103225. [Google Scholar] [CrossRef]
- Montesinos López, O.A.; Montesinos López, A.; Crossa, J. Support vector machines and support vector regression. In Multivariate Statistical Machine Learning Methods for Genomic Prediction; Montesinos López, O.A., Montesinos López, A., Crossa, J., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 337–378. [Google Scholar]
- Zhang, Z.; Xu, Z.; Tan, J.; Zou, H. Multi-class support vector machine based on the minimization of class variance. Neural Process. Lett. 2021, 53, 517–533. [Google Scholar] [CrossRef]
- Megahed, H.A.; Farrag, A.E.H.A.; GabAllah, H.M.; AbdelRahman, M.A.; Badawy, R.M. Develop of a machine learning model to evaluate the hazards of sand dunes. Earth Sci. Inf. 2024, 17, 4001–4025. [Google Scholar] [CrossRef]
- Bai, Y.; Sun, Y.; Song, X.; Xu, H. An improved method for sand wave morphology discrimination in rivers by combining a flow resistance law and support vector machines. Int. J. Sed. Res. 2024, 39, 144–152. [Google Scholar] [CrossRef]
- Kok, Z.H.; Shariff, A.R.M.; Alfatni, M.S.M.; Khairunniza-Bejo, S. Support vector machine in precision agriculture: A review. Comput. Electron. Agric. 2021, 191, 106546. [Google Scholar] [CrossRef]
- Onyelowe, K.C.; Gnananandarao, T.; Ebid, A.M. Estimation of the erodibility of treated unsaturated lateritic soil using support vector machine-polynomial and-radial basis function and random forest regression techniques. Clean. Mater. 2022, 3, 100039. [Google Scholar] [CrossRef]
- Abdollahi, S.; Pourghasemi, H.R.; Ghanbarian, G.A.; Safaeian, R. Prioritization of effective factors in the occurrence of land subsidence and its susceptibility mapping using an SVM model and their different kernel functions. Bull. Eng. Geol. Environ. 2019, 78, 4017–4034. [Google Scholar] [CrossRef]
- Esmali Ouri, A.; Golshan, M.; Janizadeh, S.; Cerdà, A.; Melesse, A.M. Soil Erosion Susceptibility Mapping in Kozetopraghi Catchment, Iran: A Mixed Approach Using Rainfall Simulator and Data Mining Techniques. Land 2020, 9, 368. [Google Scholar] [CrossRef]
- Gupta, M.K.; Chandra, P. A Comprehensive Survey of Data Mining. Int. J. Inf. Technol. 2020, 12, 1243–1257. [Google Scholar] [CrossRef]
- Du, H.; Wang, J.; Han, C. High-Precision Remote Sensing Mapping of Aeolian Sand Landforms Based on Deep Learning Algorithms. Open Geosci. 2022, 14, 224–233. [Google Scholar] [CrossRef]
- Song, Y.; Chen, X.; Li, Y.; Fan, Y.; Collins, A.L. Quantifying the Provenance of Dune Sediments in the Taklimakan Desert Using Machine Learning, Multidimensional Scaling and Sediment Source Fingerprinting. Catena 2022, 210, 105902. [Google Scholar] [CrossRef]
- Gholami, H.; Mohamadifar, A.; Sorooshian, A.; Jansen, J.D. Machine-Learning Algorithms for Predicting Land Susceptibility to Dust Emissions: The Case of the Jazmurian Basin, Iran. Atmos. Pollut. Res. 2020, 11, 1303–1315. [Google Scholar] [CrossRef]
- Nabavi, S.O.; Haimberger, L.; Abbasi, R.; Samimi, C. Prediction of Aerosol Optical Depth in West Asia Using Deterministic Models and Machine Learning Algorithms. Aeolian Res. 2018, 35, 69–84. [Google Scholar] [CrossRef]
- de Vente, J.; Poesen, J. Predicting Soil Erosion and Sediment Yield at the Basin Scale: Scale Issues and Semi-Quantitative Models. Earth Sci. Rev. 2005, 71, 95–125. [Google Scholar] [CrossRef]
- East, A.E.; Sankey, J.B. Geomorphic and Sedimentary Effects of Modern Climate Change: Current and Anticipated Future Conditions in the Western United States. Rev. Geophys. 2020, 58, e2019RG000692. [Google Scholar] [CrossRef]
- Middleton, N. Variability and Trends in Dust Storm Frequency on Decadal Timescales: Climatic Drivers and Human Impacts. Geosciences 2019, 9, 261. [Google Scholar] [CrossRef]
- Ronchi, S.; Salata, S.; Arcidiacono, A.; Piroli, E.; Montanarella, L. Policy Instruments for Soil Protection among the EU Member States: A Comparative Analysis. Land Use Policy 2019, 82, 763–780. [Google Scholar] [CrossRef]
- Chanteloube, C.; Barrier, L.; Derakhshani, R.; Gadal, C.; Braucher, R.; Payet, V.; Léanni, L.; Narteau, C. Source-To-Sink Aeolian Fluxes from Arid Landscape Dynamics in the Lut Desert. Geoph. Res. Lett. 2022, 49, e2021GL097342. [Google Scholar] [CrossRef]
- Chen, G.; Liang, A.; Dong, Z.; Shi, W.; Li, C.; Nan, W.; Shao, T. Quantification of the aeolian sand source in the Ulan Buh Desert using the sediment source fingerprinting (SSF) method within MixSIAR modelling framework. Catena 2022, 219, 106579. [Google Scholar] [CrossRef]
- Noe, G.B.; Cashman, M.J.; Skalak, K.; Gellis, A.; Hopkins, K.G.; Moyer, D.; Webber, J.; Benthem, A.; Maloney, K.; Brakebill, J.; et al. Sediment dynamics and implications for management: State of the science from long-term research in the Chesapeake Bay watershed, USA. WIREs Water 2020, 7, e1454. [Google Scholar] [CrossRef]
- Uniyal, B.; Jha, M.K.; Verma, A.K.; Anebagilu, P.K. Identification of critical areas and evaluation of best management practices using SWAT for sustainable watershed management. Sci. Total Environ. 2020, 744, 140737. [Google Scholar] [CrossRef]
- Wu, B.; Shi, Z.; Zheng, H.; Peng, M.; Meng, S. Impact of sampling for landslide susceptibility assessment using interpretable machine learning models. Bull. Eng. Geol. Environ. 2024, 83, 1–19. [Google Scholar] [CrossRef]
- Hadek, A.; Wahbi, M.; Sebbah, B.; Maatouk, M.; Boulaassal, H.; El Kharki, O.; Alaoui, O.Y. Mapping Land Use and Assessing Coastal Urbanization Impacts: A Case Study in Tangier Northern Morocco. Environ. Res. Eng. Manag. 2024, 80, 60–74. [Google Scholar] [CrossRef]
- Jebur, M.N.; Pradhan, B.; Tehrany, M.S. Manifestation of LiDAR-derived parameters in the spatial prediction of landslides using novel ensemble evidential belief functions and support vector machine models in GIS. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 8, 674–690. [Google Scholar] [CrossRef]
- Nylén, T.; Hellemaa, P.; Luoto, M. Determinants of sediment properties and organic matter in beach and dune environments based on boosted regression trees. Earth Surf. Process. Landf. 2015, 40, 1137–1145. [Google Scholar] [CrossRef]
- Wang, J. (Ed.) Data Mining: Opportunities and Challenges; IGI Global: Hersey, PA, USA, 2003; 484p. [Google Scholar] [CrossRef]
- Brugnach, M.; Dewulf, A.; Pahl-Wostl, C.; Taillieu, T. Toward a relational concept of uncertainty: About knowing too little, knowing too differently, and accepting not to know. Ecol. Soc. 2008, 13, 30. [Google Scholar] [CrossRef]
- Ahmady-Birgani, H.; McQueen, K.G.; Moeinaddini, M.; Naseri, H. Sand Dune Encroachment and Desertification Processes of the Rigboland Sand Sea, Central Iran. Sci. Rep. 2017, 7, 1523. [Google Scholar] [CrossRef]
- Hamdan, M.A.; Refaat, A.A.; Abdel Wahed, M. Morphologic Characteristics and Migration Rate Assessment of Barchan Dunes in the Southeastern Western Desert of Egypt. Geomorphology 2016, 257, 57–74. [Google Scholar] [CrossRef]
- Xiao, J.; Xie, X.; Zhao, H.; Chen, C.; Ma, X.; Qu, J.; Yao, Z. Seasonal Changes and Migration of Longitudinal Dunes in the North-Eastern Rub’al Khali Desert. Aeolian Res. 2021, 51, 100710. [Google Scholar] [CrossRef]
Indicators | Resolution | References |
---|---|---|
Altitude | 30 m | Aster DEM, USGS (The United States Geological Survey) |
Aspect | 30 m | Aster DEM, USGS (The United States Geological Survey) |
Slope | 30 m | Aster DEM, USGS (The United States Geological Survey) |
Temperature | 100 m | Seqale watershed map (1:25,000), NRWMO (Natural Resources and Watershed Management Organization) |
Precipitation | 100 m | Seqale watershed map (1:25,000), NRWMO (Natural Resources and Watershed Management Organization) |
Evaporation | 100 m | Seqale watershed map (1:25,000), NRWMO (Natural Resources and Watershed Management Organization) |
Geomorphology | 100 m | Geology map (1:100,000), GSMEI (Geological Survey and Mineral Exploration of Iran) |
Pedology | 100 m | Pedology map (1:50,000), SWRI (Soil and Water Research Institute) |
Distance from roads | 100 m | Topography map (1:25,000), NCC (Iran National Cartographic Center) |
Distance from rivers | 100 m | Topography map (1:25,000), NCC (Iran National Cartographic Center) |
Floodplains | 100 m | Seqale watershed map (1:25,000), NRWMO (Natural Resources and Watershed Management Organization) |
Land use types | 100 m | Landsat satellite, USGS (The United States Geological Survey) |
Indicator | Effective Class | Density of Dune Areas (%) | Weight in Information Value Method | Weight in Density Area Method |
---|---|---|---|---|
Altitude | 1200 to 1400 m | 3.489 | 0.328 | 9.769 |
Slope | 2 to 5° | 3.442 | 0.3150 | 9.3020 |
Aspect | northeast | 3.1561 | 0.2281 | 6.4373 |
Precipitation | 250 to 500 mm | 2.6328 | 0.0456 | 1.1750 |
Temperature | 12 to 18 °C | 2.5166 | 0.0001 | 0.0047 |
Evaporation | 2500 to 3000 mm | 3.0888 | 0.2050 | 5.7251 |
Flood plains | Outside | 2.5346 | 0.0068 | 0.1711 |
Distance from the road | more than 3000 m | 3.1584 | 0.2273 | 6.4224 |
Distance from the river | 500 to 700 m | 2.7217 | 0.0785 | 2.0554 |
Geomorphology | Quaternary | 1.6955 | −41.2914 | 144.3974 |
Land use | Active dunes | 26.35 | 2.3491 | 238.3581 |
Pedology | XDL (Sabulous) | 16.80 | −41.2271 | 165.3120 |
Risk Class | Dunes Areas (%) | Density Within Each Class (%) | Area Covered by Dunes (km2) | Area Covered by Each Class (km2) | ||||
---|---|---|---|---|---|---|---|---|
IV | DA | IV | DA | IV | DA | IV | DA | |
Very high | 43.32 | 28.40 | 1.33 | 1.22 | 3.84 | 2.51 | 289.42 | 205.68 |
High | 26.98 | 42.00 | 0.48 | 0.62 | 2.39 | 3.72 | 497.20 | 597.02 |
Medium | 19.83 | 19.48 | 0.25 | 0.25 | 1.76 | 1.72 | 695.67 | 698.85 |
Low | 9.57 | 7.49 | 0.16 | 0.12 | 0.85 | 0.66 | 539.12 | 549.80 |
Very low | 0.29 | 2.65 | 0.01 | 0.07 | 0.03 | 0.24 | 348.83 | 316.71 |
Classification Algorithm | RMSE | MAE |
---|---|---|
Decision tree | 0.23 | 0.11 |
Random forest | 0.21 | 0.10 |
Boosting aggregate | 0.27 | 0.13 |
Support vector machine | 0.19 | 0.08 |
Neural network | 0.31 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bashiri, M.; Rahdari, M.R.; Serrano-Bernardo, F.; Rodrigo-Comino, J.; Rodríguez-Seijo, A. Defining a Method for Mapping Aeolian Sand Transport Susceptibility Using Bivariate Statistical and Machine Learning Methods—A Case Study of the Seqale Watershed, Eastern Iran. Sustainability 2025, 17, 8234. https://doi.org/10.3390/su17188234
Bashiri M, Rahdari MR, Serrano-Bernardo F, Rodrigo-Comino J, Rodríguez-Seijo A. Defining a Method for Mapping Aeolian Sand Transport Susceptibility Using Bivariate Statistical and Machine Learning Methods—A Case Study of the Seqale Watershed, Eastern Iran. Sustainability. 2025; 17(18):8234. https://doi.org/10.3390/su17188234
Chicago/Turabian StyleBashiri, Mehdi, Mohammad Reza Rahdari, Francisco Serrano-Bernardo, Jesús Rodrigo-Comino, and Andrés Rodríguez-Seijo. 2025. "Defining a Method for Mapping Aeolian Sand Transport Susceptibility Using Bivariate Statistical and Machine Learning Methods—A Case Study of the Seqale Watershed, Eastern Iran" Sustainability 17, no. 18: 8234. https://doi.org/10.3390/su17188234
APA StyleBashiri, M., Rahdari, M. R., Serrano-Bernardo, F., Rodrigo-Comino, J., & Rodríguez-Seijo, A. (2025). Defining a Method for Mapping Aeolian Sand Transport Susceptibility Using Bivariate Statistical and Machine Learning Methods—A Case Study of the Seqale Watershed, Eastern Iran. Sustainability, 17(18), 8234. https://doi.org/10.3390/su17188234