Thermal Processing Effects on on Biomass Ash Utilization for Ceramic Membrane Fabrication
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Characterization
2.2. Membrane Preparation
Characterization
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsai, W.T.; Yang, J.M.; Lai, C.W.; Cheng, Y.H.; Lin, C.C.; Yeh, C.W. Characterization and adsorption properties of eggshells and eggshell membrane. Bioresour. Technol. 2006, 97, 488–493. [Google Scholar] [CrossRef]
- Centenaro, S.H.; Da Silva, J.A.G.; Paulino, R.S. Uso de Cinzas de Biomassa Geradas na Agroindústria do Malte para Produção de Argamassas. Rev. Int. Ciências 2021, 11, 158–176. [Google Scholar] [CrossRef]
- Silva, S.P.d.; Akasaki, J.L.; Sanches, A.O. Reaproveitamento do resíduo da madeira de eucalipto (RME) para a produção de energia sustentável. Rev. Científica ANAP Bras. 2020, 13. [Google Scholar] [CrossRef]
- Munawar, M.A.; Khoja, A.H.; Naqvi, S.R.; Mehran, M.T.; Hassan, M.; Liaquat, R.; Dawood, U.F. Challenges and opportunities in biomass ash management and its utilization in novel applications. Renew. Sustain. Energy Rev. 2021, 150, 111451. [Google Scholar] [CrossRef]
- Saxena, A.K.S.; Soni, A.B.; Jayapal, A. Optimization of ceramic membrane fabricated from coal flyash blended with natural clay for separation of kraft lignin from aqueous solutions. Biomass Convers. Biorefinery 2024. [Google Scholar] [CrossRef]
- El maguana, Y.; Chikri, R.; Elataoui, K.; Ait Said, H.; Benchanaa, M.; Elhadiri, N. Highly efficient ceramic membrane synthesized from sugar scum and fly ash as sustainable precursors for dyes removal. Heliyon 2024, 10, e27915. [Google Scholar] [CrossRef]
- Hamzah, M.A.A.M.; Yusof, N.; Salleh, W.N.W.; Aziz, F.; Jaafar, J.; Ismail, A.F. Reutilization of ash waste for development of enhanced membrane technology. J. Environ. Chem. Eng. 2024, 12, 112629. [Google Scholar] [CrossRef]
- Samadi, A.; Gao, L.; Kong, L.; Orooji, Y.; Zhao, S. Waste-derived low-cost ceramic membranes for water treatment: Opportunities, challenges and future directions. Resour. Conserv. Recycl. 2022, 185, 106497. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the composition and application of biomass ash.: Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel 2013, 105, 19–39. [Google Scholar] [CrossRef]
- Mouiya, M.; Bouazizi, A.; Abourriche, A.; Benhammou, A.; El Hafiane, Y.; Ouammou, M.; Abouliatim, Y.; Younssi, S.A.; Smith, A.; Hannache, H. Fabrication and characterization of a ceramic membrane from clay and banana peel powder: Application to industrial wastewater treatment. Mater. Chem. Phys. 2019, 227, 291–301. [Google Scholar] [CrossRef]
- Andrade, R.M.; Jaques, N.G.; Sousa, J.; Dutra, R.P.S.; MacEdo, D.A.; Campos, L.F.A. Preparation of low-cost ceramic membranes for microfiltration using sugarcane bagasse ash as a pore-forming agent. Ceramica 2019, 65, 620–625. [Google Scholar] [CrossRef]
- Chakraborty, S.; Uppaluri, R.; Das, C. Effect of pore former (saw dust) characteristics on the properties of sub-micron range low-cost ceramic membranes. Int. J. Ceram. Eng. Sci. 2020, 2, 243–253. [Google Scholar] [CrossRef]
- Kamgang-Syapnjeu, P.; Njoya, D.; Kamseu, E.; Cornette de Saint Cyr, L.; Marcano-Zerpa, A.; Balme, S.; Bechelany, M.; Soussan, L. Elaboration of a new ceramic membrane support from Cameroonian clays, coconut husks and eggshells: Application for Escherichia coli bacteria retention. Appl. Clay Sci. 2020, 198, 105836. [Google Scholar] [CrossRef]
- Ahmed, N.; Mir, F.Q. Preparation and characterization of ceramic membrane using waste almond shells as pore forming agent. Mater. Today Proc. 2021, 47, 1485–1489. [Google Scholar] [CrossRef]
- Rakcho, Y.; Mouiya, M.; Bouazizi, A.; Abouliatim, Y.; Sehaqui, H.; Mansouri, S.; Benhammou, A.; Hannache, H.; Alami, J.; Abourriche, A. Treatment of seawater and wastewater using a novel low-cost ceramic membrane fabricated with red clay and tea waste. Arab. J. Chem. 2023, 16, 105277. [Google Scholar] [CrossRef]
- Guimarães, É.A.C.M.; Levandoski, W.M.K.; Vargas, G.D.L.P.; Korf, E.P.; Dervanoski, A. Desenvolvimento de membrana cerâmica de microfiltração a partir de resíduo de casca de arroz e caulim e aplicação como pré-tratamento de efluente da indústria de papel. Eng. Sanit. E Ambient. 2023, 28. [Google Scholar] [CrossRef]
- Bisht, V.; Das, C. Fabrication and characterization of the novel tubular ceramic membrane using walnut shells and its application in TiO2 nanoparticles separation from suspension. Ceram. Int. 2024, 50, 8706–8717. [Google Scholar] [CrossRef]
- Wenk, H.R.; Matthies, S.; Lutterotti, L. Texture Analysis from Diffraction Spectra. Mater. Sci. Forum 1994, 157–162, 473–480. [Google Scholar] [CrossRef]
- Ferrari, M.; Lutterotti, L. Method for the simultaneous determination of anisotropic residual stresses and texture by x-ray diffraction. J. Appl. Phys. 1994, 76, 7246–7255. [Google Scholar] [CrossRef]
- Alsubei, M.D.; Reid, B.; Aljlil, S.A.; Coppens, M.-O.; Campos, L.C. Fabrication and characterization of coated ceramic membranes from natural sources for water treatment applications. J. Membr. Sci. 2024, 690, 122226. [Google Scholar] [CrossRef]
- West, D. Ternary Equilibrium Diagrams; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Ptáček, P.; Kubátová, D.; Havlica, J.; Brandštetr, J.; Šoukal, F.; Opravil, T. The non-isothermal kinetic analysis of the thermal decomposition of kaolinite by thermogravimetric analysis. Powder Technol. 2010, 204, 222–227. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Vassileva, C.G. An overview of the behaviour of biomass during combustion: Part I. Phase-mineral transformations of organic and inorganic matter. Fuel 2013, 112, 391–449. [Google Scholar] [CrossRef]
- Young, R.A.; Post, B. Electron density and thermal effects in alpha quartz. Acta Cystallographica 1962, 15, 337–346. [Google Scholar] [CrossRef]
- Schmahl, N.G.; Eikerling, G.F. Ueber Kryptomodifikationen des Cu(II)-Oxids. Z. Phys. Chem. 1968, 62, 268–279. [Google Scholar] [CrossRef]
- Bish, D.L. Rietveld refinement of the kaolinite structure at 1.5K. Clays Clay Miner. 1993, 41, 738–744. [Google Scholar] [CrossRef]
- Oetzel, M.; Heger, G. Laboratory X-ray powder diffraction: A comparison of different geometries with special attention to the usage of the CuKalpha doublet. J. Appl. Crystallogr. 1999, 32, 799–807. [Google Scholar] [CrossRef]
- Pluth, J.J.; Smith, J.V.; Faber, J., Jr. Crystal structure of low Cristobalite at 10, 293, and 473 K: Variation of framework geometry with temperature. J. Appl. Phys. 1985, 57, 1045–1049. [Google Scholar] [CrossRef]
- Fujino, K.; Sasaki, S.; Takeuchi, Y.; Sadanaga, R. X-ray Determination of Electron Distributions in Forsterite, Fayalite and Tephroite. Acta Crystallographica 1981, 37, 513–518. [Google Scholar] [CrossRef]
- Ban, T.; Okada, K. Structure refinement of mullite by the rietveld method and a new method for estimation of chemical composition. J. Am. Ceram. Soc. 1992, 75, 227–230. [Google Scholar] [CrossRef]
- Sawada, H. An electron density residual study of magnesium aluminium oxide spinel. Mater. Res. Bull. 1995, 30, 341–345. [Google Scholar] [CrossRef]
- Predecki, P.; Haas, J.; Faber, J.O.H.N., Jr.; Hitterman, R.L. Structural aspects of the lattice thermal expansion of hexagonal cordierite. J. Am. Ceram. Soc. 1987, 70, 175–182. [Google Scholar] [CrossRef]
- Zan, W.; Ma, B.; Chen, G.; Cao, C.; Li, M.; Wang, Y.; Shen, H. Preparation and properties of mullite ceramic-based porous aggregates with high closed porosity utilizing low-voltage electroceramics waste. Constr. Build. Mater. 2024, 436, 136943. [Google Scholar] [CrossRef]
- Laziri, K.; Djemli, A.; Redaoui, D.; Sahnoune, F.; Dhahri, E.; Hassan, S.F.; Saheb, N. Kinetics of formation, microstructure, and properties of monolithic forsterite (Mg2SiO4) produced through solid-state reaction of nano-powders of MgO and SiO2. Ceram. Int. 2024, 50, 45179–45188. [Google Scholar] [CrossRef]
- Ganesh, I. A review on magnesium aluminate (MgAl2O4) spinel: Synthesis, processing and applications. Int. Mater. Rev. 2013, 58, 63–112. [Google Scholar] [CrossRef]
- Njoya, D.; Elimbi, A.; Fouejio, D.; Hajjaji, M. Effects of two mixtures of kaolin-talc-bauxite and firing temperatures on the characteristics of cordierite- based ceramics. J. Build. Eng. 2016, 8, 99–106. [Google Scholar] [CrossRef]
- Wu, E.; Kisi, E.H.; Gray, E.M.A. Modelling Dislocation-Induced Anisotropic Line Broadening in Rietveld Refinements Using a Voigt Function. II. Application to Neutron Powder Diffraction Data. J. Appl. Crystallogr. 1998, 31, 363–368. [Google Scholar] [CrossRef]
- Saja, S.; Bouazizi, A.; Achiou, B.; Ouammou, M.; Albizane, A.; Bennazha, J.; Younssi, S.A. Elaboration and characterization of low-cost ceramic membrane made from natural Moroccan perlite for treatment of industrial wastewater. J. Environ. Chem. Eng. 2018, 6, 451–458. [Google Scholar] [CrossRef]
- Ben Ali, M.; Hamdi, N.; Rodriguez, M.A.; Srasra, E. Macroporous ceramic supports from natural clays. Improvement by the use of activated clays. Ceram. Int. 2017, 43, 1242–1248. [Google Scholar] [CrossRef]
- Bouzerara, F.; Harabi, A.; Condom, S. Porous ceramic membranes prepared from kaolin. Desalination Water Treat. 2009, 12, 415–419. [Google Scholar] [CrossRef]
- Hedfi, I.; Hamdi, N.; Rodriguez, M.A.; Srasra, E. Development of a low cost micro-porous ceramic membrane from kaolin and Alumina, using the lignite as porogen agent. Ceram. Int. 2016, 42, 5089–5093. [Google Scholar] [CrossRef]
- Kool, A.; Thakur, P.; Bagchi, B.; Hoque, N.A.; Das, S. Mechanical, dielectric and photoluminescence properties of alumina–mullite composite derived from natural Ganges clay. Appl. Clay Sci. 2015, 114, 349–358. [Google Scholar] [CrossRef]
- França, S.A.S.; Santana, L.N.L.; Rodriguez, M.A.; Menezes, R.R.; Arimatéia, R.R.; Lira, H.L. Ceramic membranes production using quartzite waste for treatment of domestic wastewater. Int. J. Appl. Ceram. Technol. 2024, e14986. [Google Scholar] [CrossRef]
- Christ, R.; Bourscheid, I.; Pacheco, F.; Silva, M.G.d.; Ehrenbring, H.Z.; Silva, A.B.d.; Tutikian, B.F. Effect of firing temperature and mineral composition on the mechanical properties of silty clays. Matéria 2023, 28. [Google Scholar] [CrossRef]
- Lima, L.K.S.; Santana, L.N.L.; Lira, H.L.; Rodríguez, M.A.; Souza, M.Y.M.; Júnior, M.G.S.; Lira, B.S. Development of asymmetric ceramic membranes for dairy wastewater treatment—A comparison between co-sintering and conventional firing process. J. Water Process Eng. 2024, 57, 104611. [Google Scholar] [CrossRef]
- Sandhya Rani, S.L.; Kumar, R.V. Insights on applications of low-cost ceramic membranes in wastewater treatment: A mini-review. Case Stud. Chem. Environ. Eng. 2021, 4, 100149. [Google Scholar] [CrossRef]
- Idrissi, D.E.M.; Elidrissi, Z.C.; Achiou, B.; Ouammou, M.; Younssi, S.A. Fabrication of low-cost kaolinite/perlite membrane for microfiltration of dairy and textile wastewaters. J. Environ. Chem. Eng. 2023, 11, 109281. [Google Scholar] [CrossRef]
- Nandi, B.K.; Uppaluri, R.; Purkait, M.K. Preparation and characterization of low cost ceramic membranes for micro-filtration applications. Appl. Clay Sci. 2008, 42, 102–110. [Google Scholar] [CrossRef]
- Nath, K. Membrane Separation Processes; PHI Learning Pvt. Ltd.: Delhi, India, 2017. [Google Scholar]
- Meghnani, R.; Kumar, M.; Pugazhenthi, G.; Dhakshinamoorthy, V. Synthesis of ceramic membrane using inexpensive precursors and evaluation of its biocompatibility for hemofiltration application. Sep. Purif. Technol. 2021, 256, 117814. [Google Scholar] [CrossRef]
- Moustansiri, H.E.; Abbadi, S.E.; Douma, M.; Bouazizi, A.; Machtani Idrissi, D.E.; Bechelany, M.; Ouammou, M.; Tijani, N. Development of low-cost wollastonite based-membrane from clay for efficient microfiltration of textile and tannery wastewaters. Sep. Purif. Technol. 2025, 359, 130770. [Google Scholar] [CrossRef]
- Vasanth, D.; Pugazhenthi, G.; Uppaluri, R. Cross-flow microfiltration of oil-in-water emulsions using low cost ceramic membranes. Desalination 2013, 320, 86–95. [Google Scholar] [CrossRef]
Sample | SiO2 | MgO | Al2O3 | K2O | Fe2O3 | CaO | P2O5 | Others | LOI * |
---|---|---|---|---|---|---|---|---|---|
BA (%) | 67.3 | 12.3 | 6.9 | 5. 1 | 3.9 | 2.1 | 1.1 | 1.2 | 22.9 |
CBA (%) | 51.1 | 21.6 | 8.6 | 6.8 | 5.9 | 3.7 | 1.8 | 1.1 | - |
Kaolin (%) | 52.6 | - | 45.5 | 0.9 | 0.6 | - | - | 0.1 | - |
Alumina (%) | - | 99.9 | - | - | - | - | 0.1 | - |
Sample | SiO2 | MgO | Al2O3 | K2O | Fe2O3 | CaO | P2O5 | Others |
---|---|---|---|---|---|---|---|---|
FBA (%) | 50.7 | 5.3 | 36.1 | 3.6 | 2.0 | 1.1 | 0.5 | 0.7 |
FCBA (%) | 47.7 | 7.2 | 37.5 | 2.9 | 2.2 | 1.4 | 0.6 | 0.5 |
Sample | FBA 1050 | FBA 1100 | FBA1150 | FCBA 1050 | FCBA 1100 | FCBA 1150 |
---|---|---|---|---|---|---|
RWP (R-weighted profile) | 16.4 | 19.5 | 17.1 | 16.3 | 19.6 | 17.4 |
REXP (R-expected) | 9.3 | 9.1 | 9.1 | 9.4 | 9.2 | 9.4 |
χ2 (Goodness of fit) | 1.8 | 2.1 | 1.9 | 1.7 | 2.1 | 1.8 |
Phase | Weight (%) | |||||
Quartz (hexagonal) | 42.8 | 40.5 | 33.4 | 45.8 | 44.9 | 27.7 |
Corundum (rhombohedral) | 34.9 | 37.4 | 28.2 | 31.6 | 36.7 | 26.6 |
Spinel (cubic) | - | - | 19.1 | - | - | 33.1 |
Mullite (orthorhombic) | 9.5 | 11.0 | 9.3 | 8.2 | 5.6 | 2.0 |
Periclase (cubic) | 5.5 | 3.8 | 3.1 | 5.0 | 4.2 | 2.6 |
Cristobalite (tetragonal) | 1.7 | 2.1 | 2.0 | 1.8 | 2.1 | 1.9 |
Forsterite (orthorhombic) | 5.8 | 5.2 | 4.2 | 7.6 | 6.5 | 4.8 |
Cordierite (orthorhombic) | - | - | 0.8 | - | - | 1.3 |
Sample | FBA 1050 | FBA 1100 | FBA1150 | FCBA 1050 | FCBA 1100 | FCBA 1150 |
---|---|---|---|---|---|---|
Apparent porosity (%) | 44.4 ± 0.3 | 36.1 ± 0.3 | 22.7 ± 0.5 | 31.5 ± 0.5 | 23.4 ± 0.6 | 5.7 ± 0.5 |
Water absorption (%) | 27.3 ± 0.2 | 20.0 ± 0.2 | 10.9 ± 0.2 | 15.9 ± 0.3 | 10.6 ± 0.4 | 2.2 ± 0.2 |
Bulk density (a.u.) | 1.6 ± 0.0 | 1.8 ± 0.0 | 2.1 ± 0.0 | 2.0 ± 0.0 | 2.2 ± 0.0 | 2.6 ± 0.0 |
Diametrical shrinkage (%) | 2.9 ± 0.0 | 6.0 ± 0.1 | 10.3 ± 0.1 | 2.7 ± 0.1 | 6.4 ± 0.1 | 10.3 ± 0.2 |
Flexural strength (MPa) | 9.0 ± 0.2 | 17.3 ± 0.6 | 30.0 ± 1.4 | 21.0 ± 0.6 | 34.9 ± 1.4 | 51.8 ± 2.2 |
Chemical resistance | ||||||
Weight loss in acid (%) | 0.1 ± 0.2 | 0.5 ± 0.3 | 0.2 ± 0.2 | 0.1 ± 0.1 | 0.2 ± 0.3 | 0.4 ± 0.2 |
Weight loss in base (%) | 0.1 ± 0.2 | 0.1 ± 0.2 | 0.5 ± 0.2 | 0.5 ± 0.3 | 0.2 ± 0.3 | 0.2 ± 0.2 |
Raw Materials | Sintering Temperature (°C) | Porosity (%) | Pore Size (μm) | Mechanical Strength (MPa) | Application | Efficiency (%) | Reference |
---|---|---|---|---|---|---|---|
Kaolin, quartz, calcium carbonate | 900 | 30.0 | 1.3 | 34.0 | Oil-in-water emulsions | 82.0 | [50] |
Natural clay magnesite | 1100 | 47.0 | 1.1 | 6.1 | Industrial textile wastewater | 99.0 | [51] |
Ball clay, quartzite waste, and starch | 1000 | 35.0 | 1.3 | 8.6 | Domestic laundry wastewater | 91.0 | [42] |
Natural clay, starch, and SiO2 | 950 | 43.0 | 1.4 | 32.0 | Tannery effluent Textile wastewater | 99.3 98.2 | [52] |
FBA, kaolin, and alumina | 1050 1100 | 44.4 36.1 | 1.5 2.4 | 9.0 17.3 | - | - | This work |
FCBA, kaolin, and alumina | 1050 | 31.5 | 1.0 | 21.0 | - | - | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, H.M.; de Lucena Lira, H.; de Lima Santana, L.N. Thermal Processing Effects on on Biomass Ash Utilization for Ceramic Membrane Fabrication. Sustainability 2025, 17, 979. https://doi.org/10.3390/su17030979
de Oliveira HM, de Lucena Lira H, de Lima Santana LN. Thermal Processing Effects on on Biomass Ash Utilization for Ceramic Membrane Fabrication. Sustainability. 2025; 17(3):979. https://doi.org/10.3390/su17030979
Chicago/Turabian Stylede Oliveira, Heloísa Maria, Hélio de Lucena Lira, and Lisiane Navarro de Lima Santana. 2025. "Thermal Processing Effects on on Biomass Ash Utilization for Ceramic Membrane Fabrication" Sustainability 17, no. 3: 979. https://doi.org/10.3390/su17030979
APA Stylede Oliveira, H. M., de Lucena Lira, H., & de Lima Santana, L. N. (2025). Thermal Processing Effects on on Biomass Ash Utilization for Ceramic Membrane Fabrication. Sustainability, 17(3), 979. https://doi.org/10.3390/su17030979