An Investigation of the Catalytic Activity of Inconel and Stainless Steel Powders in Reforming Primary Syngas
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Part I: Inconel and Stainless Steel Activity
3.2. Analytical Analysis and Discussion
3.3. Part II: The Impact of Increasing the Total Gas Feed Flow (Inconel as Catalyst)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Guan, B.; Guo, J.; Chen, Y.; Ma, Z.; Zhuang, Z.; Zhu, C.; Dang, H.; Chen, L.; Shu, K.; et al. Renewable Synthetic Fuels: Research Progress and Development Trends. J. Clean. Prod. 2024, 450, 141849. [Google Scholar] [CrossRef]
- Wojcieszyk, M.; Kroyan, Y.; Kaario, O.; Larmi, M. Prediction of Heavy-Duty Engine Performance for Renewable Fuels Based on Fuel Property Characteristics. Energy 2023, 285, 129494. [Google Scholar] [CrossRef]
- Ebadi Torkayesh, A.; Hendiani, S.; Walther, G.; Venghaus, S. Fueling the Future: Overcoming the Barriers to Market Development of Renewable Fuels in Germany Using a Novel Analytical Approach. Eur. J. Oper. Res. 2024, 316, 1012–1033. [Google Scholar] [CrossRef]
- Liu, S.; Yang, Y.; Yu, L.; Cao, Y.; Liu, X.; Yao, A.; Cao, Y. Self-Heating Optimization of Integrated System of Supercritical Water Gasification of Biomass for Power Generation Using Artificial Neural Network Combined with Process Simulation. Energy 2023, 272, 127134. [Google Scholar] [CrossRef]
- Houcinat, I.; Outili, N.; García-Jarana, B.; Sánchez-Oneto, J.; Portela, J.R.; Meniai, A.H. Hydrogen Production by Supercritical Water Gasification: A Review. In Renewable Energy Production and Distribution: Recent Developments; Academic Press: Cambridge, MA, USA, 2022; pp. 189–225. [Google Scholar] [CrossRef]
- Priya, A.; Naseem, S.; Pandey, D.; Bhowmick, A.; Attrah, M.; Dutta, K.; Rene, E.R.; Suman, S.K.; Daverey, A. Innovative Strategies in Algal Biomass Pretreatment for Biohydrogen Production. Bioresour. Technol. 2023, 369, 128446. [Google Scholar] [CrossRef] [PubMed]
- Guilera, J.; Díaz-López, J.A.; Berenguer, A.; Biset-Peiró, M.; Andreu, T. Fischer-Tropsch Synthesis: Towards a Highly-Selective Catalyst by Lanthanide Promotion under Relevant CO2 Syngas Mixtures. Appl. Catal. A Gen. 2022, 629, 118423. [Google Scholar] [CrossRef]
- Huang, Y.; Li, X.; Zhang, Q.; Vinokurov, V.A.; Huang, W. Carbon Deposition Behaviors in Dry Reforming of CH4 at Elevated Pressures over Ni/MoCeZr/MgAl2O4-MgO Catalysts. Fuel 2022, 310, 122449. [Google Scholar] [CrossRef]
- le Saché, E.; Reina, T.R. Analysis of Dry Reforming as Direct Route for Gas Phase CO2 Conversion. The Past, the Present and Future of Catalytic DRM Technologies. Prog. Energy Combust. Sci. 2022, 89, 100970. [Google Scholar] [CrossRef]
- Mosaad Awad, M.; Kotob, E.; Ahmed Taialla, O.; Hussain, I.; Ganiyu, S.A.; Alhooshani, K. Recent Developments and Current Trends on Catalytic Dry Reforming of Methane: Hydrogen Production, Thermodynamics Analysis, Techno Feasibility, and Machine Learning. Energy Convers. Manag. 2024, 304, 118252. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, H.; Zhang, M.; Liang, C.; Duan, L. Recent Advances in Promoting Dry Reforming of Methane Using Nickel-Based Catalysts. Catal. Sci. Technol. 2024, 14, 1712–1729. [Google Scholar] [CrossRef]
- Tanimu, A.; Yusuf, B.O.; Lateef, S.; Tanimu, G.; Alhassan, A.M.; Azeez, M.O.; Alhooshani, K.; Ganiyu, S.A. Dry Reforming of Methane: Advances in Coke Mitigation Strategies via Siliceous Catalyst Formulations. J. Environ. Chem. Eng. 2024, 12, 113873. [Google Scholar] [CrossRef]
- Nguyen, D.L.T.; Vy Tran, A.; Vo, D.V.N.; Tran Nguyen, H.; Rajamohan, N.; Trinh, T.H.; Nguyen, T.L.; Le, Q.V.; Nguyen, T.M. Methane Dry Reforming: A Catalyst Challenge Awaits. J. Ind. Eng. Chem. 2024, 140, 169–189. [Google Scholar] [CrossRef]
- Guo, S.; Sun, Y.; Zhang, Y.; Zhang, C.; Li, Y.; Bai, J. Bimetallic Nickel-Cobalt Catalysts and Their Application in Dry Reforming Reaction of Methane. Fuel 2024, 358, 130290. [Google Scholar] [CrossRef]
- Li, B.; Chen, H.; Yuan, X. Influence of Different La2O3 Loading on Hydroxyapatite Supported Nickel Catalysts in the Dry Reforming of Methane. Fuel 2024, 369, 131687. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, S.; Zhang, Y.; Ai, T.; Chen, D.; Luo, Y.; He, D. Constructing Thermally Stable Nickel Sub-Nanoparticles via in Situ Hydroxyl Trapping for Methane Dry Reforming. Chem. Eng. J. 2024, 486, 150337. [Google Scholar] [CrossRef]
- Buddaraju, K.M.; Ravi Kiran Sastry, G.; Kosaraju, S. A Review on Turning of Inconel Alloys. Mater. Today Proc. 2021, 44, 2645–2652. [Google Scholar] [CrossRef]
- Tuan Abdullah, T.A.; Croiset, E. Evaluation of an Inconel-625 Reactor and Its Wall Effects on Ethanol Reforming in Supercritical Water. Ind. Eng. Chem. Res. 2014, 53, 2121–2129. [Google Scholar] [CrossRef]
- Salierno, G.; Marinelli, F.; Likozar, B.; Ghavami, N.; De Blasio, C. Supercritical Water Gasification of Glycerol: Continuous Reactor Kinetics and Transport Phenomena Modeling. Int. J. Heat. Mass. Transf. 2022, 183, 122200. [Google Scholar] [CrossRef]
- Bustamante-Londono, F. The High-Temperature, High-Pressure Homogeneous Water-Gas Shift Reaction in a Membrane Reactor; University of Pittsburgh: Pittsburgh, PA, USA, 2004. [Google Scholar]
- Zhu, C.; Wang, R.; Jin, H.; Lian, X.; Guo, L.; Huang, J. Supercritical Water Gasification of Glycerol and Glucose in Different Reactors: The Effect of Metal Wall. Int. J. Hydrogen Energy 2016, 41, 16002–16008. [Google Scholar] [CrossRef]
- Bezerra Silva, C.; Lugo-Pimentel, M.; Ceballos, C.M.; Lavoie, J.M. Effect of the Reactor Material on the Reforming of Primary Syngas. Molecules 2024, 29, 5126. [Google Scholar] [CrossRef] [PubMed]
- Dutzi, J.; Stoll, I.K.; Boukis, N.; Sauer, J. Screening of Ten Different Plants in the Process of Supercritical Water Gasification. Sustain. Chem. Environ. 2024, 5, 100062. [Google Scholar] [CrossRef]
- CERESiS CERESiS: ContaminatEd Land Remediation through Energy Crops for Soil Improvement to Liquid Biofuel Strategies. Available online: https://ceresis.eu/ (accessed on 7 July 2024).
- Leonzio, G.; Zondervan, E. Carbon Dioxide to Methanol: A Green Alternative to Fueling the Future. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar] [CrossRef]
- Sedaghat, M.H.; Rahimpour, M.R. Computational Fluid Dynamics Simulation of Natural Gas Reformers. In Advances in Synthesis Gas: Methods, Technologies and Applications: Volume 4: Syngas Process Modelling and Apparatus Simulation; Elsevier: Amsterdam, The Netherlands, 2023; pp. 103–121. [Google Scholar] [CrossRef]
- Lavoie, J.M. Review on Dry Reforming of Methane, a Potentially More Environmentally-Friendly Approach to the Increasing Natural Gas Exploitation. Front. Chem. 2014, 2, 81. [Google Scholar] [CrossRef] [PubMed]
- Juan-Juan, J.; Román-Martínez, M.C.; Illán-Gómez, M.J. Effect of Potassium Content in the Activity of K-Promoted Ni/Al2O3 Catalysts for the Dry Reforming of Methane. Appl Catal A Gen 2006, 301, 9–15. [Google Scholar] [CrossRef]
- Pavithran, N.R.; Harichandran, R.; Kumar, D.V. Effect of Yttria-Stabilized Zirconia Coating on the Corrosion and Thermal Behaviour of Additive Manufactured Inconel 718 Alloy. J. Alloys Compd. 2023, 968, 171877. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, H.; Zhu, J.; Ding, M.; An, X.; Wu, D.; Hu, W.; Yang, T. High Strength-Ductility Synergy of Inconel 625 Alloy with a Layered Bimodal Grain-Structure. Mater. Charact. 2024, 207, 113510. [Google Scholar] [CrossRef]
- Martín-Espejo, J.L.; Merkouri, L.P.; Gándara-Loe, J.; Odriozola, J.A.; Reina, T.R.; Pastor-Pérez, L. Nickel-Based Cerium Zirconate Inorganic Complex Structures for CO2 Valorisation via Dry Reforming of Methane. J. Environ. Sci. 2024, 140, 12–23. [Google Scholar] [CrossRef]
- Mosaad Awad, M.; Hussain, I.; Ahmed Taialla, O.; Ganiyu, S.A.; Alhooshani, K. Unveiling the Catalytic Performance of Unique Core-Fibrous Shell Silica-Lanthanum Oxide with Different Nickel Loadings for Dry Reforming of Methane. Energy Convers. Manag. 2024, 311, 118508. [Google Scholar] [CrossRef]
- Miskan, S.N.; Abdulkadir, B.A.; Ainirazali, N.; Abd Jalil, A.; Lim, J.W.; Setiabudi, H.D. Unveiling the Effects of Nickel Loading on Methane Dry Reforming: Perspectives from Ni/Fibrous Zeolite-Y Catalysts. Int. J. Hydrogen Energy, 2024; In press, Corrected Proof. [Google Scholar] [CrossRef]
- Torimoto, M.; Sekine, Y. Effects of Alloying for Steam or Dry Reforming of Methane: A Review of Recent Studies. Catal. Sci. Technol. 2022, 12, 3387–3411. [Google Scholar] [CrossRef]
- Bian, Z.; Das, S.; Wai, M.H.; Hongmanorom, P.; Kawi, S. A Review on Bimetallic Nickel-Based Catalysts for CO2 Reforming of Methane. ChemPhysChem 2017, 18, 3117–3134. [Google Scholar] [CrossRef]
- Rao, Q.; Zhang, J.; Yang, T.; Li, Y.; Gai, Z.; Li, P.; Wang, X.; Pan, Y.; Jin, H. A Nickel-Modified Perovskite-Supported Iron Oxide Oxygen Carrier for Chemical Looping Dry Reforming of Methane for Syngas Production. Chem. Eng. J. 2024, 485, 150033. [Google Scholar] [CrossRef]
- Sasson Bitters, J.; He, T.; Nestler, E.; Senanayake, S.D.; Chen, J.G.; Zhang, C. Utilizing Bimetallic Catalysts to Mitigate Coke Formation in Dry Reforming of Methane. J. Energy Chem. 2022, 68, 124–142. [Google Scholar] [CrossRef]
- Jeyaprakash, N.; Yang, C.H.; Prabu, G.; Balamurugan, K.G. Surface Alloying of FeCoCrNiMn Particles on Inconel-718 Using Plasma-Transferred Arc Technique: Microstructure and Wear Characteristics. RSC Adv. 2021, 11, 28271–28285. [Google Scholar] [CrossRef] [PubMed]
- Han, J.W.; Jung, S.H.; Cho, H.; Lee, H.W. Investigation of the Weld Properties of Inconel 625 Based on Nb Content. Int. J. Electrochem. Sci. 2018, 13, 2829–2841. [Google Scholar] [CrossRef] [PubMed]
- Contri, B.; Valette, S.; Soustre, M.; Lefort, P. Inconel®625 Oxidation in CO2: Kinetics and Reaction Mechanism. Corros. Sci. 2023, 217, 111101. [Google Scholar] [CrossRef]
- Guo, S.; Xu, D.; Wei, N.; Wang, Y.; Chen, G.; Wang, S. Oxidation Processes and Involved Chemical Reactions of Corrosion-Resistant Alloys in Supercritical Water. Ind. Eng. Chem. Res. 2020, 59, 10278–10288. [Google Scholar] [CrossRef]
- Bychkov, V.Y.; Korchak, V.N.; Krylov, O.V.; Morozova, O.S.; Khomenko, T.I. Formation of the Ni–CrOx/MgO and Ni/MgO Catalysts for Carbon Dioxide Reforming of Methane. Kinet. Catal. 2001, 42, 561–573. [Google Scholar] [CrossRef]
- Rouibah, K.; Barama, A.; Benrabaa, R.; Guerrero-Caballero, J.; Kane, T.; Vannier, R.N.; Rubbens, A.; Löfberg, A. Dry Reforming of Methane on Nickel-Chrome, Nickel-Cobalt and Nickel-Manganese Catalysts. Int. J. Hydrogen Energy 2017, 42, 29725–29734. [Google Scholar] [CrossRef]
- Hayes, J.R.; Gray, J.J.; Szmodis, A.W.; Orme, C.A. Influence of Chromium and Molybdenum on the Corrosion of Nickel-Based Alloys. Corros. Sci. 2006, 62, 491. [Google Scholar] [CrossRef]
- Shen, Z. The Influence of Cr and Mo on the Formation of the Passivation Film on the Surface of Ferritic Stainless Steel. Mater. Today Commun. 2024, 38, 108221. [Google Scholar] [CrossRef]
- Asami, K.; Naka, M.; Hashimoto, K.; Masumoto, T. Effect of Molybdenum on the Anodic Behavior of Amorphous Fe-Cr-Mo-B Alloys in Hydrochloric Acid. Electrochem. Sci. Technol. 1980, 126, 2130–2138. [Google Scholar] [CrossRef]
- Abdullah, N.; Ainirazali, N.; Setiabudi, H.D.; Jalil, A.A.; Mohamed, A.R. Enhanced Glycerol Dry Reforming over Ni/SBA-15 Synthesized from Palm Oil Ash: Effect of GHSV. Mater. Today Proc, 2023; In press, Corrected Proof. [Google Scholar] [CrossRef]
- Jafarbegloo, M.; Tarlani, A.; Mesbah, A.W.; Muzart, J.; Sahebdelfar, S. NiO-MgO Solid Solution Prepared by Sol-Gel Method as Precursor for Ni/MgO Methane Dry Reforming Catalyst: Effect of Calcination Temperature on Catalytic Performance. Catal. Lett. 2016, 146, 238–248. [Google Scholar] [CrossRef]
- Choudhary, V.R.; Mondal, K.C.; Choudhary, T.V. Partial Oxidation of Methane to Syngas with or without Simultaneous Steam or CO2 Reforming over a High-Temperature Stable-NiCoMgCeOx Supported on Zirconia–Hafnia Catalyst. Appl. Catal. A Gen. 2006, 306, 45–50. [Google Scholar] [CrossRef]
Condition | Total Flow (mL/min) |
---|---|
1 | 247 |
2 | 297 |
3 | 347 |
4 | 397 |
Element | Weight Concentration (%) | |
---|---|---|
Before Reaction | After Reaction | |
Nickel | 73.91 | 59.84 |
Chromium | 16.55 | 13.40 |
Iron | 8.68 | 7.10 |
Silicon | 0.34 | - |
Oxygen | - | 18.49 |
Manganese | 0.27 | 0.53 |
Molybdenum | - | 0.56 |
Titanium | 0.25 | 0.08 |
Element | Weight Concentration (%) | |||
---|---|---|---|---|
Zone 1 | Zone 2 | Zone 3 | Zone 4 | |
Chromium | 69.16 | 9.86 | 9.41 | 69.34 |
Oxygen | 18.02 | 3.30 | 3.41 | 25.44 |
Manganese | 9.48 | 0.08 | 0.07 | 2.20 |
Nickel | 1.44 | 77.56 | 77.98 | 1.63 |
Titanium | 0.89 | 0.05 | 0.03 | 0.75 |
Iron | 0.57 | 8.32 | 8.49 | 0.22 |
Molybdenum | 0.45 | 0.82 | 0.62 | 0.43 |
Element | Weight Concentration (%) | ||
---|---|---|---|
Zone 1 | Zone 2 | Zone 3 | |
Iron | 95.90 | 95.97 | 89.23 |
Oxygen | 2.74 | 2.79 | 8.94 |
Manganese | 0.74 | 0.71 | 0.99 |
Molybdenum | 0.57 | 0.53 | 0.54 |
Chromium | 0.03 | - | - |
Titanium | 0.01 | - | - |
Total Flow (mL/min) | H2/CO |
---|---|
247 | 1.27 |
297 | 1.25 |
347 | 1.68 |
397 | 1.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezerra Silva, C.; Lugo-Pimentel, M.; Ceballos, C.M.; Lavoie, J.-M. An Investigation of the Catalytic Activity of Inconel and Stainless Steel Powders in Reforming Primary Syngas. Sustainability 2025, 17, 980. https://doi.org/10.3390/su17030980
Bezerra Silva C, Lugo-Pimentel M, Ceballos CM, Lavoie J-M. An Investigation of the Catalytic Activity of Inconel and Stainless Steel Powders in Reforming Primary Syngas. Sustainability. 2025; 17(3):980. https://doi.org/10.3390/su17030980
Chicago/Turabian StyleBezerra Silva, Claudia, Michael Lugo-Pimentel, Carlos M. Ceballos, and Jean-Michel Lavoie. 2025. "An Investigation of the Catalytic Activity of Inconel and Stainless Steel Powders in Reforming Primary Syngas" Sustainability 17, no. 3: 980. https://doi.org/10.3390/su17030980
APA StyleBezerra Silva, C., Lugo-Pimentel, M., Ceballos, C. M., & Lavoie, J.-M. (2025). An Investigation of the Catalytic Activity of Inconel and Stainless Steel Powders in Reforming Primary Syngas. Sustainability, 17(3), 980. https://doi.org/10.3390/su17030980