Concentrations and Source Apportionment of Tetrachloroethylene (PCE) in Aircraft Cabins
Abstract
:1. Introduction
2. Methodology
2.1. On-Flight Sampling and Analysis
2.2. Source Identification and Apportionment
3. Results and Analysis
3.1. PCE Concentrations in Aircraft Cabins
3.2. PCE Source Identification in Aircraft Cabins
3.2.1. Factor 1: In-Cabin Cleaning Products
3.2.2. Factor 2: Aircraft Cleaning/Maintenance
3.2.3. Factor 3: Cabin Interior Material
3.2.4. Factor 4: Ozone-Associated Reactions
3.2.5. Factor 5: Non-Fuel Oil
3.2.6. Factor 6: Aircraft and Vehicle Exhaust
3.3. PCE Source Apportionment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, S.C.; Poon, C.S.; Li, X.D.; Luk, F. Indoor air quality investigation on commercial aircraft. Indoor Air 1999, 9, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Strom-Tejsen, P.; Zukowska, D.; Fang, L.; Space, D.R.; Wyon, D.P. Advantages for passengers and cabin crew of operating a gas-phase adsorption air purifier in 11-h simulated flights. Indoor Air 2008, 18, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Giaconia, C.; Orioli, A.; Di Gangi, A. Air quality and relative humidity in commercial aircrafts: An experimental investigation on short-haul domestic flights. Build. Environ. 2013, 67, 69–81. [Google Scholar] [CrossRef]
- Lei, H.; Alice, M.; Henri, P.G.; Olivier, J. Modeling chemical releases from building materials: The search for extended validity domain and parsimony. Build. Simul. China 2020, 14, 1277–1293. [Google Scholar]
- Nagda, N.L.; Rector, H.E. A critical review of reported air concentrations of organic compounds in aircraft cabins. Indoor Air 2003, 13, 292–301. [Google Scholar] [CrossRef]
- Reneman, L.; Schagen, S.B.; Mulder, M.; Mutsaerts, H.J.; Hageman, G.; de Ruiter, M.B. Cognitive impairment and associated loss in brain white microstructure in aircrew members exposed to engine oil fumes. Brain Imaging Behav. 2016, 10, 437–444. [Google Scholar] [CrossRef]
- Bhangar, S.; Cowlin, S.C.; Singer, B.C.; Sextro, R.G.; Nazaroff, W.W. Ozone levels in passenger cabins of commercial aircraft on North American and transoceanic routes. Environ. Sci. Technol. 2008, 42, 3938–3943. [Google Scholar] [CrossRef]
- He, J.; Yin, Y.; Yang, X.; Pei, J.; Sun, Y.; Cui, X.; Chen, Q. Carbon dioxide in passenger cabins: Spatial temporal characteristics and 30-year trends. Indoor Air 2021, 31, 2200–2212. [Google Scholar] [CrossRef]
- Yin, Y.; He, J.; Zhao, L.; Pei, J.; Yang, X.; Sun, Y.; Cui, X.; Lin, C.; Wei, D.; Chen, Q. Identification of key volatile organic compounds in aircraft cabins and associated inhalation health risks. Environ. Int. 2022, 158, 106999. [Google Scholar] [CrossRef]
- Guan, J.; Gao, K.; Wang, C.; Yang, X.; Lin, C.; Lu, C.; Gao, P. Measurements of volatile organic compounds in aircraft cabins. Part I: Methodology and detected VOC species in 107 commercial flights. Build. Environ. 2014, 72, 154–161. [Google Scholar] [CrossRef]
- Spengler, J.D.; Vallarino, J.; Mcneely, E.; Sumner, A.L.; Estephan, H. In-Flight/Onboard Monitoring: ACER’s Component for ASHRAE 1262, Part 2; National Air Transportation Center of Excellence for Research in the Intermodal Transport Environment (RITE): Boston, MA, USA, 2012. [Google Scholar]
- Sven, S.; Annette, B.; Wolfgang, K.; Wolfgang, R. Final Report EASA REP RESEA_2014_4Research Project: CAQ Preliminary Cabin Air Quality Measurement Campaign; European Aviation Safety Agency: Hannover, Germany, 2017. [Google Scholar]
- Altmann, L.; Bottger, A.; Wiegand, H. Neurophysiological and psychophysical measurements reveal effects of acute low-level organic solvent exposure in humans. Int. Arch. Occup. Environ. Health 1990, 62, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Storm, J.E.; Mazor, K.A.; Aldous, K.M.; Blount, B.C.; Brodie, S.E.; Serle, J.B. Visual Contrast Sensitivity in Children Exposed to Tetrachloroethylene. Arch. Environ. Occup. Health 2011, 66, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, J.S.; Hudnell, H.K.; Geller, A.M.; House, D.E.; Aldous, K.M.; Force, M.S.; Langguth, K.; Prohonic, E.J.; Parker, J.C. Apartment residents’ and day care workers’ exposures to tetrachloroethylene and deficits in visual contrast sensitivity. Environ. Health Perspect. 2002, 110, 655–664. [Google Scholar] [CrossRef]
- Friberg, L.; Kylin, B.; Nystrom, A. Toxicities of trichlorethylene and tetrachloroethylene and Fujiwara’s pyridine-alkali reaction. Acta Pharmacol. Toxicol. 1953, 9, 303–312. [Google Scholar] [CrossRef]
- Schreiber, J.S.; House, S.; Prohonic, E.; Smead, G.; Hudson, C.; Styk, M.; Lauber, J. An Investigation of Indoor Air Contamination in Residences Above Dry Cleaners. Risk Anal. 1993, 13, 335–344. [Google Scholar] [CrossRef]
- Garetano, G.; Gochfeld, M. Factors influencing tetrachloroethylene concentrations in residences above dry-cleaning establishments. Arch. Environ. Health 2000, 55, 59–68. [Google Scholar] [CrossRef]
- Hageman, G.; Pal, T.M.; Nihom, J.; MackenzieRoss, S.J.; van den Berg, M. Three patients with probable aerotoxic syndrome. Clin. Toxicol. 2020, 58, 139–142. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Tetrachloroethylene (PERC); U.S. Department of Health and Human Services Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2019. [Google Scholar]
- International Agency for Research Cancer. Trichloroethylene, Tetrachloroethylene, and Some Other Chlorinated Agents; International Agency for Research Cancer: Lyon, France, 2014. [Google Scholar]
- Occupational Safety and Health Administration. Occupational Safety and Health Standards. Available online: https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.1000TABLEZ2 (accessed on 2 February 2022).
- The National Institute for Occupational Safety and Health. Tetrachloroethylene Immediately Dangerous to Life or Health (IDLH). 1994. Available online: https://www.cdc.gov/niosh/idlh/127184.html (accessed on 10 February 2022).
- American Conference of Governmental Industrial Hygienists. List of Chemicals with Threshold Limit Values Primarily Based on Sensory Irritation. 2015. Available online: https://cebs.niehs.nih.gov/datasets/search/2015-acgih-tlvs (accessed on 10 February 2022).
- Environmental Protection Agency. Toxicology Review of Tetrachloroethylene (Perchloroethylene); Environmental Protection Agency: Washington, DC, USA, 2012. [Google Scholar]
- Office of Environmental Health Hazard Assessment. OEHHA Acute, 8-h and Chronic Reference Exposure Level (REL) Summary. 2019. Available online: https://oehha.ca.gov/air/general-info/oehha-acute-8-hour-and-chronic-reference-exposure-level-rel-summary (accessed on 10 February 2022).
- GB/T 18883-2022; Standards for Indoor Air Quality. State Administration for Market Regulation. Standardization Administration of the People’s Republic of China: Beijing, China, 2022.
- World Health Organization. WHO Guidelines for Indoor Air Quality: Selected Pollutants; WHO Regional Office for Europe: Copenhagen, Denmark, 2010; p. 442. [Google Scholar]
- Guan, J.; Wang, C.; Gao, K.; Yang, X.; Lin, C.; Lu, C. Measurements of volatile organic compounds in aircraft cabins. Part II: Target list, concentration levels and possible influencing factors. Build. Environ. 2014, 75, 170–175. [Google Scholar] [CrossRef]
- Yoshida, T.; Matsunaga, I. A case study on identification of airborne organic compounds and time courses of their concentrations in the cabin of a new car for private use. Environ. Int. 2006, 32, 58–79. [Google Scholar] [CrossRef]
- You, K.; Ge, Y.; Hu, B.; Ning, Z.; Zhao, S.; Zhang, Y.; Xie, P. Measurement of in-vehicle volatile organic compounds under static conditions. J. Environ. Sci. China 2007, 19, 1208–1213. [Google Scholar] [CrossRef]
- Kwon, K.; Jo, W.; Lim, H.; Jeong, W. Volatile pollutants emitted from selected liquid household products. Environ. Sci. Pollut. Res. 2008, 15, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Nazaroff, W.W.; Weschler, C.J. Cleaning products and air fresheners: Exposure to primary and secondary air pollutants. Atmos. Environ. 2004, 38, 2841–2865. [Google Scholar] [CrossRef]
- Chin, J.; Godwin, C.; Parker, E.; Robins, T.; Lewis, T.; Harbin, P.; Batterman, S. Levels and sources of volatile organic compounds in homes of children with asthma. Indoor Air 2014, 24, 403–415. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Li, Z.; Yang, X. Net in-cabin emission rates of VOCs and contributions from outside and inside the aircraft cabin. Atmos. Environ. 2015, 111, 1–9. [Google Scholar] [CrossRef]
- Wang, C.; Yang, X.; Guan, J.; Li, Z.; Gao, K. Source apportionment of volatile organic compounds (VOCs) in aircraft cabins. Build. Environ. 2014, 81, 1–6. [Google Scholar] [CrossRef]
- Yin, Y.; He, J.; Pei, J.; Yang, X.; Sun, Y.; Cui, X.; Lin, C.; Wei, D.; Chen, Q. Influencing factors of carbonyl compounds and other VOCs in commercial airliner cabins: On-board investigation of 56 flights. Indoor Air 2021, 31, 2084–2098. [Google Scholar] [CrossRef]
- Pei, J.; Yin, Y.; Liu, J.; Dai, X. An eight-city study of volatile organic compounds in Chinese residences: Compounds, concentrations, and characteristics. Sci. Total Environ. 2020, 698, 134137. [Google Scholar] [CrossRef]
- Brown, S.G.; Eberly, S.; Paatero, P.; Norris, G.A. Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results. Sci. Total Environ. 2015, 518, 626–635. [Google Scholar] [CrossRef]
- Chi, T.V.; Lin, C.; Shern, C.; Yeh, G.; Le, V.G.; Huu, T.T. Contamination, ecological risk and source apportionment of heavy metals in sediments and water of a contaminated river in Taiwan. Ecol. Indic. 2017, 82, 32–42. [Google Scholar]
- Chueinta, W.; Hopke, P.K.; Paatero, P. Investigation of sources of atmospheric aerosol at urban and suburban residential areas in Thailand by positive matrix factorization. Atmos. Environ. 2000, 34, 3319–3329. [Google Scholar] [CrossRef]
- Environment Protection Agency. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide; U.S. Environmental Protection Agency Office of Research and Development: Washington, DC, USA, 2015. [Google Scholar]
- Wang, C.; Yang, X.; Guan, J.; Gao, K.; Li, Z. Volatile organic compounds in aircraft cabin: Measurements and correlations between compounds. Build. Environ. 2014, 78, 89–94. [Google Scholar] [CrossRef]
- Spengler, J.D.; Burge, H.; Dumyahn, T.; Muilenberg, M.; Forester, D. Environmental Survey on Aircraft and Ground-Based Commercial Transportation Vehicles; Harvard School of Public Health, Harvard University: Cambridge, MA, USA, 1997. [Google Scholar]
- Fox, R.B. Air-Quality Testing Aboard Ansett Airlines BAe146 Aircraft; Allied Signal Aerospace: Phoenix, AZ, USA, 1997. [Google Scholar]
- Nagda, N.L.; Rector, H.E.; Li, Z.; Hunt, E.H. Determine Aircraft Supply Air Contaminants in the Engine Bleed Air Supply System on Commercial Aircraft; American Society of Heating, Refrigerating, and Air-Conditioning Engineers: Atlanta, GA, USA, 2001. [Google Scholar]
- MacGregor, I.C.; Spicer, C.W.; Buehler, S.S.; Spicer, C.; Dean, S.W. Concentrations of Selected Chemical Species in the Airliner Cabin Environment. J. ASTM Int. 2008, 5, 101639. [Google Scholar] [CrossRef]
- Crump, D.; Harrison, P.; Walton, C. Aircraft Cabin Air Sampling Study; Part 1 of the Final Report; Institute of Environmen and Health: Cranfield, UK, 2011. [Google Scholar]
- Marano, D.E.; Boice, J.D.; Fryzek, J.P.; Morrison, J.A.; Sadler, C.J.; McLaughlin, J.K. Exposure assessment for a large epidemiological study of aircraft manufacturing workers. Appl. Occup. Environ. Hyg. 2000, 15, 644–656. [Google Scholar] [CrossRef]
- Jinfen, L.; Shuhao, Q.; Li, W.; Shulu, W.; Zhi, H. Study on the Tracing of Volatile Organic Compounds in Automobile Carpet Material. China Plast. Ind. 2017, 45, 71–75. [Google Scholar]
- Shen, Y.; Kai, G.; Xudong, Y. Volatile organic compounds (VOCs) formation due to interactions between ozone and skin-oiled clothing: Measurements by extraction-analysis-reaction method. Build. Environ. 2016, 103, 146–154. [Google Scholar]
- Wu, B.; Li, Y.; Li, X.; Zhu, J.; Ma, R.; Hu, S. Organochlorine Compounds with a Low Boiling Point in Desalted Crude Oil: Identification and Conversion. Energ. Fuel 2018, 32, 6475–6481. [Google Scholar] [CrossRef]
- Lance, A.W.; Edo, P.; Brian, L.; Harvey, Z.; Linda, S. Emissions of volatile organic compounds from building materials and consumer products. Atmos. Environ. (1967) 1987, 21, 385–393. [Google Scholar]
- Thomas, M.S.; David, H.S.; Karen, H.; Janet, R. A survey of household products for volatile organic compounds. Atmos. Environ. Part A Gen. Top. 1992, 26, 1063–1070. [Google Scholar]
- Ki-Dong, K.; Wan-Kuen, J.; Ho-Jin, L.; Woo-Sik, J. Characterization of emissions composition for selected household products available in Korea. J. Hazard. Mater. 2007, 148, 192–198. [Google Scholar]
- Mustafa, O.; Tolga, E.; Yetkin, D.; Sait, C.S. Halogenated volatile organic compounds in chlorine-bleach-containing household products and implications for their use. Atmos. Environ. 2014, 92, 376–383. [Google Scholar]
- Odabasi, M. Halogenated volatile organic compounds from the use of chlorine-bleach-containing household products. Environ. Sci. Technol. 2008, 42, 1445–1451. [Google Scholar] [CrossRef] [PubMed]
- Iván, M.A.; Gloria, M.; Gopalakrishnan, K.; Germán, B. Biodegradation of Toilet Wastewaters Generated in Aircrafts. J. Chin. Chem. Soc. 2014, 61, 814–818. [Google Scholar]
- Zheng, J.; Yu, Y.; Mo, Z.; Zhang, Z.; Wang, X.; Yin, S.; Peng, K.; Yang, Y.; Feng, X.; Cai, H. Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China. Sci. Total Environ. 2013, 456, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Shao, M.; Lu, S.; Wang, B. Source profiles of volatile organic compounds associated with solvent use in Beijing, China. Atmos. Environ. 2010, 44, 1919–1926. [Google Scholar] [CrossRef]
- Mo, Z.; Shao, M.; Lu, S. Review on volatile organic compounds (VOCs) source profiles measured in China. Acta Sci. Circumstantiae 2014, 34, 2179–2189. [Google Scholar]
- Qiusheng, H.; Yulong, Y.; Hongyan, L.; Yiqiang, Z.; Laiguo, C.; Yuhang, W. Characteristics and reactivity of volatile organic compounds from non-coal emission sources in China. Atmos. Environ. 2015, 115, 153–162. [Google Scholar]
- Zhao, L.; Liu, J.; Yin, Y.; Pei, J.; Xiao, W.; Zhang, H.; Wei, S. Field investigation of pollutant characteristics and targeted ventilation control strategies in high-ceiling aircraft spraying workshop. Process Saf. Environ. 2022, 159, 627–639. [Google Scholar] [CrossRef]
- Papasavva, S.; Kia, S.; Claya, J.; Gunther, R. Life cycle environmental assessment of paint processes. J. Coat. Technol. 2002, 74, 65–76. [Google Scholar] [CrossRef]
- Moon, C.S.; Lee, J.T.; Chun, J.H.; Ikeda, M. Use of solvents in industries in Korea: Experience in Sinpyeong-Jangrim industrial complex. Int. Arch. Occup. Environ. Health 2001, 74, 148–152. [Google Scholar] [CrossRef]
- Liu, Y. Cleaning Agent Used for Electrical Machinery and Equipment. CN103013709A, 18 March 2015. [Google Scholar]
- MHT 6043-2015; Cleaner for Aircraft Components, Solvent Type. Civil Aviation Administration of China: Beijing, China, 2015.
- SAE AMS1536B; Cleaner for Aircraft Components Cold Tank Type. Society of Automotive Engineers: Warrendale, PA, USA, 2008.
- Chino, S.; Kato, S.; Seo, J.; Kim, J. Measurement of 2-ethyl-1-hexanol emitted from flooring materials and adhesives. J. Adhes. Sci. Technol. 2013, 27, 659–670. [Google Scholar] [CrossRef]
- Westberg, A.; Momcilovic, D.; Bjork, F.; Karlsson, S. Quality assessment of building products by the micro-scale headspace vial (MHV) method and HS-SPME for monitoring the emission of hydrolysis products from phthalates. Polym. Degrad. Stabil. 2009, 94, 914–920. [Google Scholar] [CrossRef]
- Åsa, W.; Dane, M.; Folke, B.; Sigbritt, K. Investigation of the emissions from an acrylate and a carpet adhesive in humid and alkaline environments by the micro-scale headspace vial (MHV) method. Polym. Degrad. Stabil. 2010, 95, 1877–1882. [Google Scholar]
- Katsoyiannis, A.; Leva, P.; Kotzias, D. VOC and carbonyl emissions from carpets: A comparative study using four types of environmental chambers. J. Hazard. Mater. 2008, 152, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, V.H.; Bhooshan, B.; Chen, S.; Sonenthal, J.S.; Hodgson, A.J. Characterization of Volatile Organic Chemical Emissions From Carpet Cushions. J. Air Waste Manag. Assoc. (1995) 1996, 46, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, J.; An, J.; Kim, H.; Moon, S. Development of a test method using a VOC analyzer to measure VOC emission from adhesives for building materials. J. Adhes. Sci. Technol. 2006, 20, 1783–1799. [Google Scholar] [CrossRef]
- Kowalska, J.; Gierczak, T. Qualitative and Quantitative Analyses of the Halogenated Volatile Organic Compounds Emitted from the Office Equipment Items. Indoor Built. Environ. 2014, 22, 920–931. [Google Scholar] [CrossRef]
- Pandrangi, L.S.; Morrison, G.C. Ozone interactions with human hair: Ozone uptake rates and product formation. Atmos. Environ. 2008, 42, 5079–5089. [Google Scholar] [CrossRef]
- Beverly, K.C.; Hugo, D.; Alfred, T.H.; William, W.N. Ozone consumption and volatile byproduct formation from surface reactions with aircraft cabin materials and clothing fabrics. Atmos. Environ. 2007, 42, 642–654. [Google Scholar]
- Weschler, C.J.; Wisthaler, A.; Cowlin, S.; Tamás, G.; Strøm-Tejsen, P.; Hodgson, A.T.; Destaillats, H.; Herrington, J.; Zhang, J.; Nazaroff, W.W. Ozone-initiated chemistry in an occupied simulated aircraft cabin. Environ. Sci. Technol. 2007, 41, 6177–6184. [Google Scholar] [CrossRef]
- Paulina, N.; Karolina, K.; Marian, A.K. The New Test Procedure for Group-Type Composition of Base Oils of Lubricating Oils, Especially Emitted into the Environment. Energies 2020, 13, 3772. [Google Scholar] [CrossRef]
- Yeh-Chung, C. Variations in amounts and potential sources of volatile organic chemicals in new cars. Sci. Total Environ. 2007, 382, 228–239. [Google Scholar]
- Liang, Z.; Chen, L.; Alam, M.S.; Rezaei, S.Z.; Stark, C.; Xu, H.; Harrison, R.M. Comprehensive chemical characterization of lubricating oils used in modern vehicular engines utilizing GC x GC-TOFMS. Fuel 2018, 220, 792–799. [Google Scholar] [CrossRef]
- He, R.; Houtzager, M.M.G.; Jongeneel, W.P.; Westerink, R.H.S.; Cassee, F.R. In vitro hazard characterization of simulated aircraft cabin bleed-air contamination in lung models using an air-liquid interface (ALI) exposure system. Environ. Int. 2021, 156, 106718. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, S.; Zhu, R.; Zhang, R.; Zu, L.; Wang, Y.; Bao, X. On-road tailpipe emission characteristics and ozone formation potentials of VOCs from gasoline, diesel and liquefied petroleum gas fueled vehicles. Atmos. Environ. 2020, 223, 117294. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, M.; Fu, L.; Lu, S.; Zeng, L.; Tang, D. Source profiles of volatile organic compounds (VOCs) measured in China: Part, I. Atmos. Environ. 2008, 42, 6247–6260. [Google Scholar] [CrossRef]
- Schauer, J.J.; Kleeman, M.J.; Cass, G.R.; Simoneit, B. Measurement of emissions from air pollution sources. 2. C-1 through C-30 organic compounds from medium duty diesel trucks. Environ. Sci. Technol. 1999, 33, 1578–1587. [Google Scholar] [CrossRef]
- Mokalled, T.; Adjizian Gérard, J.; Abboud, M.; Trocquet, C.; Nasreddine, R.; Person, V.; le Calvé, S. VOC tracers from aircraft activities at Beirut Rafic Hariri International Airport. Atmos. Pollut. Res. 2019, 10, 537–551. [Google Scholar] [CrossRef]
- Bowei, L.; Steven, S.H.H.; Yonggang, X.; Yu, H.; Liqin, W.; Yan, C.; Wenting, D.; Haobin, Z.; Junji, C.; Shuncheng, L. Characterizations of volatile organic compounds (VOCs) from vehicular emissions at roadside environment: The first comprehensive study in Northwestern China. Atmos. Environ. 2017, 161, 1–12. [Google Scholar]
- Huiqin, L.; Huan, W.; Foqian, W.; Ling, X. Qualitative and Quantitative analysis of organic chlorides in gasoline by GC-ECD. Chin. J. Anal. Lab. 2016, 35, 945–949. [Google Scholar]
- Masiol, M.; Harrison, R.M. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review. Atmos. Environ. 2014, 95, 409–455. [Google Scholar] [CrossRef]
No. | Institution | Exposure Limits | Comments |
---|---|---|---|
1 | OSHA 2013 [22] | PEL: 100 ppm | PEL: permissible exposure limit |
2 | NIOSH 2013 [23] | IDLH: 150 ppm | IDLH: immediately dangerous to life or health Potential occupational carcinogen |
3 | ACGIH 2012 [24] | TLV: 25 ppm STEL: 100 ppm | TLV: threshold limit values STEL: short-term exposure level |
4 | OEHHA 2019 [26] | AREL: 20 mg/m³ CREL: 0.035 mg/m³ | AREL: acute reference exposure level CREL: chronic reference exposure level |
5 | ATSDR 2019 [20] | Chronic-duration inhalation MRL: 0.006 ppm Chronic-duration oral MRL: 0.008 mg/kg/day | MRL: minimal risk level The chronic-duration inhalation MRL was adopted as the acute- and intermediate-duration inhalation MRLs |
6 | EPA 2012 [25] | RfC: 0.04 mg/m3 RfD: 0.006 mg/kg/day | RfC: inhalation reference concentration RfD: oral reference dose Carcinogenicity classification: Likely to be carcinogenic in humans by all routes of exposure |
7 | WHO 2010 [28] | Air quality guidelines: 0.25 mg/m3 | Annual average |
8 | SAMR (PRC) a, SAC b 2022 [27] | Indoor air quality standard: 0.12 mg/m3 | 8 h-time weighted average |
Source | Mean | Median | Max | Min | SD | 95th | Study Sample |
---|---|---|---|---|---|---|---|
Dumyahn et al., 2000 & Spengler et al., 1997 [44] | NA | NA | 28 | 5 | NA | NA | 27 flights 135 samples |
Fox 1997 [45] | 4.1 | NA | 6.6 | 2.4 | NA | NA | 2 flights 8 samples |
Nagda et al., 2001 [46] | 5.9 | NA | 12 | 2.8 | NA | NA | 10 flights 30 samples |
MacGregor et al., 2008 [47] | NA | NA | 5.90 | ND | NA | NA | 4 flights 3phases |
Crump et al., 2011 [48] | 0.43 | ND | 20.1 | ND | 1.04 | 1.8 | >100 flights 981 samples |
Spengler et al., 2012 [11] | NA | 0.62 | 1.93 | 0.05 | NA | NA | Airline A/B/C 83 flights |
NA | 1.17 | 10.01 | 0.07 | NA | NA | ||
NA | 10.67 | 123.0 | 1.18 | NA | NA | ||
Guan et al., 2014 [10] | NA | 2.8 | 303.9 | <LOD | NA | NA | 51 flights 3 phases |
Wang et al., 2014 [43] | 2.79 | 2.57 | NA | NA | 1.97 | 12.90 | 14 flights 84 samples |
Sven Schuchardt 2017 [12] | 3.8 8.5 | 1.2 2.7 | 73.9 42.4 | 0 0.2 | NA | 14.6 25.1 | 61 flights 8 flights |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, X.; Yin, Y.; Pei, J.; Qu, M. Concentrations and Source Apportionment of Tetrachloroethylene (PCE) in Aircraft Cabins. Sustainability 2025, 17, 909. https://doi.org/10.3390/su17030909
Dong X, Yin Y, Pei J, Qu M. Concentrations and Source Apportionment of Tetrachloroethylene (PCE) in Aircraft Cabins. Sustainability. 2025; 17(3):909. https://doi.org/10.3390/su17030909
Chicago/Turabian StyleDong, Xinyue, Yihui Yin, Jingjing Pei, and Meinan Qu. 2025. "Concentrations and Source Apportionment of Tetrachloroethylene (PCE) in Aircraft Cabins" Sustainability 17, no. 3: 909. https://doi.org/10.3390/su17030909
APA StyleDong, X., Yin, Y., Pei, J., & Qu, M. (2025). Concentrations and Source Apportionment of Tetrachloroethylene (PCE) in Aircraft Cabins. Sustainability, 17(3), 909. https://doi.org/10.3390/su17030909