Circular Economy on a Small Scale: The Sustainable Use of Olive Tree Biomass Residues as Feed for Lactating Cows in the Sorrento Peninsula
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Study and Farms
2.2. Feeding Trials
2.2.1. Farm A
2.2.2. Farm B
2.3. Feed and Milk Analyses
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OlPr | Olive pruning residue |
OlLes | Olive mill leaves |
DM | Dry matter |
DMI | Dry matter intake |
FA | Fatty acids |
SD | Standard deviation |
AOAC | Association of Official Analytical Chemists |
CP | Crude protein |
NDF | Neutral detergent fiber |
ADF | Acid detergent fiber |
ADL | Acid detergent lignin |
NEL | Net energy of lactation |
NFCs | Non-fibrous carbohydrates |
SCC | Somatic cell count |
FAMEs | Fatty acid methyl esters |
AI | Atherogenic index |
ANOVA | Analysis of variance |
GLM | General linear model |
LSM | Least squares mean |
SEM | Standard error of mean |
PUFA | Polyunsaturated fatty acid |
DGLA | Dihomo-Gamma-Linolenic acid |
MUFAs | Monosaturated fatty acids |
CLAs | Conjugated linoleic acids |
References
- Suzanne, E.; Absi, N.; Borodin, V. Towards Circular Economy in Production Planning: Challenges and Opportunities. Eur. J. Oper. Res. 2020, 287, 168–190. [Google Scholar] [CrossRef]
- Govoni, C.; D’Odorico, P.; Pinotti, L.; Rulli, M.C. Preserving Global Land and Water Resources through the Replacement of Livestock Feed Crops with Agricultural By-Products. Nat. Food 2023, 4, 1047–1057. [Google Scholar] [CrossRef]
- Schicchi, R.; Speciale, C.; Amato, F.; Bazan, G.; Di Noto, G.; Marino, P.; Ricciardo, P.; Geraci, A. The Monumental Olive Trees as Biocultural Heritage of Mediterranean Landscapes: The Case Study of Sicily. Sustainability 2021, 13, 6767. [Google Scholar] [CrossRef]
- FAOSTAT. Database. Available online: https://www.fao.org/faostat/en/#home (accessed on 23 November 2024).
- Ismea (Istituto di Servizi per il Mercato Agricolo Alimentare). Olio D’oliva—Analisi e Studio Filiera Olivicola. Available online: https://www.ismeamercati.it/olio-oliva (accessed on 25 November 2024).
- Espeso, J.; Isaza, A.; Lee, J.Y.; Sörensen, P.M.; Jurado, P.; Avena-Bustillos, R.d.J.; Olaizola, M.; Arboleya, J.C. Olive Leaf Waste Management. Front. Sustain. Food Syst. 2021, 5, 660582. [Google Scholar] [CrossRef]
- Lodolini, E.M.; Polverigiani, S.; Giorgi, V.; Famiani, F.; Neri, D. Time and Type of Pruning Affect Tree Growth and Yield in High-Density Olive Orchards. Sci. Hortic. 2023, 311, 111831. [Google Scholar] [CrossRef]
- Markhali, F.S.; Teixeira, J.A.; Rocha, C.M. Olive tree leaves—A source of valuable active compounds. Processes 2020, 8, 1177. [Google Scholar] [CrossRef]
- Avraamides, M.; Fatta, D. Resource Consumption and Emissions from Olive Oil Production: A Life Cycle Inventory Case Study in Cyprus. J. Clean. Prod. 2008, 16, 809–821. [Google Scholar] [CrossRef]
- Berbel, J.; Posadillo, A. Review and Analysis of Alternatives for the Valorisation of Agro-Industrial Olive Oil By-Products. Sustainability 2018, 10, 237. [Google Scholar] [CrossRef]
- Manzanares Secades, P.; Ruiz Ramos, E.; Ballesteros Perdices, M.; Negro, M.J.; Gallego, F.J.; López Linares, J.C.; Castro Galiano, E. Residual Biomass Potential in Olive Tree Cultivation and Olive Oil Industry in Spain: Valorization Proposal in a Biorefinery Context. Span. J. Agric. Res. 2017, 15, 6. [Google Scholar] [CrossRef]
- Pindozzi, S.; Cervelli, E.; Capolupo, A.; Okello, C.; Boccia, L. Using Historical Maps to Analyze Two Hundred Years of Land Cover Changes: Case Study of Sorrento Peninsula (South Italy). Cartogr. Geogr. Inf. Sci. 2016, 43, 250–265. [Google Scholar] [CrossRef]
- Brunori, E.; Salvati, L.; Antogiovanni, A.; Biasi, R. Worrying about ‘Vertical Landscapes’: Terraced Olive Groves and Ecosystem Services in Marginal Land in Central Italy. Sustainability 2018, 10, 1164. [Google Scholar] [CrossRef]
- Sannino, M.; Faugno, S.; Maresca, G.; Suardi, A.; Panico, T.; Costanza, F. Olive Growing in the Sorrento Peninsula: Operative, Economic, and Environmental Evaluation Trough LCA of Mechanical Harvesting. Heliyon 2024, 10, e40461. [Google Scholar] [CrossRef] [PubMed]
- Pauciullo, A.; Nicodemo, D.; Peretti, V.; Marino, G.; Iannuzzi, A.; Cosenza, G.; Di Meo, G.P.; Ramunno, L.; Iannuzzi, L.; Rubes, J.; et al. X-Y Aneuploidy Rate in Sperm of Two “Minor” Breeds of Cattle (Bos taurus) by Using Dual Color Fluorescent in Situ Hybridization (FISH). Theriogenology 2012, 78, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Manzo, N.; Santini, A.; Pizzolongo, F.; Aiello, A.; Marrazzo, A.; Meca, G.; Durazzo, A.; Lucarini, M.; Romano, R. Influence of Ripening on Chemical Characteristics of a Traditional Italian Cheese: Provolone Del Monaco. Sustainability 2019, 11, 2520. [Google Scholar] [CrossRef]
- Tzamaloukas, O.; Neofytou, M.C.; Simitzis, P.E. Application of Olive By-Products in Livestock with Emphasis on Small Ruminants: Implications on Rumen Function, Growth Performance, Milk and Meat Quality. Animals 2021, 11, 531. [Google Scholar] [CrossRef]
- Molina-Alcaide, E.; Yáñez-Ruiz, D.R. Potential Use of Olive By-Products in Ruminant Feeding: A Review. Anim. Feed Sci. Technol. 2008, 147, 247–264. [Google Scholar] [CrossRef]
- Tarchi, I.; Koubaa, M.; Ozogul, F.; Bouaziz, M.; Aït-Kaddour, A. Influence of olive leaf extract on the physicochemical properties of yogurts made from cow, sheep, and goat milk. Food Biosci. 2024, 63, 105728. [Google Scholar] [CrossRef]
- Albarella, S.; Selvaggi, M.; D’Anza, E.; Cosenza, G.; Caira, S.; Scaloni, A.; Fontana, A.; Peretti, V.; Ciotola, F. Influence of the Casein Composite Genotype on Milk Quality and Coagulation Properties in the Endangered Agerolese Cattle Breed. Animals 2020, 10, 892. [Google Scholar] [CrossRef] [PubMed]
- Valadares Filho, S.C.; Broderick, G.A.; Valadares, R.F.D.; Clayton, M.K. Effect of replacing alfalfa silage with high moisture corn on nutrient utilization and milk production. J. Dairy Sci. 2000, 83, 106–114. [Google Scholar] [CrossRef] [PubMed]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2002. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Robertson, J.B.; Van Soest, P.J. The Detergent System of Analysis. In The Analysis of Dietary Fibre in Food; James, W.P.T., Theander, O., Eds.; Marcel Dekker: New York, NY, USA, 1981; pp. 123–158. [Google Scholar]
- ISO (International Organization for Standardization). Animal Feeding Stuffs. Determination of Starch Content–Polarimetric Method; ISO: Geneva, Switzerland, 2000. [Google Scholar]
- Nozière, P.; Sauvant, D.; Delaby, L. INRA Feeding System for Ruminants; Wageningen Academic Publishers: Wageningen, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Serrapica, F.; Masucci, F.; Raffrenato, E.; Sannino, M.; Vastolo, A.; Barone, C.M.A.; Di Francia, A. High Fiber Cakes from Mediterranean Multipurpose Oilseeds as Protein Sources for Ruminants. Animals 2019, 9, 918. [Google Scholar] [CrossRef]
- Sacchi, R.; Marrazzo, A.; Masucci, F.; Di Francia, A.; Serrapica, F.; Genovese, A. Effects of Inclusion of Fresh Forage in the Diet for Lactating Buffaloes on Volatile Organic Compounds of Milk and Mozzarella Cheese. Molecules 2020, 25, 1332. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary Heart Disease: Seven Dietary Factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Bittante, G.; Amalfitano, N.; Bergamaschi, M.; Patel, N.; Haddi, M.-L.; Benabid, H.; Pazzola, M.; Vacca, G.M.; Tagliapietra, F.; Schiavon, S. Composition and Aptitude for Cheese-Making of Milk from Cows, Buffaloes, Goats, Sheep, Dromedary Camels, and Donkeys. J. Dairy Sci. 2022, 105, 2132–2152. [Google Scholar] [CrossRef]
- Serrapica, F.; Masucci, F.; De Rosa, G.; Braghieri, A.; Sarubbi, F.; Garofalo, F.; Grasso, F.; Di Francia, A. Moving Buffalo Farming beyond Traditional Areas: Performances of Animals, and Quality of Mozzarella and Forages. Agriculture 2022, 12, 1219. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Priyashantha, H.; Vidanarachchi, J.K.; Kiani, A.; Holman, B.W.B. Effects of Nutritional Factors on Fat Content, Fatty Acid Composition, and Sensorial Properties of Meat and Milk from Domesticated Ruminants: An Overview. Animals 2024, 14, 840. [Google Scholar] [CrossRef] [PubMed]
- Serrapica, F.; Uzun, P.; Masucci, F.; Napolitano, F.; Braghieri, A.; Genovese, A.; Sacchi, R.; Romano, R.; Barone, C.M.A.; Di Francia, A. Hay or silage? How the forage preservation method changes the volatile compounds and sensory properties of Caciocavallo cheese. J. Dairy Sci. 2020, 103, 1391–1403. [Google Scholar] [CrossRef] [PubMed]
- Beaver, A.; Weary, D.M.; von Keyserlingk, M.A.G. Invited Review: The Welfare of Dairy Cattle Housed in Tiestalls Compared to Less-Restrictive Housing Types: A Systematic Review. J. Dairy Sci. 2021, 104, 9383–9417. [Google Scholar] [CrossRef]
- Morar, D.; Văduva, C.; Morar, A.; Imre, M.; Tulcan, C.; Imre, K. Paraclinical Changes Occurring in Dairy Cows with Spontaneous Subacute Ruminal Acidosis under Field Conditions. Animals 2022, 12, 2466. [Google Scholar] [CrossRef] [PubMed]
- Vastolo, A.; Serrapica, F.; Cavallini, D.; Fusaro, I.; Atzori, A.S.; Todaro, M. Editorial: Alternative and Novel Livestock Feed: Reducing Environmental Impact. Front. Vet. Sci. 2024, 11, 1441905. [Google Scholar] [CrossRef]
- Al-Masri, M.R. An in Vitro Nutritive Evaluation of Olive Tree (Olea europaea) Pruning Residues as Affected by Cutting Regimen. Bioresour. Technol. 2012, 103, 234–238. [Google Scholar] [CrossRef]
- Mamaní, A.; Maturano, Y.; Mestre, V.; Montoro, L.; Gassa, L.; Deiana, C.; Sardella, F. Valorization of Olive Tree Pruning. Application for Energy Storage and Biofuel Production. Ind. Crops Prod. 2021, 173, 114082. [Google Scholar] [CrossRef]
- Contò, M.; Rinaldi, S.; Contò, G.; Sagrafoli, D.; Boselli, C.; Giacinti, G.; Failla, S. Effect of Dietary Olive Leaf Integration on Qualitative Characteristics of Sheep Cheese During Ripening. Dairy 2024, 5, 741–753. [Google Scholar] [CrossRef]
- El Yamani, M.; Cordovilla, M. del P. Tolerance Mechanisms of Olive Tree (Olea europaea) under Saline Conditions. Plants 2024, 13, 2094. [Google Scholar] [CrossRef] [PubMed]
- Beauchemin, K.A. Invited Review: Current Perspectives on Eating and Rumination Activity in Dairy Cows. J. Dairy Sci. 2018, 101, 4762–4784. [Google Scholar] [CrossRef] [PubMed]
- Golbotteh, M.M.; Malecky, M.; Aliarabi, H.; Zamani, P. Impact of Oil Type and Savory Plant on Nutrient Digestibility and Rumen Fermentation, Milk Yield, and Milk Fatty Acid Profile in Dairy Cows. Sci. Rep. 2024, 14, 22427. [Google Scholar] [CrossRef] [PubMed]
- Kunst, L.; Samuels, A.L. Biosynthesis and Secretion of Plant Cuticular Wax. Prog. Lipid Res. 2003, 42, 51–80. [Google Scholar] [CrossRef] [PubMed]
- Bendini, A.; Cerretani, L.; Carrasco-Pancorbo, A.; Gómez-Caravaca, A.M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Lercker, G. Phenolic Molecules in Virgin Olive Oils: A Survey of Their Sensory Properties, Health Effects, Antioxidant Activity and Analytical Methods. An Overview of the Last Decade Alessandra. Molecules 2007, 12, 1679–1719. [Google Scholar] [CrossRef]
- Massei, G.; Hartley, S.E. Disarmed by Domestication? Induced Responses to Browsing in Wild and Cultivated Olive. Oecologia 2000, 122, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Gucci, R.; Cantini, C. Pruning and Training Systems for Modern Olive Growing; Csiro Publishing: Melbourne, Australia, 2000; ISBN 978-0-643-06443-0. [Google Scholar]
- Cabezas-Garcia, E.H.; Gordon, A.W.; Mulligan, F.J.; Ferris, C.P. Revisiting the Relationships between Fat-to-Protein Ratio in Milk and Energy Balance in Dairy Cows of Different Parities, and at Different Stages of Lactation. Animals 2021, 11, 3256. [Google Scholar] [CrossRef]
- Tsiplakou, E.; Zervas, G. The effect of dietary inclusion of olive tree leaves and grape marc on the content of conjugated linoleic acid and vaccenic acid in the milk of dairy sheep and goats. J. Dairy Res. 2008, 75, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Ayeb, N.; Addis, M.; Fiori, M.; Khorchani, S.; Atigui, M.; Khorchani, T. Quality and Fatty Acid Profile of the Milk of Indigenous Goats Subjected to Different Local Diets in Tunisian Arid Lands. J. Anim. Physiol. Anim. Nutr. 2016, 100, 101–108. [Google Scholar] [CrossRef]
- Walker, G.P.; Dunshea, F.R.; Doyle, P.T. Effects of Nutrition and Management on the Production and Composition of Milk Fat and Protein: A Review. Aust. J. Agric. Res. 2004, 55, 1009–1028. [Google Scholar] [CrossRef]
- Correddu, F.; Caratzu, M.F.; Lunesu, M.F.; Carta, S.; Pulina, G.; Nudda, A. Grape, Pomegranate, Olive, and Tomato By-Products Fed to Dairy Ruminants Improve Milk Fatty Acid Profile without Depressing Milk Production. Foods 2023, 12, 865. [Google Scholar] [CrossRef] [PubMed]
- Basiricò, L.; Morera, P.; Dipasquale, D.; Tröscher, A.; Serra, A.; Mele, M.; Bernabucci, U. Conjugated Linoleic Acid Isomers Strongly Improve the Redox Status of Bovine Mammary Epithelial Cells (BME-UV1). J. Dairy Sci. 2015, 98, 7071–7082. [Google Scholar] [CrossRef] [PubMed]
- Basiricò, L.; Morera, P.; Dipasquale, D.; Tröscher, A.; Bernabucci, U. Comparison between Conjugated Linoleic Acid and Essential Fatty Acids in Preventing Oxidative Stress in Bovine Mammary Epithelial Cells. J. Dairy Sci. 2017, 100, 2299–2309. [Google Scholar] [CrossRef]
- Vastolo, A.; Matera, R.; Serrapica, F.; Cutrignelli, M.I.; Neglia, G.; Kiatti, D.D.; Calabrò, S. Improvement of Rumen Fermentation Efficiency Using Different Energy Sources: In Vitro Comparison between Buffalo and Cow. Fermentation 2022, 8, 351. [Google Scholar] [CrossRef]
- Castellani, F.; Vitali, A.; Bernardi, N.; Marone, E.; Palazzo, F.; Grotta, L.; Martino, G. Dietary Supplementation with Dried Olive Pomace in Dairy Cows Modifies the Composition of Fatty Acids and the Aromatic Profile in Milk and Related Cheese. J. Dairy Sci. 2017, 100, 8658–8669. [Google Scholar] [CrossRef] [PubMed]
Item | Farm A | Farm B | ||
---|---|---|---|---|
OlPr_FA | Con_FA | OlLs_FB | Con_FB | |
Animals | ||||
Parity, n. lactations | 3.40 ± 1.4 | 3.80 ± 1.3 | 2.6 ± 1.9 | 2.8 ± 2.4 |
Days in milk, d | 157.9 ± 36.4 | 161.5 ± 48.5 | 72.6 ± 26.5 | 76.5 ± 31.4 |
Milk yield, kg/head | 18.5 ± 2.1 | 18.2 ± 2.8 | 19.2 ± 6.3 | 19.4 ± 3.1 |
Diets | ||||
Mixed hay, kg/head/d | 11.0 | 11.0 | 10.0 | 10.0 |
Concentrate A, kg/head/d | 10.0 | 10.0 | - | - |
Concentrate B, kg/head/d | - | - | 11.0 | 11.0 |
Olive tree residues, kg/head/d | Ad libitum | Ad libitum | Ad libitum | Ad libitum |
Item | Farm A | Farm B | ||||
---|---|---|---|---|---|---|
Concentrate 1 | Hay | OlPr | Concentrate 2 | Hay | OlLes | |
Chemical composition | ||||||
DM, % of fresh matter | 87.2 ± 0.11 | 86.7 ± 0.55 | 82.5 ± 0.81 | 87.3 ± 0.09 | 89.6 ± 0.63 | 59.9 ± 0.78 |
Ash | 8.0 ± 0.18 | 8.6 ± 0.39 | 8.3 ± 0.53 | 8.6 ± 0.15 | 7.6 ± 0.25 | 9.0 ± 0.44 |
CP | 20.0 ± 0.12 | 10.7 ± 0.32 | 6.2 ± 0.41 | 19.5 ± 0.08 | 9.5 ± 0.27 | 10.3 ± 0.36 |
Ether extract | 4.5 ± 0.27 | 2.2 ± 0.36 | 4.0 ± 0.45 | 4.6 ± 0.18 | 1.2 ± 0.32 | 6.3 ± 0.19 |
NDF | 20.7 ± 0.52 | 63.6 ± 1.17 | 47.3 ± 1.74 | 21.4 ± 0.39 | 61.7 ± 1.21 | 42.6 ± 1.17 |
ADF | 17.1 ± 0.28 | 35.0 ± 1.15 | 33.9 ± 1.61 | 10.3 ± 0.21 | 33.3 ± 1.02 | 31.6 ± 1.21 |
ADL | 1.1 ± 0.21 | 7.2 ± 0.49 | 20.12 ± 0.95 | 1.5 ± 0.14 | 7.4 ± 0.36 | 17.1 ± 1.13 |
NFC | 46.8 ± 0.51 | 14.9 ± 0.8 | 34.3 ± 1.4 | 46.4 ± 0.61 | 19.9 ± 0.75 | 32.0 ± 0.69 |
Starch | 35.1 ± 0.68 | - | - | 40.1 ± 0.77 | - | - |
NEL, MJ/kg DM | 7.3 | 4.8 | 2.2 | 7.5 | 4.8 | 4.5 |
Fatty acid composition, % weight | ||||||
C14:0 Myristic acid | 1.39 ± 0.17 | 1.37 ± 0.03 | ||||
C16:0 Palmitic acid | 25.24 ± 0.35 | 24.30 ± 0.79 | ||||
C18:0 Stearic acid | 4.88 ± 0.34 | 4.54 ± 0.37 | ||||
C18:1n:9c Oleic acid | 20.67 ± 0.34 | 21.27 ± 0.1 | ||||
C18:2n:6c Linoleic acid | 6.79 ± 0.22 | 8.26 ± 0.66 | ||||
C18:3n:3c Linolenic acid | 41.04 ± 1.30 | 40.26 ± 1.11 |
Item | Farm A | Farm B | ||||
---|---|---|---|---|---|---|
Con_FA | OlPr_FA | p | Con_FB | OlLes_FB | p | |
Dry matter intake, kg/head/d | 17.13 ± 0.15 | 18.18 ± 0.15 | <0.0001 | 17.27 ± 0.14 | 18.93 ± 0.14 | <0.0001 |
Hay, kg DM/head/d | 8.42 ± 0.06 | 6.50 ± 0.06 | <0.0001 | 7.7 ± 0.06 | 6.04 ± 0.06 | <0.0001 |
Concentrate, kg DM/head/d | 8.70 | 8.70 | - | 9.56 ± 0.10 | 8.50 ± 0.10 | <0.0001 |
Olive residues, kg DM/head/d | - | 2.95 ± 2.05 | - | 4.38 ± 0.09 | - | |
Forage (hay + olive residues) on DMI, % | 49.20 ± 0.14 | 52.03 ± 0.14 | <0.0001 | 44.58 ± 0.28 | 55.10 ± 0.28 | <0.0001 |
Estimated nutrient intake | ||||||
NEL, MJ/head/d | 105.34 ± 0.29 | 102.88 ± 0.29 | <0.0001 | 107.00 ± 0.81 | 110.84 ± 0.81 | <0.0001 |
CP, kg/head/d | 2.59 ± 0.008 | 2.67 ± 0.008 | <0.0001 | 2.58 ± 0.02 | 2.65 ± 0.02 | <0.0001 |
NDF, kg/head/d | 7.31 ± 0.02 | 7.26 ± 0.02 | <0.0001 | 6.83 ± 0.05 | 7.42 ± 0.05 | <0.0001 |
Ether extract, kg/head/d | 0.59 ± 0.004 | 0.64 ± 0.004 | <0.0001 | 0.53 ± 0.005 | 0.74 ± 0.005 | <0.0001 |
Milk | ||||||
Yield, kg/head/d | 17.84 ± 0.70 | 17.74 ± 0.70 | NS | 18.51 ± 0.24 | 18.49 ± 0.24 | NS |
Fat, % | 3.44 ± 0.05 | 3.49 ± 0.05 | NS | 3.43 ± 0.04 | 3.70 ± 0.04 | <0.001 |
Protein, % | 3.34 ± 0.04 | 3.32 ± 0.04 | NS | 3.33 ± 0.03 | 3.30 ± 0.03 | NS |
Fat-to-protein ratio | 1.03 ± 0.02 | 1.05 ± 0.02 | NS | 1.03 ± 0.01 | 1.12 ± 0.01 | <0.0001 |
SCC, lg n. cells/mL | 5.43 ± 0.04 | 5.37 ± 0.04 | NS | 5.36 ± 0.09 | 5.31 ± 0.09 | NS |
Item | Farm A | Farm B | ||||
---|---|---|---|---|---|---|
Con_FA | OlPr_FA | p | Con_FB | OlLes_FB | p | |
C4:0 | 4.66 ± 0.018 | 4.66 ± 0.018 | NS | 5.00 ± 0.055 | 4.81 ± 0.055 | NS |
C6:0 | 3.70 ± 0.058 | 3.74 ± 0.058 | NS | 3.77 ± 0.048 | 3.67 ± 0.048 | NS |
C8:0 | 2.27 ± 0.069 | 2.32 ± 0.069 | NS | 1.85 ± 0.040 | 1.67 ± 0.040 | <0.05 |
C10:0 | 1.62 ± 0.040 | 1.67 ± 0.040 | NS | 1.76 ± 0.052 | 1.74 ± 0.052 | NS |
C11:0 | 0.17 ± 0.100 | 0.14 ± 0.100 | NS | 0.21 ± 0.009 | 0.22 ± 0.009 | NS |
C12:0 | 3.07 ± 0.033 | 3.09 ± 0.033 | NS | 2.68 ± 0.070 | 2.52 ± 0.070 | NS |
C13:0 | 0.18 ± 0.011 | 0.19 ± 0.011 | NS | 0.16 ± 0.010 | 0.15 ± 0.010 | NS |
C14:0 | 11.50 ± 0.131 | 11.32 ± 0.131 | NS | 11.36 ± 0.137 | 11.02 ± 0.137 | NS |
C14:1 | 0.89 ± 0.025 | 0.87 ± 0.025 | NS | 0.86 ± 0.022 | 0.83 ± 0.022 | NS |
C15:0 | 1.17 ± 0.066 | 1.14 ± 0.066 | NS | 1.22 ± 0.036 | 1.14 ± 0.036 | NS |
C16:0 | 39.69 ± 0.153 | 39.25 ± 0.153 | NS | 38.38 ± 0.138 | 35.85 ± 0.138 | <0.001 |
C16:1 | 1.65 ± 0.024 | 1.68 ± 0.024 | NS | 1.59 ± 0.040 | 1.46 ± 0.040 | NS |
C17:0 | 0.41 ± 0.025 | 0.42 ± 0.025 | NS | 0.41 ± 0.025 | 0.38 ± 0.025 | NS |
C17:1 | 0.11 ± 0.060 | 0.12 ± 0.060 | NS | 0.15 ± 0.010 | 0.19 ± 0.010 | <0.05 |
C18:0 | 7.32 ± 0.090 | 7.41 ± 0.090 | NS | 7.87 ± 0.119 | 8.38 ± 0.119 | <0.05 |
C18:1 t11 | 0.19 ± 0.080 | 0.21 ± 0.080 | NS | 0.20 ± 0.007 | 0.33 ± 0.007 | <0.0001 |
C18:1 c9 | 18.78 ± 0.670 | 19.10 ± 0.670 | <0.001 | 18.52 ± 0.116 | 20.08 ± 0.116 | <0.0001 |
C18:2 t 9–12 | 0.29 ± 0.010 | 0.30 ± 0.010 | NS | 0.26 ± 0.008 | 0.46 ± 0.008 | <0.0001 |
C18:2 c 9–12 | 1.37 ± 0.065 | 1.45 ± 0.065 | NS | 2.40 ± 0.026 | 3.09 ± 0.026 | <0.0001 |
C20:0 | 0.18 ± 0.014 | 0.19 ± 0.014 | NS | 0.21 ± 0.015 | 0.22 ± 0.015 | NS |
C18:3 n3 | 0.16 ± 0.011 | 0.14 ± 0.011 | NS | 0.36 ± 0.008 | 0.69 ± 0.008 | <0.0001 |
Mix CLA 1 | 0.24 ± 0.018 | 0.27 ± 0.018 | NS | 0.41 ± 0.020 | 0.70 ± 0.020 | <0.0001 |
C22:0 | 0.19 ± 0.015 | 0.20 ± 0.015 | NS | 0.23 ± 0.007 | 0.22 ± 0.007 | NS |
C20:3 n3 | 0.15 ± 0.013 | 0.12 ± 0.013 | NS | 0.16 ± 0.008 | 0.14 ± 0.008 | <0.005 |
Saturated | 76.15 ± 0.010 | 75.75 ± 0.010 | <0.05 | 75.09 ± 0.131 | 72.02 ± 0.131 | <0.0001 |
MUFA | 21.63 ± 0.062 | 22.00 ± 0.062 | <0.001 | 21.32 ± 0.125 | 22.89 ± 0.125 | <0.0001 |
PUFA | 2.21 ± 0.056 | 2.28 ± 0.056 | NS | 3.58 ± 0.037 | 5.08 ± 0.037 | <0.0001 |
Sat/Unsat | 3.19 ± 0.017 | 3.12 ± 0.017 | <0.05 | 3.10 ± 0.020 | 2.57 ± 0.020 | <0.0001 |
AI | 3.72 ± 0.026 | 3.61 ± 0.026 | <0.005 | 3.47 ± 0.029 | 2.95 ± 0.029 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masucci, F.; Serrapica, F.; De Luca, L.; Romano, R.; Garofalo, F.; Di Francia, A. Circular Economy on a Small Scale: The Sustainable Use of Olive Tree Biomass Residues as Feed for Lactating Cows in the Sorrento Peninsula. Sustainability 2025, 17, 845. https://doi.org/10.3390/su17030845
Masucci F, Serrapica F, De Luca L, Romano R, Garofalo F, Di Francia A. Circular Economy on a Small Scale: The Sustainable Use of Olive Tree Biomass Residues as Feed for Lactating Cows in the Sorrento Peninsula. Sustainability. 2025; 17(3):845. https://doi.org/10.3390/su17030845
Chicago/Turabian StyleMasucci, Felicia, Francesco Serrapica, Lucia De Luca, Raffaele Romano, Francesca Garofalo, and Antonio Di Francia. 2025. "Circular Economy on a Small Scale: The Sustainable Use of Olive Tree Biomass Residues as Feed for Lactating Cows in the Sorrento Peninsula" Sustainability 17, no. 3: 845. https://doi.org/10.3390/su17030845
APA StyleMasucci, F., Serrapica, F., De Luca, L., Romano, R., Garofalo, F., & Di Francia, A. (2025). Circular Economy on a Small Scale: The Sustainable Use of Olive Tree Biomass Residues as Feed for Lactating Cows in the Sorrento Peninsula. Sustainability, 17(3), 845. https://doi.org/10.3390/su17030845