Influence of Altitude and Climatic Factors on the Floristic Composition of the Moorlands of the Guamote Canton, Ecuador: Key Revelations for Conservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Delimitation of Altitudinal Gradients
2.3. Database of Floristic Species and Bioclimatic Variables
2.4. Multivariate Analysis
3. Results
3.1. Floristic Characterisation by Altitudinal Gradients
3.2. Contribution of Bioclimatic Variables to Altitudinal Gradients
3.3. Contribution of Families to Altitudinal Gradients
3.4. Grouping
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ross, C.; Fildes, S.; Millington, A. Land-Use and Land-Cover Change in the Páramo of South-Central Ecuador, 1979–2014. Land 2017, 6, 46. [Google Scholar] [CrossRef]
- Zomer, M.; Ramsay, P. Post-fire changes in plant growth form composition in Andean páramo grassland. bioRxiv 2020. [Google Scholar] [CrossRef]
- García, V.J.; Márquez, C.O.; Rodríguez, M.V.; Orozco, J.J.; Aguilar, C.D.; Ríos, A.C. Páramo Ecosystems in Ecuador’s Southern Region: Conservation State and Restoration. Agronomy 2020, 10, 1922. [Google Scholar] [CrossRef]
- Hernández-Guzmán, A.; Payán, E.; Monroy-Vilchis, O. Hábitos alimentarios del Puma concolor (Carnivora: Felidae) en el Parque Nacional Natural Puracé, Colombia. Rev. De Biol. Trop. 2010, 59, 1285–1294. [Google Scholar] [CrossRef]
- Mosquera, G.M.; Lazo, P.X.; Célleri, R.; Wilcox, B.P.; Crespo, P. Runoff from tropical alpine grasslands increases with areal extent of wetlands. CATENA 2015, 125, 120–128. [Google Scholar] [CrossRef]
- Lasso, E.; Matheus-Arbeláez, P.; Rachel, G.E.; Garzón-López, C.; Cruz, M.; Leon-Garcia, I.V.; Aragón, L.; Ayarza-Páez, A.; Yuste, J.C. Homeostatic Response to Three Years of Experimental Warming Suggests High Intrinsic Natural Resistance in the Páramos to Warming in the Short Term. Front. Ecol. Evol. 2021, 9, 615006. [Google Scholar] [CrossRef]
- Peyre, G.; Osorio, D.; François, R.; Anthelme, F. Mapping the páramo land-cover in the Northern Andes. Int. J. Remote Sens. 2021, 42, 7777–7797. [Google Scholar] [CrossRef]
- Londoño, C.; Cleef, A.; Madriñán, S. Angiosperm flora and biogeography of the páramo region of Colombia, Northern Andes. Flora 2014, 209, 81–87. [Google Scholar] [CrossRef]
- Rangel-Churio, J.O. La biodiversidad de Colombia: Significado y distribución regional. Rev. Acad. Colomb. Cienc. Exactas Fis. Nat. 2015, 39, 176–200. [Google Scholar] [CrossRef]
- Peyre, G.; Lenoir, J.; Karger, D.N.; Gomez, M.; Gonzalez, A.; Broennimann, O.; Guisan, A. The fate of páramo plant assemblages in the sky islands of the northern Andes. J. Veg. Sci. 2020, 31, 967–980. [Google Scholar] [CrossRef]
- Farley, K.A.; Bremer, L.L.; Harden, C.P.; Hartsig, J. Changes in carbon storage under alternative land uses in biodiverse Andean grasslands: Implications for payment for ecosystem services. Conserv. Lett. 2012, 6, 21–27. [Google Scholar] [CrossRef]
- Chacón-Moreno, E.; Rodríguez-Morales, M.; Paredes, D.; del Moral, P.S.; Albarrán, A. Impacts of Global Change on the Spatial Dynamics of Treeline in Venezuelan Andes. Front. Ecol. Evol. 2021, 9, 615223. [Google Scholar] [CrossRef]
- Patiño, S.; Hernández, Y.; Plata, C.; Domínguez, I.; Daza, M.; Oviedo-Ocaña, R.; Buytaert, W.; Ochoa-Tocachi, B. Influence of land use on hydro-physical soil properties of Andean páramos and its effect on streamflow buffering. CATENA 2021, 202, 105227. [Google Scholar] [CrossRef]
- Sklenář, P.; Hedberg, I.; Cleef, A.M. Island biogeography of tropical alpine floras. J. Biogeogr. 2013, 41, 287–297. [Google Scholar] [CrossRef]
- Cuesta, F.; Muriel, P.; Llambí, L.D.; Halloy, S.; Aguirre, N.; Beck, S.; Carilla, J.; Meneses, R.I.; Cuello, S.; Grau, A.; et al. Latitudinal and altitudinal patterns of plant community diversity on mountain summits across the tropical Andes. Ecography 2017, 40, 1381–1394. [Google Scholar] [CrossRef]
- Le Roux, P.; McGeoch, M. Rapid range expansion and community reorganization in response to warming. Glob. Chang. Biol. 2008, 14, 2950–2962. [Google Scholar] [CrossRef]
- Diazgranados, M.; Tovar, C.; Etherington, T.R.; Rodríguez-Zorro, P.A.; Castellanos-Castro, C.; Rueda, M.G.; Flantua, S.G. Ecosystem services show variable responses to future climate conditions in the Colombian páramos. PeerJ 2021, 9, e11370. [Google Scholar] [CrossRef]
- Aguayo, V.S.E.; Suárez-Duque, D. Factores socioambientales que favorecen la conservación in situ de tubérculos alto andinos nativos en los cantones de Colta y Guamote en Chimborazo, Ecuador. Soc. Ambient. 2020, 22, 72–96. [Google Scholar] [CrossRef]
- Li, Q.; Qiu, J.; Liang, Y.; Lan, G. Soil bacterial community changes along elevation gradients in karst graben basin of Yunnan-Kweichow Plateau. Front. Microbiol. 2022, 13, 1054667. [Google Scholar] [CrossRef]
- Rapp, J.; Silman, M.R. Diurnal, seasonal, and altitudinal trends in microclimate across a tropical montane cloud forest. Clim. Res. 2012, 55, 17–32. [Google Scholar] [CrossRef]
- Herrera, A.H.; Lencinas, M.V.; Pastur, G.M. Environmental drivers of plant community assembly in Isla de los Estados at Southern Atlantic Ocean. Community Ecol. 2018, 19, 35–44. [Google Scholar] [CrossRef]
- Abbott, R.J.; Brennan, A.C. Altitudinal gradients, plant hybrid zones and evolutionary novelty. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130346. [Google Scholar] [CrossRef] [PubMed]
- Núñez Rodríguez, J.d.J.; Carvajal Rodríguez, J.C.; Mendoza Ferreira, O. Tamaño y peso de granos de café en relación con rangos altitudinales en zonas cafetaleras de Toledo, Norte de Santander (Colombia). Cienc. Tecnol. Agropecu. 2021, 22, 1820. [Google Scholar] [CrossRef]
- Caranqui, J.; Base de datos del Herbario CHEP. Versión 1.0. Escuela Superior Politécnica del Chimborazo. . 2018. Available online: www.espoch.edu.ec (accessed on 13 November 2024).
- Estrada Sánchez, J.C. Análisis Multivariante de la Variación Altitudinal de la Composición Florística en la Cordillera de Mérida. Ph.D. Thesis, Venezuela. Universidad de los Andes, Venezuela. Universidad de los Andes, 2003. [Google Scholar]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Murillo-Avalos, C.L.; Cubilla-Montilla, M.; Sánchez, M.Á.C.; Vicente-Galindo, P. What environmental social responsibility practices do large companies manage for sustainable development? Corp. Soc. Responsib. Environ. Manag. 2020, 28, 153–168. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal Component Analysis: A Review and Recent Developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Lvarez, F.J.; Villardon, P.G. A proposal for spatio-temporal analysis of traffic matrices using HJ-biplot. In Proceedings of the 2015 IEEE International Workshop on Measurements & Networking (M&N), Coimbra, Portugal, 12–13 October 2015; p. 1. [Google Scholar]
- Gabriel, K.R. The biplot graphic display of matrices with application to principal component analysis. Biometrika 1971, 58, 453–467. [Google Scholar] [CrossRef]
- Aravindha, N.; Suma, G.; Reddy, K. Clustering In Multimedia for Pattern Recognition. Res. Inven. Int. J. Eng. Sci. 2015, 4, 60–68. [Google Scholar]
- Deokar, S.T. Text Documents Clustering Using K Means Algorithm. Int. J. Technol. Eng. Sci. 2013, 1, 282–286. [Google Scholar]
- Ghatak, A.; Chaturvedi, P.; Weckwerth, W. Metabolomics in Plant Stress Physiology. In Molecular Stress Physiology of Plants; Roychoudhury, D.K., Tripathi, D.K., Eds.; Springer: New Delhi, India, 2017; pp. 233–254. [Google Scholar] [CrossRef]
- Ghatak, A.; Chaturvedi, P.; Paul, P.; Agrawal, G.K.; Rakwal, R.; Kim, S.T.; Weckwerth, W.; Gupta, R. Proteomics survey of Solanaceae family: Current status and challenges ahead. J. Proteom. 2017, 169, 41–57. [Google Scholar] [CrossRef]
- Navarro-González, I.; Periago, M.J. El tomate, ¿alimento saludable y/o funcional? Rev. Española De Nutr. Humana Y Dietética 2016, 20, 323–335. [Google Scholar] [CrossRef]
- Estupiñán-Jiménez, M. Uso tradicional de plantas en comunidades rurales del páramo andino. Rev. Andin. Cienc. Soc. 2010, 8, 145–161. [Google Scholar]
- Pedraza-Peñalosa, P.; Salinas, N.R.; Virnig, A.L.S.; Wheeler, W.C. Preliminary phylogenetic analysis of the Andean clade and the placement of new Colombian blueberries (Ericaceae, Vaccinieae). PhytoKeys 2015, 49, 13–31. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.E. Notes on the genus Erica. Bull. Torrey Bot. Club 1948, 75, 482–487. [Google Scholar]
- Judd, W.S.; Campbell, C.S.; Kellogg, E.A.; Stevens, P.F.; Donoghue, M.J. Plant Systematics: A Phylogenetic Approach; Sinauer Associates: Sunderland, MA, USA, 1993. [Google Scholar]
- Villarreal, M. Las Plantas del Páramo Andino: Diversidad y Usos Tradicionales; Editorial Andina: Manizales, Colombia, 2000. [Google Scholar]
- Zeng, X.; Guo, L.; Chen, S. Chemical Constituents and Pharmacological Actions of Caprifoliaceae Plants. Chin. J. Nat. Med. 2000, 2, 50–60. [Google Scholar]
- Pringle, J.S. Gentianaceae. In Flora of North America North of Mexico; Flora of North America Editorial, Committee, Ed.; Oxford University Press: Oxford, UK, 2014; Volume 17, pp. 32–45. [Google Scholar]
- Rybczyński, J.J.; Davey, M.R.; Mikula, A. The Gentianaceae—Volume 1: Characterization and Ecology; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Wolfender, J.L.; Hiller, K.; Hostettmann, K. Biologically active compounds from the Gentianaceae. Planta Medica 2015, 61, 34–48. [Google Scholar] [CrossRef]
- Sylvester, S.P.; Soreng, R.J.; Gilliespie, L.J. Resolving páramo Poa (Poaceae): morphometric and phylogenetic analysis of the ‘Cucullata complex’ of north-west South America. Bot. J. Linn. Soc. 2021, 197, 104–146. [Google Scholar] [CrossRef]
- Briceño, B.; Morillo, M.G. Poaceae: Monocotyledons of the Venezuelan Páramos; Editorial Fundación Polar: Caracas, Venezuela, 2006. [Google Scholar]
- Ezcurra, C. Flora and Vegetation of the High Andes. In Alpine Plants of the Andes; Martine, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 82–101. [Google Scholar]
- Báez, S.; Jaramillo, L.; Cuesta, F.; Donoso, D.A. Effects of climate change on Andean biodiversity: A synthesis of studies published until 2015. Neotrop. Biodivers. 2016, 2, 181–194. [Google Scholar] [CrossRef]
- Cresso, M.; Clerici, N.; Sanchez, A.; Jaramillo, F. Future Climate Change Renders Unsuitable Conditions for Paramo Ecosystems in Colombia. Sustainability 2020, 12, 8373. [Google Scholar] [CrossRef]
- Giacomotti, J. Altitudinal Gradients and Floral Diversity in the Andes. Bot. J. Linn. Soc. 2021, 195, 298–314. [Google Scholar] [CrossRef]
- Rojas-Martínez, C.; Flores-Olvera, H. Florística de la Sierra El Pelado, Acatlán, Puebla, México. Rev. Mex. De Biodivers. 2019, 90, e902694. [Google Scholar] [CrossRef]
- Alzate-Guarín, F.; Murillo-Serna, J.S. Angiosperm flora on the páramos of northwestern Colombia: diversity and affinities. PhytoKeys 2016, 70, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Durán-Suárez, L.R.; Terneus-Jácome, H.E.; Gavilán-Díaz, R.A.; Posada-García, J.A. Composición y estructura de un ensamble de plantas acuáticas vasculares de una represa alto andina (Santander), Colombia. Actual. Biológicas 2017, 33, 33–50. [Google Scholar] [CrossRef]
- Cuello, N.L.; Cleef, A.M.; Aymard, G. Asteraceae and their role in the paramo ecosystem. Flora Neo-Trop. 2010, 108, 32–56. [Google Scholar]
- Suárez-Mota, M.E.; Villaseñor, J.L.; López-Mata, L. La región del Bajío, México y la conservación de su diversidad florística. Rev. Mex. Biodivers. 2015, 86, 799–808. [Google Scholar] [CrossRef]
- Villaseñor, J.L.; Ortíz, E. High species richness of Asteraceae in the Bajío region. Rev. Mex. Biodivers. 2012, 83, 12–20. [Google Scholar]
- Hurtado-Huarcaya, J.; Castañeda, R.; Albán, J. Asteráceas medicinales en dos comunidades andinas del sur del Perú: Quinua (Ayacucho) y Lircay (Huancavelica). Boletín Latinoam. Y Del Caribe De Plantas Med. Y Aromáticas 2021, 20, 351–366. [Google Scholar] [CrossRef]
- Olaya-Angarita, J.A.; Díaz-Pérez, C.N.; Morales-Puentes, M.E. Composición y estructura de la transición bosque-páramo en el corredor Guantiva-La Rusia (Colombia). Rev. De Biol. Trop. 2019, 67, 755–768. [Google Scholar] [CrossRef]
- Pontes, T.; Lima, L.; Moraes, M. Apiaceae diversity in the high Andes of northwest Colombia. Ann. Bot. 2004, 94, 237–245. [Google Scholar] [CrossRef]
- Parra Sánchez, E.; Armenteras, D.; Retana, J. Edge Influence on Diversity of Orchids in Andean Cloud Forests. Forests 2016, 7, 63. [Google Scholar] [CrossRef]
Contributions per Row | Axis 1 | Axis 2 | Axis 3 | Contributions per Row | Axis 1 | Axis 2 | Axis 3 |
---|---|---|---|---|---|---|---|
Amaryllidaceae | 92 | 175 | 733 | Grossulariaceae | 966 | 27 | 7 |
Apiaceae | 1 | 993 | 6 | Iridaceae | 966 | 27 | 7 |
Amaranthaceae | 14 | 934 | 52 | Lamiaceae | 345 | 633 | 21 |
Apocynaceae | 109 | 809 | 82 | Lycopodiaceae | 298 | 403 | 299 |
Araliaceae | 966 | 27 | 7 | Malvaceae | 109 | 809 | 82 |
Asteraceae | 995 | 5 | 0 | Oleaceae | 625 | 300 | 74 |
Berberidaceae | 26 | 29 | 946 | Loasaceae | 966 | 27 | 7 |
Brassicaceae | 109 | 809 | 82 | Loranthaceae | 966 | 27 | 7 |
Bromeliaceae | 398 | 437 | 165 | Melastomataceae | 367 | 149 | 484 |
Blechnaceae | 966 | 27 | 7 | Nyctaginaceae | 966 | 27 | 7 |
Boraginaceae | 966 | 27 | 7 | Onagraceae | 794 | 39 | 167 |
Calceolariaceae | 819 | 65 | 116 | Piperaceae | 607 | 393 | 1 |
Caprifoliaceae | 332 | 98 | 570 | Orchidaceae | 121 | 793 | 85 |
Caryophyllaceae | 625 | 300 | 74 | Pentaphyllacaceae | 390 | 172 | 438 |
Crassulaceae | 625 | 300 | 74 | Orobanchaceae | 367 | 149 | 484 |
Campanulaceae | 367 | 149 | 484 | Oxalidaceae | 756 | 84 | 160 |
Coriariaceae | 298 | 403 | 299 | Phytolaccaceae | 966 | 27 | 7 |
Cunoniaceae | 298 | 403 | 299 | Plantaginaceae | 756 | 84 | 160 |
Cyperaceae | 239 | 367 | 393 | Poaceae | 325 | 246 | 429 |
Davalliaceae | 966 | 27 | 7 | Polygalaceae | 145 | 1 | 854 |
Dryopteridaceae | 966 | 27 | 7 | Polanaceae | 354 | 518 | 128 |
Equisetaceae | 298 | 403 | 299 | Polygonaceae | 966 | 27 | 7 |
Ericaceae | 602 | 363 | 36 | Otamogetonaceae | 390 | 172 | 438 |
Escalloniaceae | 298 | 403 | 299 | Tropaeolaceae | 625 | 300 | 74 |
Fabaceae | 821 | 95 | 84 | Verbenaceae | 1 | 934 | 65 |
Gentianaceae | 251 | 721 | 28 | Ranunculaceae | 756 | 84 | 160 |
Hypericaceae | 251 | 721 | 28 | Rosaceae | 343 | 656 | 0 |
Geraniaceae | 756 | 84 | 160 | Rubiaceae | 5 | 169 | 826 |
Gesneriaceae | 966 | 27 | 7 | Tropaeolaceae | 966 | 27 | 7 |
Family | Species |
---|---|
Asteraceae | Ambrosia arborescens, Achilea millefolium, Baccharis latifolia, Baccharis prunifolia, Baccharis emarginata, Baccharis teindalensis, Baccharis macrantha, Monticalia arbutifolia, Monticalia stuebelii, Gynoxys hallii, Gynoxys buxifolia, Taraxacum officinale, Plagiocheilus sp., Grosvenoria campii, Gazania rigens, Chaptalia sp., Conyza bonariensis, Ageratina pichinchensis, Gamochaeta americana, Ageratina sp., Hieracium frigidum, Lucilia sp., Antennaria sp., Tridax stuebelii, Viguiera quitensis, Tagetes multiflora, Diplostephium glandulosum, and Lasiocephalus involucrata |
Amaranthaceae | Alternanthera sp. |
Calceolariaceae | Calceolaria ferruginea |
Caprifoliaceae | Valeriana cernua, Valeriana microphylla, Valeriana plantaginea, Valeriana decusata, and Sambucus nigra |
Cyperaceae | Uncinia phleoides, Rhynchospora vulcani, Rhynchospora macrochaeta, Schoenoplectus californicus, and Carex pichinchensis |
Ericaceae | Ceratostema alatum, Disterigma empetrifolium, Gaultheria sp., Pernettya prostrata, Macleania sp., and Vaccinium floribundum |
Fabaceae | Medicago polymorpha, Lupinus, Trifolium, and Mimosa quitensis |
Gentianaceae | Halenia gracilis, Gentianella rapunculoides, and Gentianella diffusa |
Hypericaceae | Hypericum strictum, Hypericum lancifolium, Hypericum lancioides, and Hypericum quitense |
Lamiaceae | Salvia corrugata, Salvia macrostachya, Salvia leucophylla, Salvia sagittata, Marrubium vulgare, Stachys elliptica, and Clinopodium nubigenum |
Onagraceae | Fuchsia loxensis, Fuchsia hybrida, Fuchsia vulcanica, and Oenothera epilobiifolia |
Poaceae | Agrostis perennans, Neurolepis aristata, Bromus pitensis, Stipa ichu, and Cortaderia jubata |
Polygalaceae | Monnina crassifolia |
Solanaceae | Solanum radicans, Solanum siphonobasis, Solanum colombianum, Solanum aloysiifolium, Solanum interandinum, Solanum barbulatum, Capsicum annuum var. Anuu, and Nicotiana sp. |
Verbenaceae | Stachytarpheta sp. |
Rosaceae | Rubus adenotrichos, Lachemilla orbiculata, Acaena elongata, Hesperomeles obtusifolia, and Lachemilla nivalis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cushquicullma-Colcha, D.F.; Ati-Cutiupala, G.M.; Guilcapi-Pacheco, E.D.; Villacis-Uvidia, J.F.; Brito-Mancero, M.Y.; Vaca-Cárdenas, P.V.; Vasco-Lucio, M.M.; Muñoz-Jácome, E.A.; Vaca-Cárdenas, M.L. Influence of Altitude and Climatic Factors on the Floristic Composition of the Moorlands of the Guamote Canton, Ecuador: Key Revelations for Conservation. Sustainability 2025, 17, 383. https://doi.org/10.3390/su17020383
Cushquicullma-Colcha DF, Ati-Cutiupala GM, Guilcapi-Pacheco ED, Villacis-Uvidia JF, Brito-Mancero MY, Vaca-Cárdenas PV, Vasco-Lucio MM, Muñoz-Jácome EA, Vaca-Cárdenas ML. Influence of Altitude and Climatic Factors on the Floristic Composition of the Moorlands of the Guamote Canton, Ecuador: Key Revelations for Conservation. Sustainability. 2025; 17(2):383. https://doi.org/10.3390/su17020383
Chicago/Turabian StyleCushquicullma-Colcha, Diego Francisco, Guicela Margoth Ati-Cutiupala, Edmundo Danilo Guilcapi-Pacheco, Juan Federico Villacis-Uvidia, Marcela Yolanda Brito-Mancero, Pedro Vicente Vaca-Cárdenas, Martha Marisol Vasco-Lucio, Eduardo Antonio Muñoz-Jácome, and Maritza Lucia Vaca-Cárdenas. 2025. "Influence of Altitude and Climatic Factors on the Floristic Composition of the Moorlands of the Guamote Canton, Ecuador: Key Revelations for Conservation" Sustainability 17, no. 2: 383. https://doi.org/10.3390/su17020383
APA StyleCushquicullma-Colcha, D. F., Ati-Cutiupala, G. M., Guilcapi-Pacheco, E. D., Villacis-Uvidia, J. F., Brito-Mancero, M. Y., Vaca-Cárdenas, P. V., Vasco-Lucio, M. M., Muñoz-Jácome, E. A., & Vaca-Cárdenas, M. L. (2025). Influence of Altitude and Climatic Factors on the Floristic Composition of the Moorlands of the Guamote Canton, Ecuador: Key Revelations for Conservation. Sustainability, 17(2), 383. https://doi.org/10.3390/su17020383