Factors Influencing the Adoption of Agroecological Vegetable Cropping Systems by Smallholder Farmers in Tanzania
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area Description
2.2. Sample Size
2.3. Sampling Procedure
2.4. Data Collection
2.5. Theoretical Framework
2.6. Model Specification
3. Results and Discussion
3.1. Descriptive Statistics
3.2. Complementarity and Tradeoff Among Agroecological Cropping Systems
3.3. Factors Influencing the Adoption of Agroecological Cropping Systems
4. Conclusions and Policy Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kabote, S.J.; Mamiro, D.P.; Maerere, A.P.; Sibuga, K.P.; Mtui, H.D.; Mgembe, E.R. Knowledge of Vegetable Insect Pests, Diseases and Control Measures in Morogoro and Iringa Regions in Tanzania: A Call for Integrated Pest Management. Afr. J. Agric. Res. 2021, 17, 1505–1516. [Google Scholar] [CrossRef]
- Anyega, A.O.; Korir, N.K.; Beesigamukama, D.; Changeh, G.J.; Nkoba, K.; Subramanian, S.; van Loon, J.J.A.; Dicke, M.; Tanga, C.M. Black Soldier Fly-Composted Organic Fertilizer Enhances Growth, Yield, and Nutrient Quality of Three Key Vegetable Crops in Sub-Saharan Africa. Front. Plant Sci. 2021, 12, 680312. [Google Scholar] [CrossRef]
- Ekka, R.; Mjawa, B. Case Study Growth of Tanzania’s Horticulture Sector: Role of TAHA in Reducing Food Loss; USAID: Washington, DC, USA, 2020.
- Makule, E.; Dimoso, N.; Tassou, S.A. Precooling, and Cold Storage Methods for Fruits and Vegetables in Sub-Saharan Africa—A Review. Horticulturae 2022, 8, 776. [Google Scholar] [CrossRef]
- De Blasis, F. Global Horticultural Value Chains, Labour and Poverty in Tanzania. World Dev. Perspect. 2020, 18, 100201. [Google Scholar] [CrossRef]
- Kapeleka, J.A.; Sauli, E.; Sadik, O.; Ndakidemi, P.A. Co-Exposure Risks of Pesticides Residues and Bacterial Contamination in Fresh Fruits and Vegetables under Smallholder Horticultural Production Systems in Tanzania. PLoS ONE 2020, 15, e0235345. [Google Scholar] [CrossRef] [PubMed]
- Chacha, J.S.; Laswai, H.S. Traditional Practices and Consumer Habits Regarding Consumption of Underutilised Vegetables in Kilimanjaro and Morogoro Regions, Tanzania. Int. J. Food Sci. 2020, 2020, 3529434. [Google Scholar] [CrossRef]
- Mng’ong’o, M.; Munishi, L.K.; Blake, W.; Comber, S.; Hutchinson, T.H.; Ndakidemi, P.A. Soil Fertility and Land Sustainability in Usangu Basin-Tanzania. Heliyon 2021, 7, e07745. [Google Scholar] [CrossRef]
- Mwasha, S.I.; Robinson, Z. Building Livelihoods Resilience in the Face of Climate Change: Case Study of Small-Holder Farmers in Tanzania. In African Handbook of Climate Change Adaptation; Filho, W.L., Azul, A.M., Brandli, L., Özuyar, P.G., Wall, T., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 829–848. [Google Scholar] [CrossRef]
- Nordey, T.; Schwarz, D.; Kenyon, L.; Manickam, R.; Huat, J. Tapping the Potential of Grafting to Improve the Performance of Vegetable Cropping Systems in Sub-Saharan Africa. A Review. Agron. Sustain. Dev. 2020, 40, 23. [Google Scholar] [CrossRef]
- Gwambene, B.; Liwenga, E.; Mung’ong’o, C. Climate Change and Variability Impacts on Agricultural Production and Food Security for the Smallholder Farmers in Rungwe, Tanzania. Environ. Manag. 2023, 71, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Piñeiro, V.; Arias, J.; Dürr, J.; Elverdin, P.; Ibáñez, A.M.; Kinengyere, A.; Opazo, C.M.; Owoo, N.; Page, J.R.; Prager, S.D.; et al. A Scoping Review on Incentives for Adoption of Sustainable Agricultural Practices and Their Outcomes. Nat. Sustain. 2020, 3, 809–820. [Google Scholar] [CrossRef]
- Belmin, R.; Malézieux, E.; Basset-Mens, C.; Martin, T.; Mottes, C.; Della Rossa, P.; Vayssières, J.F.; Le Bellec, F. Designing Agroecological Systems across Scales: A New Analytical Framework. Agron. Sustain. Dev. 2022, 42, 3. [Google Scholar] [CrossRef]
- Gliessman, S.R. Integrating Agroecological Processes into Cropping Systems Research. J. Crop Improv. 2004, 11, 61–80. [Google Scholar] [CrossRef]
- Gliessman, S.R. Transforming Food and Agriculture Systems with Agroecology. Agric. Hum. Values 2020, 37, 547–548. [Google Scholar] [CrossRef]
- Peter, E.; Yusuf, A.; Subramanian, S.; Krüger, K.; Karlsson Green, K.; Anderson, P.; Torto, B.; Tamiru, A. Crop Mixtures Influence Fall Armyworm Infestation and Natural Enemy Abundance in Maize-Based Intercropping Systems. J. Crop Health 2024, 76, 1491–1505. [Google Scholar] [CrossRef]
- Kanjanja, S.M.; Mosha, D.B.; Haule, S.C. Determinants of the Implementation of Agroecological Practices among Smallholder Farmers in Singida District, Tanzania. Eur. J. Agric. Food Sci. 2022, 4, 152–159. [Google Scholar] [CrossRef]
- Camille, P.; Arnaud, B.; Jérôme, P.; Vincent, F. Collective Design of Innovative Agroecological Cropping Systems for the Industrial Vegetable Sector. Agric. Syst. 2021, 191, 103153. [Google Scholar]
- Bakengesa, J.A.; De Meyer, M.; Kudra, A.B.; Virgilio, M.; Mwatawala, M.W.; Majubwa, R.O. Socioeconomic Sustainability of Agroecological Farming: A Quantitative Analysis of Cucurbit Crop Production in Eastern Central Tanzania. Agroecol. Sustain. Food Syst. 2024, 48, 1139–1162. [Google Scholar] [CrossRef]
- Kimaro, A.A.; Sererya, O.G.; Matata, P.; Uckert, G.; Hafner, J.; Graef, F.; Sieber, S.; Rosenstock, T.S. Understanding the Multidimensionality of Climate-Smartness: Examples from Agroforestry in Tanzania. In The Climate-Smart Agriculture Papers: Investigating the Business of a Productive, Resilient and Low Emission Future; Rosenstock, T.S., Nowak, A., Girvetz, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 153–162. [Google Scholar]
- Mdee, A.; Wostry, A.; Coulson, A.; Maro, J. A Pathway to Inclusive Sustainable Intensification in Agriculture? Assessing Evidence on the Application of Agroecology in Tanzania. Agroecol. Sustain. Food Syst. 2019, 43, 201–227. [Google Scholar] [CrossRef]
- Milheiras, S.G.; Sallu, S.M.; Loveridge, R.; Nnyiti, P.; Mwanga, L.; Baraka, E.; Lala, M.; Moore, E.; Shirima, D.D.; Kioko, E.N.; et al. Agroecological Practices Increase Farmers’ Well-Being in an Agricultural Growth Corridor in Tanzania. Agron. Sustain. Dev. 2022, 42, 56. [Google Scholar] [CrossRef] [PubMed]
- Kurgat, B.K.; Lamanna, C.; Kimaro, A.; Namoi, N.; Manda, L.; Rosenstock, T.S. Adoption of Climate-Smart Agriculture Technologies in Tanzania. Front. Sustain. Food Syst. 2020, 4, 55. [Google Scholar] [CrossRef]
- Mwaura, G.G.; Kiboi, M.N.; Bett, E.K.; Mugwe, J.N.; Muriuki, A.; Nicolay, G.; Ngetich, F.K. Adoption Intensity of Selected Organic-Based Soil Fertility Management Technologies in the Central Highlands of Kenya. Front. Sustain. Food Syst. 2021, 4, 570190. [Google Scholar] [CrossRef]
- Benitez-Altuna, F.; Trienekens, J.; Materia, V.C.; Bijman, J. Factors Affecting the Adoption of Ecological Intensification Practices: A Case Study in Vegetable Production in Chile. Agric. Syst. 2021, 194, 103283. [Google Scholar] [CrossRef]
- Chang, S.H.E.; Benjamin, E.O.; Sauer, J. Factors Influencing the Adoption of Sustainable Agricultural Practices for Rice Cultivation in Southeast Asia: A Review. Agron. Sustain. Dev. 2024, 44, 27. [Google Scholar] [CrossRef]
- Kanyenji, G.M.; Oluoch-Kosura, W.; Onyango, C.M.; Ng’ang’a, S.K. Prospects and Constraints in Smallholder Farmers’ Adoption of Multiple Soil Carbon Enhancing Practices in Western Kenya. Heliyon 2020, 6, e03226. [Google Scholar] [CrossRef]
- Muriithi, B.; Diiro, G.; Berresaw, M.K.; Muricho, G. Does Gender Matter in the Adoption of Sustainable Agricultural Technologies? A Case of Push-Pull Technology in Kenya. Food Secur. 2018, 10, 253–272. [Google Scholar] [CrossRef]
- Mmbando, F.; Mbeyagala, E.; Binagwa, P.; Karimi, R.; Opie, H.; Ochieng, J.; Mutuoki, T.; Nair, R.M. Adoption of Improved Mungbean Production Technologies in Selected East African Countries. Agriculture 2021, 11, 528. [Google Scholar] [CrossRef]
- Oyetunde-Usman, Z.; Olagunju, K.O.; Ogunpaimo, O.R. Determinants of Adoption of Multiple Sustainable Agricultural Practices among Smallholder Farmers in Nigeria. Int. Soil Water Conserv. Res. 2021, 9, 241–248. [Google Scholar] [CrossRef]
- Constantine, J.; Sibuga, K.P.; Shitindi, M.J.; Hilberk, A. Awareness and Application of Existing Agroecological Practices by Small Holder Farmers in Mvomero and Masasi Districts-Tanzania. J. Agric. Sci. 2020, 13, 30. [Google Scholar] [CrossRef]
- Luambano, K.; Ayubu, J.C.; Camilius, A.S.; Eugenio, T. Factors Influencing Smallholder Farmers to Participate in Farmer-Led Research of Agro-Ecological Practices in Selected Areas, Tanzania. J. Agric. Ext. Rural. Dev. 2021, 13, 232–242. [Google Scholar] [CrossRef]
- Yusuph, A.S.; Nzunda, E.F.; Mourice, S.K.; Dalgaard, T. Usage of Agroecological Climate-Smart Agriculture Practices among Sorghum and Maize Smallholder Farmers in Semi-Arid Areas in Tanzania. East Afr. J. Agric. Biotechnol. 2023, 6, 378–406. [Google Scholar] [CrossRef]
- Ochieng, J.; Afari-Sefa, V.; Muthoni, F.; Kansiime, M.; Hoeschle-Zeledon, I.; Bekunda, M.; Thomas, D. Adoption of Sustainable Agricultural Technologies for Vegetable Production in Rural Tanzania: Trade-Offs, Complementarities and Diffusion. Int. J. Agric. Sustain. 2022, 20, 478–496. [Google Scholar] [CrossRef]
- Bongole, A. Adoption of Multiple Climate Smart Agricultural Practices in Mbeya and Songwe Regions in Tanzania. J. Afr. Econ. Perspect. 2023, 1, 41–60. [Google Scholar] [CrossRef]
- Ochieng, J.; Kirimi, L.; Makau, J. Adapting to Climate Variability and Change in Rural K Enya: F Armer Perceptions, Strategies and Climate Trends. Nat. Resour. Forum 2017, 41, 195–208. [Google Scholar] [CrossRef]
- Ochieng, J.; Afari-Sefa, V.; Lukumay, P.; Muthoni, F.; Gramzow, A.; Dominic, I.; Lukumay, P. Smallholder Farmers’ Adoption of Vegetable Production Technologies in Babati District, Tanzania. In Proceedings of the International Symposium on Horticulture: Priorities and Emerging Trends, Bengaluru, India, 4–8 September 2017. [Google Scholar]
- Mkonda, M.Y.; He, X. Conservation Agriculture in Tanzania. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer: Cham, Switzerland, 2017; Volume 22, pp. 309–324. [Google Scholar] [CrossRef]
- Kirui, E.C.; Kidoido, M.M.; Mutyambai, D.M.; Okello, D.O.; Akutse, K.S. Farmers’ Knowledge, Attitude, and Practices Regarding the Use of Agroecological-Based Pest Management Practices in Crucifers and Traditional African Vegetable (TAV) Production in Kenya and Tanzania. Sustainability 2023, 15, 16491. [Google Scholar] [CrossRef]
- Joseph, L. The Most Vulnerable and High-Risk Groups Sensitive to Impacts of Climate Change in Arusha Region, Tanzania. East Afr. J. Arts Soc. Sci. 2022, 5, 88–102. [Google Scholar] [CrossRef]
- Lyimo, E.S.; Mamiro, D.P.; Kusolwa, P.M.; Maerere, A.P.; Mtui, H.D. Occurrence of Clubroot Disease and Farmers’ Knowledge on Its Management in Cabbage Growing Areas of Morogoro, Tanzania. Tanzan. J. Agric. Sci. 2020, 19, 1–10. [Google Scholar]
- Dome, M.M.; Prusty, S. An analysis of vegetable supply chain in Arusha Region, Tanzania. Zenith Int. J. Multidiscip. Res. 2016, 6, 139–167. [Google Scholar]
- Shirima, K.C.; Mung’ong’o, C.G. Agroecosystems’ Resilience and Social-Ecological Vulnerability Index to Climate Change in Kilimanjaro, Tanzania. In Climate Change Impacts and Sustainability: Ecosystems of Tanzania; CABI: Wallingford, UK, 2020; pp. 34–43. [Google Scholar]
- Said, M.; Hyandye, C.; Komakech, H.C.; Mjemah, I.C.; Munishi, L.K. Predicting Land Use/Cover Changes and Its Association to Agricultural Production on the Slopes of Mount Kilimanjaro, Tanzania. Ann. GIS 2021, 27, 189–209. [Google Scholar] [CrossRef]
- De La Masselière, B.C.; Bart, F.; Thibaud, B.; Benos, R. Revisiting the Rural-Urban Linkages in East Africa: Continuity or Breakdown in the Spatial Model of Rural Development?: The Case of the Kilimanjaro Region in Tanzania. Belgeo 2020. [Google Scholar] [CrossRef]
- Cochran, W. Sampling Techniques, 2nd ed.; John Wiley and Sons Inc.: Hoboken, NJ, USA, 1963. [Google Scholar]
- Ajzen, I. The Theory of Planned Behaviour: Reactions and Reflections. Psychol. Health 2011, 26, 1113–1127. [Google Scholar] [CrossRef]
- Bosnjak, M.; Ajzen, I.; Schmidt, P. The Theory of Planned Behavior: Selected Recent Advances and Applications. Eur. J. Psychol. 2020, 16, 352–356. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, P.; Yan, J.; Ton A M Spil, I. Using Diffusion of Innovation Theory to Understand the Factors Impacting Patient Acceptance and Use of Consumer E-Health Innovations: A Case Study in a Primary Care Clinic Healthcare Needs and Demand. BMC Health Serv. Res. 2015, 15, 71. [Google Scholar] [CrossRef] [PubMed]
- Sahin, I. Detailed review of Rogers’ diffusion of innovations theory and educational technology-related studies based on Rogers’ theory. Turk. Online J. Educ. Technol. 2006, 5, 14–23. [Google Scholar]
- Cascetta, E. Random utility theory. In Transportation Systems Analysis: Models and Applications; Springer: Boston, MA, USA, 2009; Volume 29, pp. 89–167. [Google Scholar] [CrossRef]
- Lekhisa, K.; Muroyiwa, B. Determinants of Market Outlet Choice for Smallholder Broiler Farmers in Leribe District of Lesotho. J. Soc. Dev. Sci. 2024, 14, 13–26. [Google Scholar] [CrossRef]
- Hess, S.; Daly, A.; Batley, R. Theory and Implications of Revisiting Consistency with Random Utility Maximization. Theory Decis. 2018, 84, 181–204. [Google Scholar] [CrossRef] [PubMed]
- Mwembe, A.M.; Owuor, G.; Langat, J.; Mshenga, P. Factors Affecting Market Outlet Choice of Agroforestry Based Mango Producers in Kwale and Kilifi Counties, Kenya: The Application of the Multivariate Probit Model. Cogent Food Agric. 2021, 7, 1936367. [Google Scholar] [CrossRef]
- Oyawole, F.P.; Shittu, A.; Kehinde, M.; Ogunnaike, G.; Akinjobi, L.T. Women Empowerment and Adoption of Climate-Smart Agricultural Practices in Nigeria. Afr. J. Econ. Manag. Stud. 2021, 12, 105–119. [Google Scholar] [CrossRef]
- Ngaiwi, M.E.; Molua, E.L.; Sonwa, D.J.; Meliko, M.O.; Bomdzele, E.J.; Ayuk, J.E.; Castro-Nunez, A.; Latala, M.M. Do Farmers’ Socioeconomic Status Determine the Adoption of Conservation Agriculture? An Empirical Evidence from Eastern and Southern Regions of Cameroon. Sci. Afr. 2023, 19, e01498. [Google Scholar] [CrossRef]
- Donkoh, S.A.; Azumah, S.B.; Awuni, J.A. Adoption of Improved Agricultural Technologies among Rice Farmers in Ghana: A Multivariate Probit Approach. Ghana J. Dev. Stud. 2019, 16, 46. [Google Scholar] [CrossRef]
- Zeweld, W.; Van Huylenbroeck, G.; Tesfay, G.; Azadi, H.; Speelman, S. Impacts of Socio-Psychological Factors on Actual Adoption of Sustainable Land Management Practices in Dryland Andwater Stressed Areas. Sustainability 2018, 10, 2963. [Google Scholar] [CrossRef]
- Yu, T.; Mahe, L.; Li, Y.; Wei, X.; Deng, X.; Zhang, D. Benefits of Crop Rotation on Climate Resilience and Its Prospects in China. Agronomy 2022, 12, 436. [Google Scholar] [CrossRef]
- Suwilanji, S.; Mwamakamba, S.; Mkandawire, R.; Madzivhandila, T. Opportunities and Challenges for the Promotion of Transitions to Agroecological Practices for Sustainable Food Production in Sub-Sahara Africa. Environ. Earth Sci.—Ecol. 2023; submitted. [Google Scholar] [CrossRef]
- Swindale, A.; Bilinsky, P. Household Dietary Diversity Score (HDDS) for Measurement of Household Food Access: Indicator Guide (Version 2); USAID: Washington, DC, USA, 2006.
- Tanzania Food Security and Nutrition Analysis System [MUCHALI]. IPC Tanzania Acute Food Insecurity Analysis: November 2023–October 2024 Report. Available online: https://www.ipcinfo.org/fileadmin/user_upload/ipcinfo/docs/IPC_Tanzania_Acute_Food_Insecurity_Nov2023_Oct2024_Report.pdf (accessed on 5 November 2024).
- Giller, K.E.; Delaune, T.; Silva, J.V.; van Wijk, M.; Hammond, J.; Descheemaeker, K.; van de Ven, G.; Schut, A.G.T.; Taulya, G.; Chikowo, R.; et al. Small Farms and Development in Sub-Saharan Africa: Farming for Food, for Income or for Lack of Better Options? Food Secur. 2021, 13, 1431–1454. [Google Scholar] [CrossRef]
- Jha, S.; Kaechele, H.; Sieber, S. Factors Influencing the Adoption of Water Conservation Technologies by Smallholder Farmer Households in Tanzania. Water 2019, 11, 2640. [Google Scholar] [CrossRef]
- Jha, S.; Kaechele, H.; Sieber, S. Factors Influencing the Adoption of Agroforestry by Smallholder Farmer Households in Tanzania: Case Studies from Morogoro and Dodoma. Land Use Policy 2021, 103, 105308. [Google Scholar] [CrossRef]
- Katjiuongua, H.B.; Nelgen, S. Tanzania Smallholder Dairy Value Chain Development: Situation Analysis and Trends; ILRI Project Report; ILRI: Nairobi, Kenya, 2014; Available online: https://hdl.handle.net/10568/68513 (accessed on 10 November 2024).
- Kibona, C.A.; Yuejie, Z. Factors That Influence Market Participation among Traditional Beef Cattle Farmers in the Meatu District of Simiyu Region, Tanzania. PLoS ONE 2021, 16, e0248576. [Google Scholar] [CrossRef] [PubMed]
- Musembi, E. Demand for Agricultural Credit by Rural Smallholder Farmers: A Case of Climate Smart Agriculture Villages in Nyando Basin, Kenya. Master’s Thesis, University of Nairobi, Nairobi, Kenya, 2019. [Google Scholar]
- Quandt, A.; Salerno, J.D.; Neff, J.C.; Baird, T.D.; Herrick, J.E.; Terrence McCabe, J.; Xu, E.; Hartter, J. Mobile Phone Use Is Associated with Higher Smallholder Agricultural Productivity in Tanzania, East Africa. PLoS ONE 2020, 15, e0237337. [Google Scholar] [CrossRef] [PubMed]
- Mushi, G.E.; Serugendo, G.D.M.; Burgi, P.Y. Digital Technology and Services for Sustainable Agriculture in Tanzania: A Literature Review. Sustainability 2022, 14, 2415. [Google Scholar] [CrossRef]
- Hasanbasri, A.; Kilic, T.; Bank, W.; Koolwal, G.; Moylan, H. Multidimensionality of Landownership among Men and Women in Sub-Saharan Africa. J. Law Econ. 2023, 66, 581–608. [Google Scholar] [CrossRef]
- Mairura, F.S.; Musafiri, C.M.; Kiboi, M.N.; Macharia, J.M.; Ng’etich, O.K.; Shisanya, C.A.; Okeyo, J.M.; Okwuosa, E.A.; Ngetich, F.K. Farm Factors Influencing Soil Fertility Management Patterns in Upper Eastern Kenya. Environ. Chall. 2022, 6, 100409. [Google Scholar] [CrossRef]
- Teklewold, H.; Adam, R.I.; Marenya, P. What Explains the Gender Differences in the Adoption of Multiple Maize Varieties? Empirical Evidence from Uganda and Tanzania. World Dev. Perspect. 2020, 18, 100206. [Google Scholar] [CrossRef] [PubMed]
- Bongole, A.J.; Kitundu, K.M.K.; Hella, J. Usage of Climate Smart Agriculture Practices: An Analysis of Farm Households’ Decisions in Southern Tanzania. Tanzan. J. Agric. Sci. 2020, 19, 238–255. [Google Scholar]
- Molina, P.B.; D’Alessandro, C.; Dekeyser, K.; Marson, M. Sustainable Food Systems Through Diversification and Indigenous Vegetables. An Analysis of the Arusha Area; ECDPM: Maastricht, The Netherlands, 2020. [Google Scholar]
- Everaarts, A.; De Putter, H.; Maerere, A. Profitability, Labour Input, Fertilizer Application and Crop Protection in Vegetable Production in the Arusha Region, Tanzania. J. Anim. Plant Sci. 2017, 32, 5181–5202. [Google Scholar]
- Mar, J.; Mart, E. Multivariate Analysis of the Adoption of Cacao Productive Technologies: Evidence from a Case Study in Colombia. Econ. Agrar. Recur. Nat. 2021, 21, 79–102. [Google Scholar]
- Huss, C.P.; Holmes, K.D.; Blubaugh, C.K. Benefits and Risks of Intercropping for Crop Resilience and Pest Management. J. Econ. Entomol. 2022, 115, 1350–1362. [Google Scholar] [CrossRef] [PubMed]
- Shekhar, M.; Shivashankar, E.; Pandey, S. Crop Rotation and Intercropping Techniques. In Modern Concept in Agronomy; ND Global Publication House: Chennai, India, 2024. [Google Scholar]
- Mushi, C.A.; Hintjens, H.; Arts, K. Gender Issues in Irrigated Agriculture in Tanzania: A Case Study of the Lower Moshi Scheme. Master’s Thesis, Institute of Social Studies, The Hague, The Netherlands, 2018. [Google Scholar]
- Genicot, G.; Hernandez-de-Benito, M. Women’s Land Rights and Village Institutions in Tanzania. World Dev. 2022, 153, 105811. [Google Scholar] [CrossRef]
- Kansanga, M.M.; Luginaah, I.; Bezner Kerr, R.; Dakishoni, L.; Lupafya, E. Determinants of Smallholder Farmers’ Adoption of Short-Term and Long-Term Sustainable Land Management Practices. Renew. Agric. Food Syst. 2021, 36, 265–277. [Google Scholar] [CrossRef]
- Selim, M. A Review of Advantages, Disadvantages and Challenges of Crop Rotations. Egypt. J. Agron. 2019, 41, 1–10. [Google Scholar] [CrossRef]
- Khokhar, A.; Yousuf, A.; Singh, M.; Sharma, V.; Sandhu, P.S.; Chary, G.R. Impact of Land Configuration and Strip-Intercropping on Runoff, Soil Loss and Crop Yields under Rainfed Conditions in the Shivalik Foothills of North-West, India. Sustainability 2021, 13, 6282. [Google Scholar] [CrossRef]
- Wang, R.; Sun, Z.; Zhang, L.; Yang, N.; Feng, L.; Bai, W.; Zhang, D.; Wang, Q.; Evers, J.B.; Liu, Y.; et al. Border-Row Proportion Determines Strength of Interspecific Interactions and Crop Yields in Maize/Peanut Strip Intercropping. Field Crops Res. 2020, 253, 107819. [Google Scholar] [CrossRef]
- Acosta, M.; van Wessel, M.; van Bommel, S.; Ampaire, E.L.; Twyman, J.; Jassogne, L.; Feindt, P.H. What Does It Mean to Make a ‘Joint’ Decision? Unpacking Intra-Household Decision Making in Agriculture: Implications for Policy and Practice. J. Dev. Stud. 2020, 56, 1210–1229. [Google Scholar] [CrossRef]
- Butters, J.; Murrell, E.; Spiesman, B.J.; Kim, T.N. Native Flowering Border Crops Attract High Pollinator Abundance and Diversity, Providing Growers the Opportunity to Enhance Pollination Services. Environ. Entomol. 2022, 51, 492–504. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye, B.; Lengoiboni, M.; Zevenbergen, J.; Simane, B. Rethinking the Impact of Land Certification on Tenure Security, Land Disputes, Land Management, and Agricultural Production: Insights from South Wello, Ethiopia. Land 2023, 12, 1713. [Google Scholar] [CrossRef]
- Slavchevska, V.; Doss, C.R.; de la O Campos, A.P.; Brunelli, C. Beyond Ownership: Women’s and Men’s Land Rights in Sub-Saharan Africa. Oxf. Dev. Stud. 2021, 49, 2–22. [Google Scholar] [CrossRef]
- Juventia, S.D.; Norén, I.L.S.; Van Apeldoorn, D.F.; Ditzler, L.; Rossing, W.A. Spatio-Temporal Design of Strip Cropping Systems. Agric. Syst. 2022, 201, 103455. [Google Scholar] [CrossRef]
- van Zonneveld, M.; Turmel, M.S.; Hellin, J. Decision-Making to Diversify Farm Systems for Climate Change Adaptation. Front. Sustain. Food Syst. 2020, 4, 32. [Google Scholar] [CrossRef]
- Ha, T.M.; Manevska-Tasevska, G.; Jäck, O.; Weih, M.; Hansson, H. Farmers’ Intention towards Intercropping Adoption: The Role of Socioeconomic and Behavioural Drivers. Int. J. Agric. Sustain. 2023, 21, 2270222. [Google Scholar] [CrossRef]
- Chèze, B.; David, M.; Martinet, V. Understanding Farmers’ Reluctance to Reduce Pesticide Use: A Choice Experiment. Ecol. Econ. 2019, 167, 106349. [Google Scholar] [CrossRef]
- Gebru, H. A Review on the Comparative Advantages of Intercropping to Mono-Cropping System. J. Biol. Agric. Healthc. 2015, 5, 1–13. [Google Scholar]
- Burgess, A.J.; Cano, M.E.C.; Parkes, B. The Deployment of Intercropping and Agroforestry as Adaptation to Climate Change. Crop Environ. 2022, 1, 145–160. [Google Scholar] [CrossRef]
- Mwebaze, P.; Macfadyen, S.; De Barro, P.; Bua, A.; Kalyebi, A.; Bayiyana, I.; Tairo, F.; Colvin, J. Adoption Determinants of Improved Cassava Varieties and Intercropping among East and Central African Smallholder Farmers. J. Agric. Appl. Econ. Assoc. 2024, 3, 292–310. [Google Scholar] [CrossRef]
- Marenya, P.P.; Usman, M.A. Community-Embedded Experiential Learning and Adoption of Conservation Farming Practices in Eastern and Southern Africa. Environ. Dev. 2021, 40, 100672. [Google Scholar] [CrossRef]
- Silvestri, S.; Richard, M.; Edward, B.; Dharmesh, G.; Dannie, R. Going Digital in Agriculture: How Radio and SMS Can Scale-up Smallholder Participation in Legume-Based Sustainable Agricultural Intensification Practices and Technologies in Tanzania. Int. J. Agric. Sustain. 2021, 19, 583–594. [Google Scholar] [CrossRef]
- Aggarwal, S.; Giera, B.; Jeong, D.; Robinson, J.; Spearot, A. Market Access, Trade Costs, and Technology Adoption: Evidence from Northern Tanzania. Rev. Econ. Stat. 2024, 106, 1511–1528. [Google Scholar] [CrossRef]
- Ichinose, Y.; Nishigaki, T.; Kilasara, M.; Funakawa, S. Central Roles of Livestock and Land-Use in Soil Fertility of Traditional Homegardens on Mount Kilimanjaro. Agrofor. Syst. 2020, 94, 1–14. [Google Scholar] [CrossRef]
- Lwimbo, Z. Groundwater Recharge Estimation and Quality on the Southern Slopes of Mount Kilimanjaro, Tanzania. Ph.D. Thesis, NM-AIST, Arusha, Tanzania, 2021. [Google Scholar] [CrossRef]
- Vlahova, V. Intercropping-an Opportunity for Sustainable Farming Systems. A Review. Sci. Papers Ser. A Agron 2022, 65. [Google Scholar]
- Stefanovic, J.O.; Yang, H.; Zhou, Y.; Kamali, B.; Ogalleh, S.A. Adaption to Climate Change: A Case Study of Two Agricultural Systems from Kenya. Clim. Dev. 2019, 11, 319–337. [Google Scholar] [CrossRef]
- Glaze-Corcoran, S.; Hashemi, M.; Sadeghpour, A.; Jahanzad, E.; Keshavarz Afshar, R.; Liu, X.; Herbert, S.J. Understanding Intercropping to Improve Agricultural Resiliency and Environmental Sustainability. Adv. Agron 2020, 162, 199–256. [Google Scholar] [CrossRef]
- Maitra, S.; Hossain, A.; Brestic, M.; Skalicky, M.; Ondrisik, P.; Gitari, H.; Brahmachari, K.; Shankar, T.; Bhadra, P.; Palai, J.B.; et al. Intercropping—A Low Input Agricultural Strategy for Food and Environmental Security. Agronomy 2021, 11, 343. [Google Scholar] [CrossRef]
- Waweru, B.; Rukundo, P.; Kilalo, D.; Miano, D. Effect of Border Crops and Intercropping on Aphid Infestation and the Associated Viral Diseases in Hot Pepper (Capsicum sp.). Crop Prot. 2021, 145, 105623. [Google Scholar] [CrossRef]
- Kongela, S.M. Gender Equality in Ownership of Agricultural Land in Rural Tanzania Does Matrilineal Tenure System Matter? Afr. J. Land Policy Geospat. Sci. 2020, 3, 2657–2664. [Google Scholar] [CrossRef]
- Kassie, M.; Jaleta, M.; Shiferaw, B.; Mmbando, F.; Mekuria, M. Adoption of Interrelated Sustainable Agricultural Practices in Smallholder Systems: Evidence from Rural Tanzania. Technol. Forecast. Soc. Change 2013, 80, 525–540. [Google Scholar] [CrossRef]
Variables: | Description of Variables | Mean | Std. Dev. |
---|---|---|---|
Mixed cropping | Dummy = 1 if HH has adopted mixed cropping, 0 if otherwise | 0.067 | 0.250 |
Strip cropping | Dummy = 1 if HH has adopted strip cropping, 0 if otherwise | 0.036 | 0.187 |
Row intercrop | Dummy = 1 if HH has adopted row cropping, 0 if otherwise | 0.029 | 0.167 |
Border cropping | Dummy = 1 if HH has adopted border cropping, 0 if otherwise | 0.034 | 0.182 |
Crop rotation | Dummy = 1 if HH has adopted crop rotation, 0 if otherwise | 0.608 | 0.489 |
Combined (N = 525) | Adopters (N = 355) | Non-Adopters (N = 170) | p Value | ||||
---|---|---|---|---|---|---|---|
Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | ||
(1) Socioeconomic Factors | |||||||
Age | 50.042 | 12.174 | 49.986 | 11.750 | 50.159 | 13.049 | 0.879 a |
Education | 8.023 | 3.367 | 8.085 | 3.330 | 7.894 | 3.449 | 0.545 a |
Ownership: | |||||||
Male | 0.491 | 0.500 | 0.499 | 0.501 | 0.476 | 0.501 | |
Female | 0.152 | 0.360 | 0.132 | 0.339 | 0.194 | 0.397 | |
Both | 0.223 | 0.417 | 0.228 | 0.420 | 0.212 | 0.410 | |
Rented | 0.133 | 0.340 | 0.141 | 0.348 | 0.118 | 0.323 | 0.309 b |
Management: | |||||||
Male | 0.381 | 0.486 | 0.375 | 0.485 | 0.394 | 0.490 | |
Female | 0.309 | 0.462 | 0.307 | 0.462 | 0.312 | 0.465 | |
Both | 0.310 | 0.463 | 0.318 | 0.466 | 0.294 | 0.457 | 0.844 b |
Gross income | 1,275,984.40 | 5,061,009.00 | 1,455,155.00 | 5,705,668.00 | 901,835.00 | 3,319,389.00 | 0.242 a |
Nutrition security index | 4.665 | 2.784 | 5.048 | 2.836 | 3.865 | 2.495 | 0.000 a *** |
(2) Farm-Specific Factors | |||||||
Farm Workers | 10.779 | 17.741 | 11.606 | 18.907 | 9.053 | 14.922 | 0.123 a |
Cost of insecticides | 49,236.581 | 135,017.840 | 50,999.190 | 156,204.500 | 45,555.830 | 73,439.220 | 0.666 a |
(3) Institutional Factors | |||||||
Credit access | 0.086 | 0.280 | 0.104 | 0.306 | 0.047 | 0.212 | 0.029 b ** |
Training | 0.463 | 0.966 | 0.575 | 1.026 | 0.229 | 0.777 | 0.000 a *** |
Market and information platform | 0.251 | 0.434 | 0.296 | 0.457 | 0.159 | 0.367 | 0.001 b *** |
Group membership | 0.147 | 0.354 | 0.169 | 0.375 | 0.100 | 0.301 | 0.036 b ** |
(4) Geographical Factors | |||||||
Distance to input market | 88.983 | 90.398 | 92.899 | 94.239 | 80.806 | 81.457 | 0.152 a |
Distance to output market | 95.550 | 86.903 | 100.355 | 89.474 | 85.518 | 80.607 | 0.067 a |
Region | 0.440 | 0.497 | 0.417 | 0.494 | 0.488 | 0.501 | 0.123 b |
Mixed Cropping | Strip Cropping | Row Intercropping | Border Cropping | Crop Rotation | |
---|---|---|---|---|---|
Mixed cropping | 1 | ||||
Strip cropping | −0.298 (0.256) | 1 | |||
Row intercropping | −0.439 *** (0.125) | 0.359 * (0.195) | 1 | ||
Border cropping | 0.191 (0.192) | −0.395 *** (0.121) | −0.192 (0.175) | 1 | |
Crop rotation | −0.185 ** (0.090) | −0.057 (0.094) | 0.211 * (0.113) | 0.029 (0.099) | 1 |
Mixed Cropping | Strip Cropping | Row Intercropping | Border Cropping | Crop Rotation | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Coeff. | Std. Err. | Coeff. | Std. Err. | Coeff. | Std. Err. | Coeff. | Std. Err. | Coeff. | Std. Err. | |
Socioeconomic factors | ||||||||||
Age | 0.002 (0.000) | 0.008 | −0.024 ** (−0.001) | 0.011 | −0.004 (−0.000) | 0.010 | −0.012 (−0.001) | 0.008 | −0.001 (−0.000) | 0.005 |
Education | −0.010 (−0.001) | 0.033 | −0.069 (−0.004) | 0.060 | −0.018 (−0.001) | 0.031 | −0.015 (−0.001) | 0.027 | 0.004 (0.001) | 0.017 |
Ownership: | ||||||||||
Female | −0.345 (−0.036) | 0.352 | −0.597 * (−0.026) | 0.351 | −0.236 (−0.009) | 0.357 | −0.322 (−0.022) | 0.434 | −0.360 * (−0.117) | 0.201 |
Both | 0.099 (0.012) | 0.230 | −1.206 ** (−0.059) | 0.476 | −4.260 *** (-) | 0.514 | 0.006 (−0.001) | 0.274 | −0.121 (−0.034) | 0.163 |
Rented/Leased | 0.379 (0.045) | 0.262 | −0.118 (−0.007) | 0.410 | −0.423 (−0.027) | 0.466 | −0.703 * (−0.043) | 0.376 | 0.129 (0.034) | 0.179 |
Management: | ||||||||||
Female | 0.052 (0.008) | 0.277 | 0.672 * (0.032) | 0.360 | 0.258 (0.009) | 0.340 | −0.330 (−0.020) | 0.330 | 0.236 (0.076) | 0.179 |
Both | 0.237 (0.028) | 0.222 | 0.908 *** (0.044) | 0.295 | 0.490 * (0.029) | 0.287 | −0.209 (−0.013) | 0.272 | −0.000 (−0.006) | 0.162 |
Gross Income (log) | −0.015 (−0.003) | 0.061 | 0.288 ** (0.015) | 0.120 | −0.055 (−0.004) | 0.077 | 0.140 ** (0.009) | 0.071 | 0.100 ** (0.033) | 0.043 |
Nutrition security | 0.067 * (0.007) | 0.034 | −0.070 (−0.004) | 0.050 | −0.026 (−0.002) | 0.054 | −0.010 (−0.000) | 0.039 | 0.101 *** (0.034) | 0.024 |
Farm-specific factors | ||||||||||
Farm workers | −0.005 (−0.001) | 0.006 | −0.035 ** (−0.002) | 0.016 | −0.052 *** (−0.004) | 0.019 | −0.038 *** (−0.002) | 0.014 | 0.002 (0.001) | 0.004 |
Cost of insecticides (log) | −0.081 *** (−0.009) | 0.021 | −0.076 ** (−0.004) | 0.035 | 0.013 (0.000) | 0.031 | 0.044 (0.003) | 0.036 | 0.010 (0.003) | 0.016 |
Institutional factors | ||||||||||
Credit access | −0.320 (−0.041) | 0.389 | 0.175 (0.008) | 0.385 | 0.691 * (0.050) | 0.362 | 0.406 (0.027) | 0.370 | 0.376 (0.116) | 0.260 |
Training | 0.007 (0.001) | 0.096 | −0.268 (−0.013) | 0.189 | −0.009 (−0.000) | 0.137 | −0.193 (−0.012) | 0.145 | 0.248 *** (0.083) | 0.084 |
Market and information platform | −0.147 (−0.012) | 0.227 | 1.194 *** (0.062) | 0.285 | 0.617 *** (0.049) | 0.226 | −0.028 (−0.004) | 0.257 | 0.102 (0.042) | 0.152 |
Group membership | −0.030 (−0.004) | 0.224 | −0.129 (−0.005) | 0.408 | −0.656 (−0.041) | 0.484 | 0.164 (0.005) | 0.426 | −0.049 (0.000) | 0.192 |
Geographical factors | ||||||||||
Distance to input market (log) | −0.055 (−0.006) | 0.130 | 0.581 *** (0.027) | 0.175 | 0.266 (0.013) | 0.184 | −0.167 (−0.009) | 0.102 | 0.156 ** (0.057) | 0.075 |
Distance to output market (log) | −0.040 (−0.006) | 0.122 | −0.380 *** (−0.020) | 0.106 | 0.091 (0.008) | 0.167 | −0.037 (−0.002) | 0.063 | −0.008 (−0.005) | 0.063 |
Region | 0.213 (0.022) | 0.190 | −0.028 (−0.003) | 0.323 | −0.128 (−0.015) | 0.202 | −0.082 (−0.005) | 0.233 | −0.326 ** (−0.109) | 0.132 |
Constant | −0.809 | 0.978 | −4.284 *** | 1.295 | −2.238 ** | 1.064 | −1.927 ** | 0.780 | −2.146 *** | 0.633 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirui, E.C.; Kidoido, M.M.; Akutse, K.S.; Wanyama, R.; Boni, S.B.; Dubois, T.; Dinssa, F.F.; Mutyambai, D.M. Factors Influencing the Adoption of Agroecological Vegetable Cropping Systems by Smallholder Farmers in Tanzania. Sustainability 2025, 17, 1148. https://doi.org/10.3390/su17031148
Kirui EC, Kidoido MM, Akutse KS, Wanyama R, Boni SB, Dubois T, Dinssa FF, Mutyambai DM. Factors Influencing the Adoption of Agroecological Vegetable Cropping Systems by Smallholder Farmers in Tanzania. Sustainability. 2025; 17(3):1148. https://doi.org/10.3390/su17031148
Chicago/Turabian StyleKirui, Essy C., Michael M. Kidoido, Komivi S. Akutse, Rosina Wanyama, Simon B. Boni, Thomas Dubois, Fekadu F. Dinssa, and Daniel M. Mutyambai. 2025. "Factors Influencing the Adoption of Agroecological Vegetable Cropping Systems by Smallholder Farmers in Tanzania" Sustainability 17, no. 3: 1148. https://doi.org/10.3390/su17031148
APA StyleKirui, E. C., Kidoido, M. M., Akutse, K. S., Wanyama, R., Boni, S. B., Dubois, T., Dinssa, F. F., & Mutyambai, D. M. (2025). Factors Influencing the Adoption of Agroecological Vegetable Cropping Systems by Smallholder Farmers in Tanzania. Sustainability, 17(3), 1148. https://doi.org/10.3390/su17031148