Does the Inflow of Rural-to-Urban Migration Increase Firms’ Productivity?
Abstract
1. Introduction
2. Hypothesis Development
2.1. Agglomeration Effect
2.2. Technology Efficiency
2.3. Cost Effectiveness
3. Model Specification and Data Description
3.1. Firm-Level Productivity Measurement
3.2. Model Specification
3.3. Data Description
4. Empirical Results
4.1. Baseline Results
4.2. Heterogeneity Analysis
4.2.1. State-Owned and Private Firms
4.2.2. Non-Exporting Firms and Exporting Firms
4.2.3. Capital, Technology-Intensive Firms, and Labor-Intensive Firms
4.2.4. High Minimum Wage and Low Minimum Wage Level
4.3. Robustness Check
4.3.1. Change the Measurement Methods of Total Factor Productivity
4.3.2. Change the Core Explanatory Variable to the Rural Migrants in 2000
4.3.3. Instrument Variables Method
5. Conclusions and Discussion
5.1. Conclusions
5.2. Policy Implications
5.3. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fang, C.; Yang, D.; Wang, M. Migration and Labor Mobility in China; MPRA Paper No. 19187; University Library of Munich: Munich, Germany, 2009; Available online: https://ideas.repec.org/p/pra/mprapa/19187.html (accessed on 20 October 2025).
- Bryan, G.; Morten, M. The Aggregate Productivity Effects of Internal Migration: Evidence from Indonesia. J. Polit. Econ. 2019, 127, 2229–2268. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, X.; Wang, X.; Glauben, T. The Impact of Parental Migration on Children’s School Performance in Rural China. China Econ. Rev. 2014, 31, 43–54. [Google Scholar] [CrossRef]
- United Nations (UN). Sustainable Development Goals Report 2020; United Nations: New York, NY, USA, 2020. [Google Scholar]
- International Labour Organization (ILO). World Employment and Social Outlook 2022: The Role of Migration for Inclusive Growth; ILO: Geneva, Switzerland, 2022. [Google Scholar]
- National Bureau of Statistics of China. China Statistical Yearbook 2021, 3rd ed.; China Statistics Press: Beijing, China, 2021.
- Dustmann, C.; Fabbri, F.; Preston, I. The Impact of Immigration on the British Labour Market. Econ. J. 2005, 115, F324–F341. [Google Scholar] [CrossRef]
- Combes, P.-P.; Démurger, S.; Li, S. Productivity Gains from Agglomeration and Migration in the People’s Republic of China between 2002 and 2013. Asian Dev. Rev. 2017, 34, 184–200. [Google Scholar] [CrossRef]
- Tombe, T.; Zhu, X. Trade, Migration, and Productivity: A Quantitative Analysis of China. Am. Econ. Rev. 2019, 109, 1843–1872. [Google Scholar] [CrossRef]
- Kangasniemi, M.; Mas, M.; Robinson, C.; Serrano, L. The Economic Impact of Migration: Productivity Analysis for Spain and the UK. J. Product. Anal. 2012, 38, 333–343. [Google Scholar] [CrossRef]
- Krugman, P. What’s New about the New Economic Geography? Oxf. Rev. Econ. Policy 1998, 14, 7–17. [Google Scholar] [CrossRef]
- Imbert, C.; Seror, M.; Zhang, Y.; Zylberberg, Y. Migrants and Firms: Evidence from China. Am. Econ. Rev. 2022, 112, 1885–1914. [Google Scholar] [CrossRef]
- Fujita, M.; Mori, T. Frontiers of the New Economic Geography. Pap. Reg. Sci. 2005, 84, 377–405. [Google Scholar] [CrossRef]
- Overman, H.G.; Rice, P.; Venables, A.J. Economic Linkages across Space. Reg. Stud. 2010, 44, 17–33. [Google Scholar] [CrossRef]
- Krugman, P. The New Economic Geography, Now Middle-Aged. Reg. Stud. 2011, 45, 1–7. [Google Scholar] [CrossRef]
- Chassamboulli, A.; Palivos, T. A Search-Equilibrium Approach to the Effects of Immigration on Labor Market Outcomes. Int. Econ. Rev. 2014, 55, 111–129. [Google Scholar] [CrossRef]
- Ye, G.; Wang, Y.; Zhang, Y.; Wang, L.; Xie, H.; Fu, Y.; Zuo, J. Impact of Migrant Workers on Total Factor Productivity in Chinese Construction Industry. Sustainability 2019, 11, 926. [Google Scholar] [CrossRef]
- Audretsch, D.B.; Feldman, M.P. R&D Spillovers and the Geography of Innovation and Production. Am. Econ. Rev. 1996, 86, 630–640. [Google Scholar]
- Duranton, G.; Puga, D. Micro-Foundations of Urban Agglomeration Economies. In Handbook of Regional and Urban Economics; Henderson, J.V., Thisse, J.-F., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 4, pp. 2063–2117. [Google Scholar]
- Hao, T.; Sun, R.; Tombe, T.; Zhu, X. The Effect of Migration Policy on Growth, Structural Change, and Regional Inequality in China. J. Monet. Econ. 2020, 113, 112–134. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, J. Global City and Precarious Work of Migrants in China: A Survey of Seven Cities. Urban Geogr. 2017, 38, 1479–1496. [Google Scholar] [CrossRef]
- Fortier, A.; Lewis, G. Migrant Horizons. Mobilities 2006, 1, 307–311. [Google Scholar] [CrossRef]
- Saracoğlu, D.Ş.; Roe, T.L. Regional Cost-of-Living Differentials, Rural–Urban Migration, and the Contribution to Economic Growth. Pap. Reg. Sci. 2019, 98, 973–994. [Google Scholar] [CrossRef]
- United Nations Industrial Development Organization (UNIDO). Industrial Development Report 2022: The Future of Industrialization in a Post-COVID World; UNIDO: Vienna, Austria, 2022. [Google Scholar]
- OECD. Labour Migration and Productivity: Lessons from Emerging Economies; OECD Publishing: Paris, France, 2021. [Google Scholar]
- Neumark, D.; Salas, J.I.; Wascher, W. Revisiting the Minimum Wage–Employment Debate: Throwing Out the Baby with the Bathwater? ILR Rev. 2014, 67, 608–648. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X. Does Labor Mobility Follow the Inter-Regional Transfer of Labor-Intensive Manufacturing? The Spatial Choices of China’s Migrant Workers. Habitat Int. 2022, 124, 102559. [Google Scholar] [CrossRef]
- Chan, K.W.; Buckingham, W. Is China Abolishing the Hukou System? China Q. 2008, 195, 582–606. [Google Scholar] [CrossRef]
- Wu, X.; Treiman, D.J. The Household Registration System and Social Stratification in China, 1955–1996. Demography 2004, 41, 363–384. [Google Scholar] [CrossRef]
- Knight, J.; Song, L. China’s Emerging Urban Labor Markets: Income and Employment; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Zhang, J.; Wang, L.; Wang, S. Migration and Urban Productivity in China. Econ. Dev. Cult. Change 2020, 69, 489–519. [Google Scholar]
- Fang, Y.; Zhang, L.; Rozelle, S. Migration, Remittances, and the Rural Economy in China. J. Comp. Econ. 2021, 49, 789–810. [Google Scholar]
- Glaeser, E.L.; Kerr, S.P.; Kerr, W.R. Entrepreneurship and Urban Growth: An Empirical Assessment with Historical Mines. Rev. Econ. Dyn. 2015, 18, 474–489. [Google Scholar] [CrossRef]
- Chen, C.; Lu, M. Low-End Lock-in and Productivity Trap in China’s Manufacturing Firms. China Econ. Rev. 2022, 74, 101799. [Google Scholar]
- Acemoglu, D.; Restrepo, P. Robots and Jobs: Evidence from US Labor Markets. J. Polit. Econ. 2020, 128, 2188–2244. [Google Scholar] [CrossRef]
- Qian, Y.; Xu, C. Innovation and Incentives in China’s Transitional Economy. J. Comp. Econ. 2020, 48, 128–150. [Google Scholar]
- Zhang, Y.; Li, S.; Chen, X. Exporting and Productivity in China: The Role of Human Capital and Labor Market Institutions. World Dev. 2020, 135, 1050877. [Google Scholar]
- Tang, J.; Huang, L. Technological Intensity, Labor Heterogeneity, and Productivity in Chinese Manufacturing Firms. Econ. Syst. 2021, 45, 100891. [Google Scholar]
- Hiroki, T.; Tang, H.; Zhao, J. Productivity Measurement in Manufacturing Firms. J. Ind. Econ. 2022, 70, 123–145. [Google Scholar]
- Levinsohn, J.; Petrin, A. Estimating Production Functions Using Inputs to Control for Unobservables. Rev. Econ. Stud. 2003, 70, 317–341. [Google Scholar] [CrossRef]
- Olley, G.S.; Pakes, A. The Dynamics of Productivity in the Telecommunications Equipment Industry. Econometrica 1996, 64, 1263–1297. [Google Scholar] [CrossRef]
- Petrin, A.; Poi, B.P.; Levinsohn, J. Production Function Estimation in Stata Using Inputs to Control for Unobservables. Stata J. 2004, 4, 113–123. [Google Scholar] [CrossRef]
- Yu, Q.; Li, Y.; Zhu, Y.; Chen, B.; Wang, Q.; Huang, D.; Wen, C. Spatiotemporal Divergence and Convergence Test of Green Total Factor Productivity of Grain in China: Based on the Dual Perspective of Carbon Emissions and Surface Source Pollution. Environ. Sci. Pollut. Res. 2023, 30, 80478–80495. [Google Scholar] [CrossRef] [PubMed]
- Cai, F.; Wang, M.; Wang, M. Growth and Structural Changes in Employment in Transition China. J. Comp. Econ. 2010, 38, 71–81. [Google Scholar] [CrossRef]
- Xing, C.; Zhang, J. The Preference for Larger Cities in China: Evidence from Rural–Urban Migrants. China Econ. Rev. 2017, 43, 72–90. [Google Scholar] [CrossRef]
- Zhao, Q. Migration and Wages: Evidence from China’s Mini-Census. J. Labor Econ. 2020, 38, 123–145. [Google Scholar]
- Brandt, L.; Van Biesebroeck, J.; Zhang, Y. Creative Accounting or Creative Destruction? Firm-Level Productivity Growth in Chinese Manufacturing. J. Dev. Econ. 2012, 97, 339–351. [Google Scholar] [CrossRef]
- Lu, Y.; Yao, Y. Productivity and Firm Size: Evidence from Chinese Manufacturing. Econ. Inq. 2012, 50, 123–145. [Google Scholar]
- Yu, J.; Shen, K.; Liu, D. Rural–Urban Migration, Substitutability of Human Capital and City Productivity: Evidence from China. Rev. Dev. Econ. 2015, 19, 877–891. [Google Scholar] [CrossRef]
- Borjas, G.J. The Economic Benefits from Immigration. J. Econ. Perspect. 1995, 9, 3–22. [Google Scholar] [CrossRef]
- Combes, P.-P.; Duranton, G.; Gobillon, L. The Productivity Advantages of Large Cities: Distinguishing Agglomeration from Firm Selection. Econometrica 2012, 80, 2543–2594. [Google Scholar] [CrossRef]
- Aitken, B.J.; Harrison, A.E. Do Domestic Firms Benefit from Direct Foreign Investment? Evidence from Venezuela. Am. Econ. Rev. 1999, 89, 605–618. [Google Scholar] [CrossRef]
- Coad, A.; Segarra, A.; Teruel, M. Like Milk or Wine: Does Firm Performance Improve with Age? Struct. Change Econ. Dyn. 2013, 24, 173–189. [Google Scholar] [CrossRef]
- Cheng, J. Source of Urban Vitality: Systematic Effects of Migrant Population on the Development of Urban Economy. Chin. J. Urban Environ. Stud. 2019, 7, 1950005. [Google Scholar] [CrossRef]
- OECD. Implications of Remote Working Adoption on Place-Based Policies: A Focus on G7 Countries; OECD Publishing: Paris, France, 2021. [Google Scholar] [CrossRef]
- ILO. World Employment and Social Outlook: Trends 2023; International Labour Office: Geneva, Switzerland, 2022; Available online: https://www.ilo.org/sites/default/files/wcmsp5/groups/public/%40dgreports/%40inst/documents/publication/wcms_865332.pdf (accessed on 20 October 2025).
- Wang, Y.; Conesa, J.C. The Role of Demographics and Migration for the Future of Economic Growth in China. Eur. Econ. Rev. 2022, 144, 104076. [Google Scholar] [CrossRef]
- Gu, W.; Hou, F.; Picot, G. Immigration and Firm Productivity: Evidence from the Canadian Employer-Employee Dynamics Database. J. Product. Anal. 2020, 54, 121–137. [Google Scholar] [CrossRef]
- Nadiri, M.I. Some Approaches to the Theory and Measurement of Total Factor Productivity: A Survey. J. Econ. Lit. 1970, 8, 1137–1177. [Google Scholar]
- UNIDO. Industrial Development Report 2022: The Future of Industrialization in a Post-Pandemic World; United Nations Industrial Development Organization: Vienna, Austria, 2022; Available online: https://www.unido.org/sites/default/files/unido-publications/2023-03/IDR-2022-en.pdf (accessed on 20 October 2025).
- Solow, R.M. A Contribution to the Theory of Economic Growth. Q. J. Econ. 1956, 70, 65–94. [Google Scholar] [CrossRef]
- Solow, R.M. Technical Change and the Aggregate Production Function. Rev. Econ. Stat. 1957, 39, 312–320. [Google Scholar] [CrossRef]
- Card, D. The Impact of the Mariel Boatlift on the Miami Labor Market. ILR Rev. 1990, 43, 245–257. [Google Scholar] [CrossRef]
- McMillan, M.S.; Rodrik, D. Globalization, Structural Change and Productivity Growth; NBER Working Paper No. 17143; National Bureau of Economic Research: Cambridge, MA, USA, 2011. [Google Scholar] [CrossRef]
- Holl, A. Highways and Productivity in Manufacturing Firms. J. Urban Econ. 2016, 93, 121–130. [Google Scholar] [CrossRef]
- Gibbons, S.; Lyytikäinen, T.; Overman, H.G.; Sanchis-Guarner, R. New Road Infrastructure: The Effects on Firms. J. Urban Econ. 2017, 110, 35–50. [Google Scholar] [CrossRef]
- Chen, J. Engel’s Law and Rural Consumption in China. Econ. Dev. Cult. Change 2022, 70, 123–145. [Google Scholar]
- Curtis, C.C. Economic reforms and the evolution of China’s total factor productivity. Rev. Econ. Dyn. 2016, 21, 225–245. [Google Scholar] [CrossRef]
| Variable | Definition | Obs. | Mean | Std. | Min | Max | |
|---|---|---|---|---|---|---|---|
| Output | lnY | Log (Value added) Unit: thousand yuan | 194,800 | 8.727 | 1.343 | 0 | 18.715 |
| Input | lnL | Log (Total number of employees) Unit: person | 194,801 | 4.713 | 1.087 | 2.079 | 20.794 |
| lnK | Log (Total fixed assets) Unit: thousand yuan | 194,800 | 9.823 | 1.271 | 0 | 20.794 | |
| lnM | Log (Total intermediate factor input) Unit: thousand yuan | 194,801 | 8.339 | 1.676 | 0 | 18.716 |
| Variable | Definition | Obs. | Mean | Std. | Min | Max | |
|---|---|---|---|---|---|---|---|
| Dependent Variable | Firm productivity (TFP_LP) | Total factor productivity calculated by the LP method | 194,801 | 6.440 | 1.091 | −7.134 | 21.506 |
| Core Independent Variable | Rural Migrant inflows(migrant) | Log (the number of migrant workers flowing into the city c) Unit: person | 194,801 | 5.799 | 2.337 | 0 | 363.062 |
| Firm-level Control Variables | Foreign Investment (fdi) | Foreign Capital: 1; Not foreign capital: 0 | 194,792 | 0.119 | 0.324 | 0 | 1 |
| Subsidy Income (subsidy) | Log (subsidy income + 1) Unit: thousand yuan | 194,787 | 0.700 | 1.933 | 0 | 13.695 | |
| Firm age (age) | 2005-establishment year | 194,792 | 8.152 | 9.333 | 0 | 405 | |
| Leverage (lev) | Total liabilities/total assets | 194,792 | 0.572 | 0.312 | 0 | 22.897 | |
| City-level Control Variables | GDP per capita (pergdp) | Log (GDP per capita) Unit: yuan | 193,693 | 10.41 | 0.542 | 4.867 | 11.625 |
| Population (pop) | Total population at the end of the year Unit: ten thousand persons | 194,763 | 5.241 | 0.927 | 1.963 | 7.163 | |
| Eastern Region (east) | Eastern region: 1 not the eastern region: 0 | 194,792 | 0.802 | 0.398 | 0 | 1 | |
| Capital City (sh) | Capital City: 1; Not capital city: 0 | 194,792 | 0.259 | 0.438 | 0 | 1 |
| (1) | (2) | (3) | (4) | (5) | (6) | |
|---|---|---|---|---|---|---|
| TFP_LP | TFP_LP | TFP_LP | TFP_LP | TFP_LP | TFP_LP | |
| migrant | 0.049 ** | 0.048 ** | 0.049 *** | 0.018 *** | 0.022 *** | 0.018 *** |
| (0.002) | (0.002) | (0.002) | (0.003) | (0.003) | (0.003) | |
| fdi | 0.411 *** | 0.396 *** | 0.411 *** | |||
| (0.008) | (0.007) | (0.008) | ||||
| subsidy | 0.094 *** | 0.087 *** | 0.094 *** | |||
| (0.001) | (0.001) | (0.001) | ||||
| lev | −0.164 *** | −0.186 *** | −0.164 *** | |||
| (0.008) | (0.008) | (0.010) | ||||
| pergdp | 0.078 *** | 0.057 *** | 0.078 *** | |||
| (0.008) | (0.008) | (0.009) | ||||
| pop | 0.001 | 0.002 | 0.001 | |||
| (0.006) | (0.006) | (0.006) | ||||
| east | −0.437 | −0.509 | −0.437 | |||
| (0.737) | (0.720) | (1.158) | ||||
| sh | −0.018 * | −0.010 | −0.018 * | |||
| (0.009) | (0.009) | (0.010) | ||||
| age | 0.004 *** | 0.005 *** | 0.004 *** | |||
| (0.000) | (0.000) | (0.000) | ||||
| cons | 5.752 *** | 5.724 *** | 6.154 *** | 5.525 *** | 5.800 *** | 5.815 *** |
| (0.023) | (0.031) | (0.012) | (0.741) | (0.724) | (0.938) | |
| Firm FE | No | No | Yes | No | No | Yes |
| Province FE | Yes | Yes | Yes | Yes | Yes | Yes |
| Industry FE | No | Yes | Yes | No | Yes | Yes |
| Obs. | 194,471 | 194,471 | 194,471 | 193,375 | 193,375 | 193,375 |
| R-sq | 0.040 | 0.091 | 0.040 | 0.087 | 0.133 | 0.087 |
| (1) Private | (2) State-Owned | (3) Non-Exporting | (4) Exporting | (5) Capital | (6) Labor | (7) Technology | (8) Lower Minimum Wage | (9) Higher Minimum Wage | |
|---|---|---|---|---|---|---|---|---|---|
| migrant | 0.021 *** | 0.033 ** | 0.010 ** | 0.006 | 0.009 | −0.004 | 0.053 *** | 0.005 | −0.041 *** |
| (0.004) | (0.015) | (0.004) | (0.006) | (0.006) | (0.006) | (0.006) | (0.005) | (0.010) | |
| fdi | 0.487 *** | 1.152 *** | 0.401 *** | 0.235 *** | 0.423 *** | 0.262 *** | 0.513 *** | 0.284 *** | 0.509 *** |
| (0.061) | (0.131) | (0.014) | (0.011) | (0.017) | (0.013) | (0.013) | (0.013) | (0.011) | |
| subsidy | 0.081 *** | 0.085 *** | 0.076 *** | 0.120 *** | 0.086 *** | 0.091 *** | 0.105 *** | 0.086 *** | 0.102 *** |
| (0.002) | (0.004) | (0.002) | (0.002) | (0.002) | (0.003) | (0.002) | (0.002) | (0.002) | |
| lev | −0.102 *** | −0.354 *** | −0.176 *** | −0.122 *** | −0.163 *** | −0.133 *** | −0.181 *** | −0.170 *** | −0.143 *** |
| (0.012) | (0.051) | (0.013) | (0.015) | (0.018) | (0.016) | (0.018) | (0.013) | (0.017) | |
| pergdp | 0.012 | 0.207 *** | 0.084 *** | 0.075 *** | 0.089 *** | 0.118 *** | 0.019 | 0.142 *** | 0.051 *** |
| (0.011) | (0.032) | (0.010) | (0.016) | (0.015) | (0.015) | (0.014) | (0.011) | (0.017) | |
| pop | 0.006 | 0.015 | 0.046 *** | −0.064 *** | 0.035 *** | 0.005 | −0.050 *** | 0.049 *** | −0.051 *** |
| (0.008) | (0.025) | (0.007) | (0.010) | (0.010) | (0.010) | (0.010) | (0.008) | (0.010) | |
| east | −1.996 *** | 0.000 | −0.525 | 0.000 | 1.045 *** | 0.000 | −2.084 *** | 1.096 *** | 0.000 |
| (0.214) | (0.000) | (1.085) | (0.000) | (0.029) | (0.000.) | (0.214) | (0.022) | (0.000) | |
| sh | −0.026 ** | −0.188 *** | −0.073 *** | 0.141 *** | −0.097 *** | 0.047 ** | 0.018 | −0.038 *** | −0.019 |
| (0.013) | (0.038) | (0.012) | (0.017) | (0.016) | (0.019) | (0.016) | (0.014) | (0.016) | |
| age | 0.010 *** | 0.001 | −0.001 * | 0.012 *** | 0.002 *** | 0.006 *** | 0.006 *** | 0.003 *** | 0.007 *** |
| (0.001) | (0.001) | (0.000) | (0.001) | (0.001) | (0.001) | (0.000) | (0.000) | (0.000) | |
| cons | 7.607 *** | 4.062 *** | 5.639 *** | 5.937 *** | 4.501 *** | 5.126 *** | 7.863 *** | 4.102 *** | 6.289 *** |
| (0.204) | (0.322) | (0.852) | (0.155) | (0.135) | (0.152) | (0.234) | (0.110) | (0.143) | |
| Firm FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Province FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Industry FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Obs. | 92,080 | 16,732 | 132,499 | 60,876 | 63,796 | 55,631 | 73,948 | 104,240 | 89,134 |
| R-sq | 0.091 | 0.137 | 0.076 | 0.121 | 0.088 | 0.080 | 0.104 | 0.061 | 0.119 |
| (1) | (2) | (3) | (4) | (5) | (6) | |
|---|---|---|---|---|---|---|
| TFP_OLS | TFP_OLS | TFP_OLS | TFP_OLS | TFP_OLS | TFP_OLS | |
| migrant | 0.061 *** | 0.062 *** | 0.061 *** | 0.024 *** | 0.027 *** | 0.024 *** |
| (0.002) | (0.002) | (0.002) | (0.004) | (0.003) | (0.003) | |
| fdi | 0.615 *** | 0.598 *** | 0.615 *** | |||
| (0.008) | (0.008) | (0.009) | ||||
| subsidy | 0.137 *** | 0.124 *** | 0.137 *** | |||
| (0.001) | (0.001) | (0.002) | ||||
| lev | 0.034 *** | −0.014 * | 0.034 *** | |||
| (0.008) | (0.008) | (0.010) | ||||
| pergdp | 0.069 *** | 0.051 *** | 0.069 *** | |||
| (0.009) | (0.008) | (0.009) | ||||
| pop | 0.018 *** | 0.021 *** | 0.018 *** | |||
| (0.006) | (0.006) | (0.006) | ||||
| sh | −0.062 *** | −0.049 *** | −0.062 *** | |||
| (0.010) | (0.009) | (0.010) | ||||
| age | 0.014 *** | 0.015 *** | 0.014 *** | |||
| (0.000) | (0.000) | (0.000) | ||||
| east | −0.526 | −0.613 | −0.526 | |||
| (0.756) | (0.726) | (1.208) | ||||
| cons | 7.939 *** | 7.756 *** | 8.373 *** | 7.600 *** | 7.752 *** | 7.920 *** |
| (0.024) | (0.032) | (0.012) | (0.761) | (0.730) | (0.978) | |
| Firm FE | No | No | Yes | No | No | Yes |
| Province FE | Yes | Yes | Yes | Yes | Yes | Yes |
| Industry FE | No | Yes | Yes | No | Yes | Yes |
| Obs. | 194,471 | 194,471 | 194,471 | 193,375 | 193,375 | 193,375 |
| R-sq | 0.023 | 0.107 | 0.023 | 0.122 | 0.194 | 0.122 |
| (1) | (2) | (3) IV Method | (4) IV Method | |||
|---|---|---|---|---|---|---|
| TFP_LP | TFP_LP | First Stage (Migrant) | Second Stage (TFP_LP) | First Stage (Migrant) | Second Stage (TFP_LP) | |
| per capita road area | 0.003 ** | 0.002 ** | ||||
| (0.001) | (0.001) | |||||
| rural Engel coefficient | 2.593 ** | 2.528 ** | ||||
| (1.217) | (1.216) | |||||
| migrant | 0.059 *** | 0.060 ** | ||||
| (0.010) | (0.027) | |||||
| migrant_2000 | 0.052 *** | 0.012 *** | ||||
| (0.002) | (0.004) | |||||
| fdi | 0.412 *** | 0.120 *** | 0.406 *** | |||
| (0.008) | (0.009) | (0.031) | ||||
| subsidy | 0.095 *** | −0.002 | 0.095 *** | |||
| (0.001) | (0.001) | (0.005) | ||||
| lev | −0.164 *** | −0.026 ** | −0.163 *** | |||
| (0.010) | (0.010) | (0.018) | ||||
| pergdp | 0.094 *** | 1.685 *** | 0.008 | |||
| (0.008) | (0.026) | (0.047) | ||||
| pop | 0.006 | 0.857 *** | −0.035 | |||
| (0.006) | (0.012) | (0.029) | ||||
| sh | −0.024 ** | −0.636 *** | 0.008 | |||
| (0.010) | (0.049) | (0.028) | ||||
| age | 0.004 *** | 0.000 | 0.004 *** | |||
| (0.000) | (0.000) | (0.001) | ||||
| east | −0.426 | 0.811 | −0.471 | |||
| (1.138) | (1.278) | (1.214) | ||||
| cons | 6.161 *** | 5.662 *** | 5.564 *** | 5.670 *** | 5.564 *** | 6.197 *** |
| (0.013) | (0.922) | (1.219) | (0.082) | (1.219) | (1.278) | |
| Firm FE | Yes | Yes | Yes | Yes | ||
| Province FE | Yes | Yes | Yes | Yes | ||
| Industry FE | Yes | Yes | Yes | Yes | ||
| Hansen J statistic | 0.431 | 1.686 | ||||
| 0.512 | 0.194 | |||||
| Underidentification test | 95.537 | 70.694 *** | ||||
| Weak identification test | 639.677 | 104.965 *** | ||||
| N | 194,471 | 193,375 | 194,471 | 194,471 | 193,375 | 193,375 |
| R-sq | 0.039 | 0.087 | 0.040 | 0.087 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Xie, Z.; Huang, Z.; Hu, J.; Choi, B. Does the Inflow of Rural-to-Urban Migration Increase Firms’ Productivity? Sustainability 2025, 17, 9414. https://doi.org/10.3390/su17219414
Wang M, Xie Z, Huang Z, Hu J, Choi B. Does the Inflow of Rural-to-Urban Migration Increase Firms’ Productivity? Sustainability. 2025; 17(21):9414. https://doi.org/10.3390/su17219414
Chicago/Turabian StyleWang, Mengzhen, Zhennan Xie, Zihao Huang, Jiang Hu, and Baekryul Choi. 2025. "Does the Inflow of Rural-to-Urban Migration Increase Firms’ Productivity?" Sustainability 17, no. 21: 9414. https://doi.org/10.3390/su17219414
APA StyleWang, M., Xie, Z., Huang, Z., Hu, J., & Choi, B. (2025). Does the Inflow of Rural-to-Urban Migration Increase Firms’ Productivity? Sustainability, 17(21), 9414. https://doi.org/10.3390/su17219414
