How Does Digital Inclusive Finance Affect Agricultural Green Development? Evidence from Thirty Provinces in China
Abstract
:1. Introduction
2. Theoretical Analysis and Research Hypotheses
2.1. Direct Impact of Digital Inclusive Finance in Promoting Agricultural Green Development
2.2. Mediating Effect Analysis
2.3. Threshold Effect Analysis
3. Connotations, Comprehensive Evaluation and Space–Time Evolution of China’s Agricultural Green Development
3.1. Connotations of Agricultural Green Development
3.2. Comprehensive Evaluation of Agricultural Green Development
3.3. Space–Time Evolution Characteristics of Agricultural Green Development
4. Empirical Model and Data
4.1. Model Specification
4.1.1. Spatial Econometric Model
4.1.2. Mediating Effect Model
4.1.3. Threshold Effect Model
4.2. Variable Measures and Data Sources
4.2.1. Dependent Variable
4.2.2. Independent Variable
4.2.3. Mediator Variables and Threshold Variable
4.2.4. Control Variables
4.3. Characteristic Fact Description
5. Empirical Findings
5.1. Spatial Correlation Test
5.2. Baseline Regression
5.3. Heterogeneity Analysis
5.4. Endogeneity Test and Robustness Test
5.5. Mechanism Analysis
5.5.1. Mediating Effect
5.5.2. Threshold Effect
6. Conclusions, Discussion and Policy Implications
6.1. Conclusions
6.2. Discussion
6.3. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, Y.M.; Chen, K.; Kang, J.N.; Chen, W.; Wang, X.Y.; Zhang, X. Policy and management of carbon peaking and carbon neutrality: A literature review. Engineering 2022, 14, 52–63. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, Z.; He, G.; Wang, H.; Zhang, X.; Lin, J.; Qi, Y.; Liang, X. Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. 2022, 3, 141–155. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, X.; Chen, B.; Shang, Y.; Song, M. Challenges toward carbon neutrality in China: Strategies and countermeasures. Resour. Conserv. Recycl. 2022, 176, 105959. [Google Scholar] [CrossRef]
- Ma, D.; Zhu, Q. Innovation in emerging economies: Research on the digital economy driving high-quality green development. J. Bus. Res. 2022, 145, 801–813. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, Z.; Wang, Y.; Hao, Y. Fostering green development with green finance: An empirical study on the environmental effect of green credit policy in China. J. Environ. Manag. 2021, 296, 113159. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Li, Y.; Hao, Y.; Ren, S.; Zhang, P. Environmental decentralization, local government competition, and regional green development: Evidence from China. Sci. Total Environ. 2020, 708, 135085. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.H.; Wu, X.; Zhang, D.; Chen, S.; Zhao, J. Demand for green finance: Resolving financing constraints on green innovation in China. Energy Policy 2021, 153, 112255. [Google Scholar] [CrossRef]
- Fu, H.; Zheng, C.; Yang, P. Digital inclusive finance and green transformation of manufacturing enterprises: Empirical analysis based on the dual perspectives of demand and supply. Technol. Forecast. Soc. Change 2024, 200, 123152. [Google Scholar] [CrossRef]
- Wu, J. Nexus analysis of financial management, digital finance and new technologies. Glob. Financ. J. 2023, 57, 100869. [Google Scholar] [CrossRef]
- Naz, F.; Karim, S.; Houcine, A.; Naeem, M.A. Fintech growth during COVID-19 in MENA region: Current challenges and future prospects. Electron. Commer. Res. 2024, 24, 371–392. [Google Scholar] [CrossRef]
- Ozili, P.K. Impact of digital finance on financial inclusion and stability. Borsa Istanb. Rev. 2018, 18, 329–340. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, C.; Peng, J. Financial inclusion and agricultural total factor productivity growth in China. Econ. Model. 2021, 96, 68–82. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Abakah, E.J.A.; Adekoya, O.B.; Hammoudeh, S. What do we know about the price spillover between green bonds and Islamic stocks and stock market indices? Glob. Financ. J. 2023, 55, 100794. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, S.; Zhang, W. Does digital inclusive finance affect urban carbon emission intensity: Evidence from 285 cities in China. Cities 2023, 142, 104552. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Y.; Xie, M.; Chen, Y.; Cao, S. Health shocks, basic medical insurance and common prosperity: Based on the analysis of rural middle-aged and elderly groups. Front. Public Health 2022, 10, 1014351. [Google Scholar] [CrossRef] [PubMed]
- Lacalle-Calderon, M.; Larrú, J.M.; Garrido, S.R.; Perez-Trujillo, M. Microfinance and income inequality: New macrolevel evidence. Rev. Dev. Econ. 2019, 23, 860–876. [Google Scholar] [CrossRef]
- Du, Y.; Wang, W. The role of green financing, agriculture development, geopolitical risk, and natural resource on environmental pollution in China. Resour. Policy 2023, 82, 103440. [Google Scholar] [CrossRef]
- Sun, H.; Hartarska, V.; Zhang, L.; Nadolnyak, D. The influence of social capital on farm household’s borrowing behavior in Rural China. Sustainability 2018, 10, 4361. [Google Scholar] [CrossRef]
- O’Toole, C.M.; Newman, C.; Hennessy, T. Financing constraints and agricultural investment: Effects of the Irish financial crisis. J. Agric. Econ. 2014, 65, 152–176. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, X.; Bigsten, A. Ownership structure and determinants of technical efficiency: An application of data envelopment analysis to Chinese enterprises (1986–1990). J. Comp. Econ. 1998, 26, 465–484. [Google Scholar] [CrossRef]
- Tetteh, G.K. Local digital lending development and the incidence of deprivation in Kenya. Financ. Innov. 2023, 9, 102. [Google Scholar] [CrossRef]
- Berg, T.; Burg, V.; Gombovié, A.; Puri, M. On the rise of the FinTechs—Credit scoring using digital footprints. Federal Deposit Insurance Corporation. Cent. Financ. Res. WP 2018, 4, 2018. [Google Scholar]
- Zheng, H.; Ma, W.; Wang, F.; Li, G. Does internet use improve technical efficiency of banana production in China? Evidence from a selectivity-corrected analysis. Food Policy 2021, 102, 102044. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, F.; Hao, R.; Wu, L. Agricultural science and technology innovation, spatial spillover and agricultural green development—taking 30 provinces in China as the research object. Appl. Sci. 2022, 12, 845. [Google Scholar] [CrossRef]
- Sun, Y. Environmental regulation, agricultural green technology innovation, and agricultural green total factor productivity. Front. Environ. Sci. 2022, 10, 955954. [Google Scholar] [CrossRef]
- Chen, T.; Rizwan, M.; Abbas, A. Exploring the role of agricultural services in production efficiency in Chinese agriculture: A case of the socialized agricultural service system. Land 2022, 11, 347. [Google Scholar] [CrossRef]
- Chen, X.; Liu, T. Can agricultural socialized services promote the reduction in chemical fertilizer? Analysis based on the moderating effect of farm size. Int. J. Environ. Res. Public Health 2023, 20, 2323. [Google Scholar] [CrossRef] [PubMed]
- Zang, L.; Wang, Y.; Ke, J.; Su, Y. What drives smallholders to utilize socialized agricultural services for farmland scale management? Insights from the perspective of collective action. Land 2022, 11, 930. [Google Scholar] [CrossRef]
- Turvey, C.G.; He, G.; Jiujie, M.; Kong, R.; Meagher, P. Farm credit and credit demand elasticities in Shaanxi and Gansu. China Econ. Rev. 2012, 23, 1020–1035. [Google Scholar] [CrossRef]
- Wang, X.; Feng, H. China’s multidimensional relative poverty standards in the post-2020 Era: International experience and policy orientation. Chin. Rural. Econ. 2020, 3, 2–21. [Google Scholar]
- Sun, H.; Li, X.; Li, W.; Feng, J. Differences and influencing factors of relative poverty of urban and rural residents in China based on the survey of 31 provinces and cities. Int. J. Environ. Res. Public Health 2022, 19, 9015. [Google Scholar] [CrossRef]
- Jiabin, Y.; Di, X.; Yuting, W.; Xiaoping, Y. Learning orientation, big data capability and business model innovation: Moderating effect of industry type. Manag. Rev. 2021, 33, 137. [Google Scholar]
- Dong, K.; Yang, S.; Wang, J. How digital economy lead to low-carbon development in China? The case of e-commerce city pilot reform. J. Clean. Prod. 2023, 391, 136177. [Google Scholar] [CrossRef]
- Elhorst, J.P. Applied spatial econometrics: Raising the bar. Spat. Econ. Anal. 2010, 5, 9–28. [Google Scholar] [CrossRef]
- Fischer, M.M.; Scherngell, T.; Reismann, M. Knowledge spillovers and total factor productivity: Evidence using a spatial panel data model. Geogr. Anal. 2009, 41, 204–220. [Google Scholar] [CrossRef]
- LeSage, J.P.; Pace, R.K. Spatial econometric models. In Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2009; pp. 355–376. [Google Scholar]
- Wen, Z.; Chang, L.; Hau, K.T.; Liu, H. Testing and application of the mediating effects. Acta Psychol. Sin. 2004, 36, 614. [Google Scholar]
- Du, Y.; Wang, Q.; Zhou, J. How does digital inclusive finance affect economic resilience: Evidence from 285 cities in China. Int. Rev. Financ. Anal. 2023, 88, 102709. [Google Scholar] [CrossRef]
- Biggs, S.D.; Clay, E.J. Sources of innovation in agricultural technology. World Dev. 1981, 9, 321–336. [Google Scholar] [CrossRef]
- Luo, J.; Guo, H.; Jia, F. Technological innovation in agricultural co-operatives in China: Implications for agro-food innovation policies. Food Policy 2017, 73, 19–33. [Google Scholar] [CrossRef]
- Ogundari, K.; Bolarinwa, O.D. Impact of agricultural innovation adoption: A meta-analysis. Aust. J. Agric. Resour. Econ. 2018, 62, 217–236. [Google Scholar] [CrossRef]
- Li, Y.; Huan, M.; Jiao, X.; Chi, L.; Ma, J. The impact of labor migration on chemical fertilizer use of wheat smallholders in China-mediation analysis of socialized service. J. Clean. Prod. 2023, 394, 136366. [Google Scholar] [CrossRef]
- Ying, R.; Xu, B. Demonstrative effect of farmers’ adopting socialized agricultural services-integrated pest management as an example. Chin. Rural. Econ. 2014, 30–41. [Google Scholar]
- Tian, X.; Wu, M.; Ma, L.; Wang, N. Rural finance, scale management and rural industrial integration. China Agric. Econ. Rev. 2020, 12, 349–365. [Google Scholar] [CrossRef]
- Ge, H.; Li, B.; Tang, D.; Xu, H.; Boamah, V. Research on digital inclusive finance promoting the integration of rural three-industry. Int. J. Environ. Res. Public Health 2022, 19, 3363. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Bao, W.; Wang, Y.; Liu, Y. Measurement of urban-rural integration level and its spatial differentiation in China in the new century. Habitat Int. 2021, 117, 102420. [Google Scholar] [CrossRef]
- Ryan, S.P. The costs of environmental regulation in a concentrated industry. Econometrica 2012, 80, 1019–1061. [Google Scholar]
- Li, Z.; Huang, Z.; Su, Y. New media environment, environmental regulation and corporate green technology innovation: Evidence from China. Energy Econ. 2023, 119, 106545. [Google Scholar] [CrossRef]
- Li, J.; Dong, K.; Wang, K.; Dong, X. How does natural resource dependence influence carbon emissions? The role of environmental regulation. Resour. Policy 2023, 80, 103268. [Google Scholar] [CrossRef]
- Guo, M.; Wang, H.; Kuai, Y. Environmental regulation and green innovation: Evidence from heavily polluting firms in China. Financ. Res. Lett. 2023, 53, 103624. [Google Scholar] [CrossRef]
- Halleck Vega, S.; Elhorst, J.P. The SLX model. J. Reg. Sci. 2015, 55, 339–363. [Google Scholar] [CrossRef]
- Zhao, H.; Zheng, X.; Yang, L. Does digital inclusive finance narrow the urban-rural income gap through primary distribution and redistribution? Sustainability 2022, 14, 2120. [Google Scholar] [CrossRef]
- Li, J.; Cheng, P.; Qian, X. Do mineral rents endowment and agricultural raw material imports determine natural resource management in the United States? Resour. Policy 2023, 85, 103918. [Google Scholar] [CrossRef]
- Mensah, C.N.; Long, X.; Dauda, L.; Boamah, K.B.; Salman, M.; Appiah-Twum, F.; Tachie, A.K. Technological innovation and green growth in the organization for economic cooperation and development economies. J. Clean. Prod. 2019, 240, 118204. [Google Scholar] [CrossRef]
- Lin, B.; Ma, R. How does digital finance influence green technology innovation in China? Evidence from the financing constraints perspective. J. Environ. Manag. 2022, 320, 115833. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; He, L.; Xia, Y.; Chen, Y. Effect of government subsidies on renewable energy investments: The threshold effect. Energy Policy 2019, 132, 156–166. [Google Scholar] [CrossRef]
First-Level Indicator | Second-Level Indicator | Unit | Indicator Meaning |
---|---|---|---|
Resource conservation | Cultivated land retention rate | % | Total area of cultivated land at the end of the year/total area of cultivated land at the end of the previous year |
Water consumption per CNY 10,000 of agricultural added value | Ton | Agricultural water consumption/added value of agriculture, forestry, animal husbandry and fishery | |
Ecological environment security | Carbon emissions per CNY 10,000 of agricultural added value | Ton | Agricultural carbon emissions/added value of agriculture, forestry, animal husbandry and fisheries |
Fertilizer application intensity | Kg/mu | Conversion amount of agricultural fertilizer application/total planted area of crops | |
Fertilizer application intensity | Kg/mu | Pesticide use/total planted area of crops | |
Supply of green products | The quantity of high-quality agricultural products per unit area | One per ten thousand hectares | The number of green food label products effectively used in the year/cultivated land area |
The quantity of high-quality agricultural products per unit area | % | Current grain and animal product output/grain and animal product output in the past five years. Among them, the output of grain and livestock products refers to the output of grain and meat folding grain (according to 1:3 folding grain) | |
Having a good life | Per capita disposable income of rural residents | CNY/person | Reflecting the quality of farmers’ lives |
Engel coefficient of rural residents | - | Per capita food consumption expenditure of rural residents/per capita total consumption expenditure of rural residents |
Variable | Mean | Std Dev. | Min | Max | Obs |
---|---|---|---|---|---|
Digital inclusive finance (DIF) | 243.928 | 107.64 | 18.33 | 460.691 | 360 |
Coverage breadth (Coverage) | 227.389 | 110.562 | 1.96 | 455.927 | 360 |
Use depth (Usage) | 236.489 | 107.359 | 6.76 | 510.695 | 360 |
Digitization (Digital) | 312.066 | 118.302 | 7.58 | 467.172 | 360 |
Agricultural green development (AGD) | 0.207 | 0.108 | 0.094 | 0.898 | 330 |
Agricultural technology innovation (Tech) | 0.001 | 0.002 | 0 | 0.015 | 330 |
Agricultural production socialization service (Socialization) | 2.774 | 1.735 | 0.398 | 8.694 | 330 |
Rural industry integration (Integration) | 0.332 | 0.008 | 0.064 | 0.760 | 330 |
Emphasis on AGD (Importance) | 4.697 | 1.816 | 2 | 10 | 360 |
Environment regulation (Environment) | 0.194 | 0.437 | 0.024 | 3.531 | 330 |
Education level of rural residents (Edu) | 7.781 | 0.608 | 5.878 | 9.801 | 360 |
Internet popularity (Internet) | 0.502 | 0.122 | 0.242 | 0.78 | 360 |
Upgrading of an industrial structure (upgrading) | 1.571 | 6.087 | 0.739 | 88.754 | 330 |
Urbanization level (Urban) | 1.9234 | 1.695 | 0.54 | 8.6 | 330 |
Fiscal environment expenditure (Fin) | 0.826 | 0.069 | 0.691 | 1.016 | 330 |
Province | AGD | DIF | Province | AGD | DIF |
---|---|---|---|---|---|
Mean/Ranking | Mean/Ranking | Mean/Ranking | Mean/Ranking | ||
Shanghai | 0.423/1 | 297.139/1 | Henan | 0.163/16 | 222.660/17 |
Beijing | 0.358/2 | 291.326/2 | Anhui | 0.177/17 | 231.062/12 |
Zhejiang | 0.273/3 | 281.035/3 | Neimenggu | 0.175/18 | 214.755/22 |
Jiangsu | 0.227/4 | 259.562/4 | Guizhou | 0.173/19 | 203.958/28 |
Qinghai | 0.225/5 | 195.760/31 | Guangdong | 0.172/20 | 258.778/6 |
Tianjin | 0.220/6 | 249.504/7 | Jilin | 0.168/21 | 210.207/26 |
Chongqing | 0.206/7 | 233.046/10 | Yunnan | 0.167/22 | 213.029/23 |
Liaoning | 0.197/8 | 227.725/14 | Shanxi | 0.167/23 | 218.831/19 |
Fujian | 0.197/9 | 259.382/5 | Shandong | 0.167/23 | 232.941/11 |
Hunan | 0.190/10 | 219.874/18 | Guangxi | 0.161/25 | 218.433/20 |
Hebei | 0.189/11 | 242.040/8 | Shanaxi | 0.160/26 | 228.515/13 |
Heilongjiang | 0.187/12 | 212.191/24 | Gansu | 0.155/27 | 203.052/29 |
Sichuan | 0.185/13 | 225.972/15 | Ningxia | 0.152/28 | 211.200/25 |
Jiangxi | 0.181/14 | 224.628/16 | Hainan | 0.143/29 | 234.707/9 |
Hebei | 0.178/15 | 214.773/21 | Xinjiang | 0.129/30 | 208.096/27 |
2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | |
---|---|---|---|---|---|---|---|---|---|---|---|
DIF | 0.463 | 0.451 | 0.426 | 0.417 | 0.389 | 0.411 | 0.472 | 0.526 | 0.523 | 0.539 | 0.547 |
(4.080) | (4.024) | (0.426) | (3.763) | (3.541) | (3.729) | (4.244) | (4.653) | (4.627) | (4.755) | (4.808) | |
AGD | 0.368 | 0.445 | 0.445 | 0.512 | 0.318 | 0.336 | 0.352 | 0.447 | 0.400 | 0.481 | 0.487 |
(3.294) | (3.956) | (4.055) | (4.491) | (3.092) | (3.298) | (3.361) | (4.298) | (4.148) | (5.062) | (4.727) |
Spatial | Spatial | Spatial | Spatial | Spatial | Spatial | |
---|---|---|---|---|---|---|
Lag | Error | Durbin | Durbin | Durbin | Durbin | |
Model | Model | Model | Model | Model | Model | |
DIF | 0.056 *** | 0.068 ** | 0.061 *** | |||
(0.025) | (0.023) | (0.014) | ||||
Coverage | 0.041 *** | |||||
(0.017) | ||||||
Usage | 0.017 ** | |||||
(0.414) | ||||||
Digital | 0.071 *** | |||||
(0.487) | ||||||
Education | 0.054 *** | 0.038 *** | 0.044 *** | 0.053 *** | 0.051 *** | 0.045 *** |
(0.012) | (0.011) | (0.021) | (0.011) | (0.028) | (0.042) | |
Internet | 0.069 *** | 0.068 *** | 0.062 *** | 0.087 ** | 0.057 ** | 0.035 ** |
(0.021) | (0.012) | (0.014) | (0.321) | (0.021) | (0.021) | |
Upgrading | 0.026 *** | 0.017 ** | 0.041 * | 0.036 ** | 0.037 *** | 0.014 ** |
(0.025) | (0.178) | (0.049) | (0.321) | (0.109) | (0.021) | |
Urban | 0.021 | 0.050 ** | 0.085 * | 0.321 ** | 0.032 ** | −0.217 ** |
(0.010) | (0.041) | (0.071) | (0.321) | (0.014) | (0.098) | |
Fin | 0.040 *** | 0.005 * | 0.018 ** | 0.801 ** | 0.024 ** | 0.402 * |
(0.018) | (0.110) | (0.321) | (0.321) | (0.021) | (0.098) | |
DIF spatial lag term | 0.057 *** | 0.061 * | 0.014 | 0.014 ** | ||
(0.31) | (0.321) | (0.021) | (0.021) | |||
Edu spatial lag term | 0.052 ** | 0.357 | 0.047 * | 0.327 *** | ||
(0.21) | (0.321) | (0.109) | (0.029) | |||
Internet spatial lag term | 0.031 | 0.317 ** | 0.214 ** | 0.034 * | ||
(0.321) | (0.321) | (0.087) | (0.067) | |||
Upgrading spatial lag term | 0.078 * | 0.159 | −0.014 ** | 0.987 | ||
(0.321) | (0.321) | (0.021) | (0.074) | |||
Urbanization spatial lag term | 0.214 ** | 0.258 ** | −0.324 | 0.312 * | ||
(0.321) | (0.321) | (0.037) | (0.021) | |||
Finance spatial lag term | 0.074 ** | 0.547 *** | 0.037 ** | 0.098 ** | ||
(0.321) | (0.321) | (0.128) | (0.218) | |||
Spatial autoregressive coefficient | 0.382 *** | 0.212 *** | 0.225 *** | 0.204 *** | 0.251 *** | 0.214 *** |
(0.082) | (0.093) | (0.089) | (0.027) | (0.011) | (0.031) | |
Province FE | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
Log-likelihood | 468.582 | 471.354 | 460.625 | 474.529 | 459.275 | 487.225 |
R-squared | 0.203 | 0.201 | 0.124 | 0.214 | 0.268 | 0.216 |
Obs | 330 | 330 | 330 | 330 | 330 | 330 |
Direct Influence | Indirect Influence | Total Influence | ||||
---|---|---|---|---|---|---|
Coefficient | Std. Dev. | Coefficient | Std. Dev. | Coefficient | Std. Dev. | |
DIF | 0.0589 ** | 0.0251 | 0.0159 * | 0.0092 | 0.0748 ** | 0.0342 |
Edu | 0.0512 ** | 0.0208 | −0.0615 | 0.0546 | −0.0103 * | 0.0058 |
Internet | 0.0607 *** | 0.0215 | 0.0148 * | 0.0081 | 0.0755 *** | 0.0185 |
Upgrading | 0.0189 | 0.0206 | 0.0283 | 0.0359 | 0.0472 | 0.0448 |
Urban | 0.0248 ** | 0.0111 | 0.0114 ** | 0.0052 | 0.0362 ** | 0.0171 |
Fin | 0.0245 ** | 0.0117 | −0.0143 ** | 0.1082 | 0.0102 ** | 0.0044 |
First Level | Second Level | Third Level | Eastern | Central | Western | |
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
DIF | 0.012 | 0.283 *** | 0.424 *** | 0.322 *** | 0.244 ** | 0.201 *** |
(0.028) | (0.028) | (0.031) | (0.038) | (0.036) | (0.033) | |
Control variables | Yes | Yes | Yes | Yes | Yes | Yes |
Province FE | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
Obs | 124 | 134 | 72 | 132 | 99 | 99 |
R-squared | 0.288 | 0.306 | 0.321 | 0.359 | 0.361 | 0.252 |
Dynamic Spatial | IV: First-Order | Replacing | |
---|---|---|---|
Durbin Model | Lag in DIF | Explanatory Variables | |
(1) | (2) | (3) | |
First order in AGD | 0.1521 ** (0.0124) | 0.1168 *** (0.0143) | |
DIF | 0.0164 *** (0.0039) | 0.0152 *** (0.0067) | 0.0267 *** (0.0149) |
AGD spatial lag term | 0.0125 ** (0.0057) | 0.0148 * (0.0919) | |
Spatial lag term of first order in AGD | 0.0248 * (0.0109) | 0.0217 *** (0.0055) | |
Spatial lag term of DIF | 0.0194 * (0.0079) | 0.0183 *** (0.0719) | 0.0332 *** (0.0139) |
Spatial autoregressive coefficient | 0.2315 *** (0.0611) | 0.2206 *** (0.0679) | 0.2151 *** (0.0301) |
Control variables | Yes | Yes | Yes |
Province FE | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes |
Log-likelihood | 403.0525 | 419.4051 | |
R2 | 0.2994 | 0.3008 | |
Wald test | 455.19 ** | ||
Autocorrelation test AR(1) | −3.1512 [0.0000] | ||
Autocorrelation test AR(2) | 0.5581 [0.2189] | ||
Sargan test | 28.7395 [0.2168] |
Tech | Socialization | Integration | ||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | ||||
DIF | 0.845 *** | 1.012 ** | 1.154 *** | 0.274 ** | 1.230 *** | 0.579 * |
(0.074) | (0.014) | (1.021) | (0.187) | (0.217) | (0.910) | |
Tech | 1.249 *** | |||||
(0.194) | ||||||
Social | 0.267 *** | |||||
(0.347) | ||||||
Integration | 0.678 *** | |||||
(0.314) | ||||||
Spatial lag term in DIF | 0.987 *** | 0.321 * | 0.687 *** | 0.321 ** | 0.217 ** | |
(0.082) | (0.194) | (0.324) | (0.187) | (0.414) | ||
Spatial lag term in tech | 0.247 *** | |||||
(0.822) | ||||||
Spatial lag term in socialization | 0.321 *** | |||||
(0.022) | ||||||
Spatial lag term in integration | 0.274 *** | |||||
(0.072) | ||||||
Spatial autoregressive coefficient | 0.322 *** | 0.212 *** | 0.225 *** | 0.266 *** | 0.297 *** | 0.327 *** |
(0.082) | (0.013) | (0.087) | (0.027) | (0.014) | (0.064) | |
Control variables | Yes | Yes | Yes | Yes | Yes | Yes |
Province FE | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
Log-likelihood | 468.582 | 460.628 | 485.212 | 487.124 | 496.321 | 487.214 |
R2 | 0.203 | 0.2056 | 0.214 | 0.23 | 0.234 | 0.258 |
Variable | Threshold Effect | Variable | Threshold Effect |
---|---|---|---|
Environment | Importance | ||
−0.001 (0.014) | 0.002 (0.014) | ||
0.103 *** (0.032) | 0.412 *** (0.032) | ||
Control variables | Yes | Control variables | Yes |
Province FE | Yes | Province FE | Yes |
Year FE | Yes | Year FE | Yes |
Obs | 330 | Obs | 330 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Li, W.; Guo, X.; Wu, Z.; Mao, Z.; Feng, J. How Does Digital Inclusive Finance Affect Agricultural Green Development? Evidence from Thirty Provinces in China. Sustainability 2025, 17, 1449. https://doi.org/10.3390/su17041449
Sun H, Li W, Guo X, Wu Z, Mao Z, Feng J. How Does Digital Inclusive Finance Affect Agricultural Green Development? Evidence from Thirty Provinces in China. Sustainability. 2025; 17(4):1449. https://doi.org/10.3390/su17041449
Chicago/Turabian StyleSun, Hong, Wenjing Li, Xue Guo, Ziyue Wu, Zimo Mao, and Jun Feng. 2025. "How Does Digital Inclusive Finance Affect Agricultural Green Development? Evidence from Thirty Provinces in China" Sustainability 17, no. 4: 1449. https://doi.org/10.3390/su17041449
APA StyleSun, H., Li, W., Guo, X., Wu, Z., Mao, Z., & Feng, J. (2025). How Does Digital Inclusive Finance Affect Agricultural Green Development? Evidence from Thirty Provinces in China. Sustainability, 17(4), 1449. https://doi.org/10.3390/su17041449