Waste Management of Wind Turbine Blades—A Review of Recycling Methods and Applications in Cementitious Composites
Abstract
:1. Introduction
- Highlight the global significance of the issue of wind turbine blade waste management and its scale, covering the amount of waste and its growth trend.
- Consider the legal limitations related to managing composite waste.
- Discuss methods of managing wind turbine blade waste in whole or after shredding (recycling, reuse, material recovery).
- Discuss an original and innovative solution for the use of mechanically shredded wind turbine blades in cement composites.
2. Waste Management
3. Structure of Wind Turbine Blades
4. Recycling Methods
5. Reuse of Large-Scale Components
6. Reuse of Components After Shredding
7. Shredded Wind Turbine Blades in Concrete
8. Material for Research
9. Conclusions
- -
- The management of wind turbine blade waste is of critical importance at a global level, especially in the context of the increasing volume of this waste and the projected increase in the future.
- -
- According to predictions in the literature, the trend of increasing wind turbine waste is expected to continue until 2045 (up to 800,000 tons per year)
- -
- There are no uniform regulations governing the management of wind turbine blade waste. There are different legal approaches to regulation, from landfill bans (Germany) to recycling purposes (France).
- -
- The large size of the waste determines mechanical recycling as a more economical solution that does not require specialized laboratory facilities.
- -
- The biggest challenges in turbine blade recycling are thermoset composites, as well as glass and carbon fiber.
- -
- An innovative approach to the use of shredded wind turbine blades in cementitious composites is presented, which differs from traditional solutions such as cubes or fiber materials.
Author Contributions
Funding
Conflicts of Interest
References
- Liu, P.; Barlow, C.Y. Wind Turbine Blade Waste in 2050. Waste Manag. 2017, 62, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Ortegon, K.; Nies, L.F.; Sutherland, J.W. Preparing for End of Service Life of Wind Turbines. J. Clean. Prod. 2012, 39, 191–199. [Google Scholar] [CrossRef]
- Beauson, J.; Laurent, A.; Rudolph, D.P.; Jensen, J.P. The Complex End-of-Life of Wind Turbine Blades: A Review of the European Context. Renew. Sustain. Energy Rev. 2022, 155, 111847. [Google Scholar] [CrossRef]
- Andersen, P.D.; Bonou, A.; Beauson, J.; Brøndsted, P. Recycling of Wind Turbines. In DTU International Energy Report 2014: Wind Energy—Drivers and Barriers for Higher Shares of Wind in the Global Power Generation Mix; Hvidtfeldt Larsen, H., Sønderberg Petersen, L., Eds.; Technical University of Denmark: Lyngby, Denmark, 2014; pp. 91–97. Available online: https://orbit.dtu.dk/en/publications/recycling-ofwind-turbines (accessed on 30 November 2024).
- Lichtenegger, G.; Rentizelas, A.A.; Trivyza, N.; Siegl, S. Offshore and Onshore Wind Turbine Blade Waste Material Forecast at a Regional Level in Europe until 2050. Waste Manag. 2020, 106, 120–131. [Google Scholar] [CrossRef]
- GWEC. Global Wind Report 2024. Available online: https://gwec.net/wp-content/uploads/2024/04/GWR-2024_digital-version_final-1.pdf (accessed on 30 November 2024).
- GWEC. Global Wind Report 2008 Update. Available online: https://gwec.net/wp-content/uploads/2012/06/gwec-08-update_FINAL.pdf (accessed on 30 November 2024).
- GWEC. Global Wind Statistics 2012. Brussels. 2013. Available online: http://www.gwec.net/wp-content/uploads/2013/02/GWEC-PRstats-2012_english.pdf (accessed on 30 November 2024).
- GWEC. Global Wind Report Annual Market Update 2014. Available online: http://www.gwec.net/wp-content/uploads/2015/03/GWEC_Global_Wind_2014_Report_LR.pdf (accessed on 30 November 2024).
- GWEC. Global Wind Report 2023. Available online: https://gwec.net/wp-content/uploads/2023/03/GWR-2023_interactive.pdf (accessed on 30 November 2024).
- Albers, H.; Greiner, S.; Seifert, H.; Kühne, U. Recycling of Wind Turbine Rotor Blades–Fact or Fiction? DEWI Magazin. February 2009. Available online: https://doczz.net/doc/3660079/recycling-of-wind-turbine-rotor-blades—Fact-or-fiction%3F (accessed on 30 November 2024).
- European Parliament and the Council. Directive 2008/98/EC on Waste and Repealing Certain Directives. Off. J. Eur. Union 2008, 312, 3–30. [Google Scholar]
- European Commission. Directive 2008/98/EC on Waste (Waste Framework Directive). Available online: https://ec.europa.eu/environment/waste/framework/ (accessed on 30 November 2024).
- Warren, C.R.; Lumsden, C.; O’Dowd, S.; Birnie, R.V. ’Green on Green’: Public Perceptions of Wind Power in Scotland and Ireland. J. Environ. Plan. Manag. 2005, 48, 853–875. [Google Scholar] [CrossRef]
- Devic, A.-C.; Ierides, M.; Fernandez, V.; Verbenkov, M.; Bax, L. Polymer Composites Circularity. SUSCHEM. 2018. Available online: http://www.suschem.org/publications (accessed on 30 November 2024).
- United States Environmental Protection Agency. Available online: https://www.epa.gov (accessed on 30 November 2024).
- KrW-/AbfG. Kreislaufwirtschafts- und Abfallgesetz–Ustawa o Zamkniętym Obiegu Substancji i Gospodarce Odpadami/Unieszkodliwianiu Odpadów. Federal Law Gazette I 1994, 2705. Available online: https://www.umwelt-online.de/recht/abfall/krwabfg/krw1.htm (accessed on 23 October 2023).
- Cooperman, A.; Eberle, A.; Lantz, E. Wind Turbine Blade Material in the United States: Quantities, Costs, and End-of-Life Options. Resour. Conserv. Recycl. 2021, 168, 105337. [Google Scholar] [CrossRef]
- Arrêté du 22 juin 2020 portant modification des prescriptions relatives aux installations de production d’électricité utilisant l’énergie mécanique du vent au sein d’une installation soumise à autorisation au titre de la rubrique 2980 de la législation de FRAN. J. Off. Repub. 2020. Available online: https://www.legifrance.gouv.fr/jorf/id/JORFARTI000042056017 (accessed on 30 November 2024).
- Yang, J.; Meng, F.; Zhang, L.; McKechnie, J.; Chang, Y.; Ma, B.; Hao, Y.; Li, X.; Pender, K.; Yang, L.; et al. Solutions for Recycling Emerging Wind Turbine Blade Waste in China Are Not Yet Effective. Commun. Earth Environ. 2023, 4, 466. [Google Scholar] [CrossRef]
- The China State Council. Law of the People’s Republic of China on the Prevention and Control of Environmental Pollution by Solid Waste. Available online: http://www.gov.cn/xinwen/2020-04/30/content_5507561.htm (accessed on 30 November 2024).
- National Development and Reform Commission. Guiding Opinions on Comprehensive Utilisation of Bulk Solid Waste During the Fourteenth Five-Year Plan. Available online: https://www.ndrc.gov.cn/fzggw/jgsj/zys/sjdt/202104/t202104291278101.html?code=&state=123 (accessed on 30 November 2024).
- World Energy. Energy and Resources in a Changing World. Available online: https://www.world-energy.org/article/39853.html (accessed on 30 November 2024).
- Bank, L.C.; Arias, F.R.; Yazdanbakhsh, A.; Gentry, T.R.; Al-Haddad, T.; Chen, J.-F.; Morrow, R. Concepts for Reusing Composite Materials from Decommissioned Wind Turbine Blades in Affordable Housing. Recycling 2018, 3, 3. [Google Scholar] [CrossRef]
- Beauson, J.; Brøndsted, P. Wind Turbine Blades: An End-of-Life Perspective. In MARE-WINT; Ostachowicz, W., McGugan, M., Schröder-Hinrichs, J.U., Luczak, M., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- ETIPWind. How Wind Is Going Circular—Blade Recycling. ETIPWind. 2019. Available online: https://etipwind.eu/files/reports/ETIPWind-How-wind-is-going-circular-blade-recycling.pdf (accessed on 30 November 2024).
- Halicka, A.; Buda-Ożóg, L.; Jabłoński, M.; Jakubiak, N.; Jabłoński, W. Koncepcje Wielokrotnego Użytku Ostrza Turbin Wiatrowych w Budownictwie Inżynieryjnym. Rap. Inżynieryjne I Sr. 2024, 34, 22–31. [Google Scholar] [CrossRef]
- Paulsen, E.B.; Enevoldsen, P. A Multidisciplinary Review of Recycling Methods for End-of-Life Wind Turbine Blades. Energies 2021, 14, 4247. [Google Scholar] [CrossRef]
- Mativenga, P.T.; Shuaib, N.A.; Howarth, J.; Pestalozzi, F.; Woidasky, J. High Voltage Fragmentation and Mechanical Recycling of Glass Fibre Thermoset Composite. CIRP Ann. 2016, 65, 45–48. [Google Scholar] [CrossRef]
- Oliveux, G.; Dandy, L.O.; Leeke, G.A. Current Status of Recycling of Fibre Reinforced Polymers: Review of Technologies, Reuse and Resulting Properties. Prog. Mater. Sci. 2015, 72, 61–99. [Google Scholar] [CrossRef]
- Pickering, S.J. Recycling Technologies for Thermoset Composite Materials—Current Status. Compos. A Appl. Sci. Manuf. 2006, 37, 1206–1215. [Google Scholar] [CrossRef]
- Pickering, S.J. Recycling and Disposal of Thermoset Composites. In Proceedings of the Workshop on Life Cycle Assessment (LCA) for Composites Gateway, Devon, UK, 25 September 2013. [Google Scholar]
- Palmer, J. Mechanical Recycling of Automotive Composites for Use as Reinforcement in Thermoset Composites; University of Exeter: Exeter, UK, 2009. [Google Scholar]
- Beauson, J.; Madsen, B.; Toncelli, C.; Brøndsted, P.; Ilsted Bech, J. Recycling of Shredded Composites from Wind Turbine Blades in New Thermoset Polymer Composites. Compos. Part A Appl. Sci. Manuf. 2016, 90, 390–399. [Google Scholar] [CrossRef]
- Palmer, J.; Ghita, O.R.; Savage, L.; Evans, K.E. Successful Closed-Loop Recycling of Thermoset Composites. Compos. Part A Appl. Sci. Manuf. 2009, 40, 490–498. [Google Scholar] [CrossRef]
- Rahimizadeh, A.; Tahir, M.; Fayazbakhsh, K.; Lessard, L. Tensile Properties and Interfacial Shear Strength of Recycled Fibers from Wind Turbine Waste. Compos. Part A Appl. Sci. Manuf. 2020, 131, 105786. [Google Scholar] [CrossRef]
- Tayebi, S.T.; Sambucci, M.; Valente, M. Waste Management of Wind Turbine Blades: A Comprehensive Review on Available Recycling Technologies with a Focus on Overcoming Potential Environmental Hazards Caused by Microplastic Production. Sustainability 2024, 16, 4517. [Google Scholar] [CrossRef]
- Joustra, J.; Flipsen, B.; Balkenende, R. Structural Reuse of High-End Composite Products: A Design Case Study on Wind Turbine Blades. Resour. Conserv. Recycl. 2021, 167, 105393. [Google Scholar] [CrossRef]
- Anmet. Furniture Offer. Available online: https://www.anmet.com.pl/wp-content/uploads/2023/01/Furniture-offer.pdf (accessed on 30 November 2024).
- Gentry, T.R.; Al-Haddad, T.; Bank, L.C.; Arias, F.R.; Nagle, A.; Leahy, P. Structural Analysis of a Roof Extracted from a Wind Turbine Blade. J. Archit. Eng. 2020, 26, 04020040. [Google Scholar] [CrossRef]
- Nagle, A.J. Life Cycle Assessment of the Use of Decommissioned Wind Blades in Second Life Applications. J. Environ. Manag. 2022, 302, 113994. [Google Scholar] [CrossRef] [PubMed]
- Świat OZE. Pierwsza na Świecie Polska Kładka z Upcyklingu Turbin Wiatrowych. Available online: https://swiatoze.pl/pierwsza-na-swiecie-polska-kladka-z-upcyklingu-turbin-wiatrowych/ (accessed on 30 November 2024).
- Inżynieria. W Szprotawie w woj. Lubuskim Powstała Kładka z Łopaty Wiatraka. Available online: https://inzynieria.com/mosty/kladki_dla_pieszych/wiadomosci/62782,w-szprotawie-w-woj-lubuskim-powstala-kladka-z-lopaty-wiatraka (accessed on 30 November 2024).
- SmogLab. Recykling Wiatraków. Available online: https://smoglab.pl/recykling-wiatrakow (accessed on 30 November 2024).
- Thornmann. Elektrownie Wiatrowe: Utylizacja Śmigieł. Available online: https://thornmann.com.pl/elektrownie-wiatrowe/utylizacja-smigiel/ (accessed on 30 November 2024).
- Wegman, T. Recycling Composites: Integral Part of Wind Turbine Blade Life Cycle. EuCIA–European Composites Industry Association. In End-of-Life Issues and Strategies, WindEurope. 2019. Available online: https://static.aocformulations.com/pictures-news/windeurope-2019/composites-recycling-april-3-2019-1562826156.pdf (accessed on 30 November 2024).
- Fauzan, F.; Yuliet, R.; Habibillah, K.; Agista, G.; Juliafad, E. The Effect of a Combination of Steel Fiber Waste Tyre and Crumb Rubber on the Mechanical Properties of High-Strength Concrete. Int. J. GEOMATE 2024, 25, 7650. [Google Scholar] [CrossRef]
- Yahia, H.; Maqbali, A.-A.; Maawali, S.; Ladin, M.; Kuckian, S.; Poloju, K.; Prasad, C.V.S. Evaluation of Recycled Tyre Steel Fibres Effectiveness on the Properties of Concrete. IOP Conf. Ser. Mater. Sci. Eng. 2023, 1282, 012018. [Google Scholar] [CrossRef]
- Kilmartin-Lynch, S.; Saberian, M.; Li, J.; Roychand, R.; Zhang, G. Preliminary Evaluation of the Feasibility of Using Polypropylene Fibres from COVID-19 Single-Use Face Masks to Improve the Mechanical Properties of Concrete. J. Clean. Prod. 2021, 296, 126460. [Google Scholar] [CrossRef]
- Touahri, A.; Taieb, B.; Yahia, A.; Ezziane, K. Effect of Recycled Polypropylene Fiber on High Strength Concrete and Normal Strength Concrete Properties. Adv. Mater. Res. 2021, 10, 267–281. [Google Scholar] [CrossRef]
- Job, S. Recycling Glass Fibre Reinforced Composites–History and Progress. Reinf. Plast. 2013, 57, 19–23. [Google Scholar] [CrossRef]
- Ortega-López, V.; Faleschini, F.; Hurtado-Alonso, N.; Manso-Morato, J.; Revilla-Cuesta, V. Analysis of Raw-Crushed Wind-Turbine Blade as an Overall Concrete Addition: Stress-Strain and Deflection Performance Effects. Compos. Struct. 2024, 340, 118170. [Google Scholar] [CrossRef]
- Revilla-Cuesta, V.; Manso-Morato, J.; Hurtado-Alonso, N.; Skaf, M.; Ortega-López, V. Mechanical and Environmental Advantages of the Revaluation of Raw-Crushed Wind-Turbine Blades as a Concrete Component. J. Build. Eng. 2024, 82, 108383. [Google Scholar] [CrossRef]
- Revilla-Cuesta, V.; Skaf, M.; Ortega-López, V.; Manso, J.M. Raw-Crushed Wind-Turbine Blade: Waste Characterization and Suitability for Use in Concrete Production. Resour. Conserv. Recycl. 2023, 198, 107160. [Google Scholar] [CrossRef]
- Yazdanbakhsh, A.; Bank, L.C.; Rieder, K.-A.; Tian, Y.; Chen, C. Concrete with Discrete Slender Elements from Mechanically Recycled Wind Turbine Blades. Resour. Conserv. Recycl. 2018, 128, 11–21. [Google Scholar] [CrossRef]
- Abdo, M.; Toumpanaki, E.; Diambra, A.; Comandini, G.; Bank, L. Evaluation of Mechanical Properties of Concrete with Recycled FRP Wind Blade Waste Material. In Proceedings of the 11th International Conference on Fiber-Reinforced Polymer (FRP) Composites in Civil Engineering, Rio De Janeiro, Brazil, 23–26 July 2023. [Google Scholar]
- Baturkin, D.; Hisseine, O.A.; Masmoudi, R.; Tagnit-Hamou, A.; Massicotte, L. Valorization of Recycled FRP Materials from Wind Turbine Blades in Concrete. Resour. Conserv. Recycl. 2021, 174, 105807. [Google Scholar] [CrossRef]
- Pławecka, K.; Przybyła, J.; Korniejenko, K.; Lin, W.-T.; Cheng, A.; Łach, M. Recycling of Mechanically Ground Wind Turbine Blades as Filler in Geopolymer Composite. Materials 2021, 14, 6539. [Google Scholar] [CrossRef]
- Sorathiya, S.; Patel, N.R.; Pitroda, J. A Techno Economical Study on Wind Turbine Blade Waste as Replacement of Natural Coarse Aggregates in Concrete. Int. J. Construct. Res. Civ. Eng. 2017, 3, 26–32. [Google Scholar] [CrossRef]
EU MEMBER STATES
|
GERMANY
|
FRANCE
|
UNITED STATES
|
UNITED KINGDOM
|
CHINA
|
SHREDDED WIND TURBINE BLADES IN CONCRETE-LITERATURE SUMMARY | ||||
---|---|---|---|---|
SOURCE | Form of the Material | Size [mm] | Application | Percentage Share in the Composite [as Reported by the Authors]. |
V. Revilla-Cuesta i in. [52,53,54]. | Fibers | <10 | Additive to the concrete mix | M1.5–1.5% |
M3–3% | ||||
M4.5–4.5% | ||||
M6–6% | ||||
Yazdanbakhsh i in. [55] | Regular needles (PLN) Grooved needles (GRV) | 6 × 6 × 100 | Coarse aggregate substitute | PLN-5–5% |
PLN-10–10% | ||||
GRV-5–5% | ||||
GRV-10–10% | ||||
Abdo, i in. [56] | Needles | 6 × 6 × 50 | Coarse aggregate substitute | FRP-RA-2.5–2.5% |
Baturnik i in. [57] | Cubes | 20 | Coarse aggregate substitute | 33% cubes |
66% cubes | ||||
100% cubes | ||||
33% aggregate | ||||
Baturnik i in. [57] | Powder | ----------- | Cement substitute | 20%WWTB-GFRP |
40%WWTB-GFRP | ||||
27%WWTB-GFRP | ||||
54%WWTB-GFRP | ||||
10% Powder | ||||
20% Powder | ||||
30% Powder | ||||
Sorathiya i in. [59] | Irregular elements resembling aggregates [“cubes”]. | 20–25 | Coarse aggregate substitute | B1-20% |
B2-40% | ||||
B3-60% | ||||
B4-80% | ||||
B5-100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jasińska, D.; Dutkiewicz, M. Waste Management of Wind Turbine Blades—A Review of Recycling Methods and Applications in Cementitious Composites. Sustainability 2025, 17, 805. https://doi.org/10.3390/su17030805
Jasińska D, Dutkiewicz M. Waste Management of Wind Turbine Blades—A Review of Recycling Methods and Applications in Cementitious Composites. Sustainability. 2025; 17(3):805. https://doi.org/10.3390/su17030805
Chicago/Turabian StyleJasińska, Daria, and Maciej Dutkiewicz. 2025. "Waste Management of Wind Turbine Blades—A Review of Recycling Methods and Applications in Cementitious Composites" Sustainability 17, no. 3: 805. https://doi.org/10.3390/su17030805
APA StyleJasińska, D., & Dutkiewicz, M. (2025). Waste Management of Wind Turbine Blades—A Review of Recycling Methods and Applications in Cementitious Composites. Sustainability, 17(3), 805. https://doi.org/10.3390/su17030805