Reducing Greenhouse Gas Emissions from Arable Land and Grassland: The Case for Organic Farming—A Critical Review
Abstract
:1. Introduction
2. Features of Intensification and Industrialization in Present Day Agriculture—Consequences for the Emission of Greenhouse Gases
- High yields are the main goal of intensive farming.
- High levels of nutrient applications, especially nitrogen (N), are used for intensive farming.
- Industrialization includes a high level of specialization on a farm level, also leading to the separation of plant and animal production. This results on one hand in regions without husbandry livestock and, on the other hand, in regions with large scale industrialized livestock, operations with a tendency to overfertilize surrounding soils with organic manure, mainly liquid manure. Rotted farmyard manure or compost are not produced in these operations because of the lower rationalization level involved in manure production, treatment, and application compared to that of liquid manure.
- A high level of agricultural industrialization means the substitution of human labor for machines of increasing weight that have the tendency to induce soil compaction, also increasing the risks of wind and water erosion.
3. The Effect of the Intensification and Industrialization of Agriculture on Greenhouse Gas Emissions Worldwide
4. Technical Solutions to Reduce Emission of Greenhouse Gases in Intensive Agriculture
5. Biochar Application: A Technique to Increase Organic Carbon in Soil?
6. Organic Agriculture
7. Back to the Roots: Organic Farming as a Complex System That Is Able to Combine High Sustainability and the Reduction of Greenhouse Gas Emissions from Agriculture
- Carbon dioxide
- Nitrous oxide
- Methane
8. Summary and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oertel, G.; Matschullat, B.P.; Zimmermann, F.; Erasmi, S. Greenhouse gas emissions from soils—A review. Geochemistry 2016, 76, 327–352. [Google Scholar] [CrossRef]
- Manano, B.O. Carbon dioxide, nitrous oxide and methane emissions from the Waimate District (New Zealand) pasture soils as influenced by irrigation, effluent dispersal and earthworms. Cogent Environ. Sci. 2016, 2, 1256564. [Google Scholar] [CrossRef]
- Paustian, K.; Six, J.; Elliott, E.T.; Hunt, H.W. Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry 2000, 48, 147–163. [Google Scholar] [CrossRef]
- Reay, D.S.; Davidson, E.A.; Smith, K.A.; Smith, P.; Melillo, J.M.; Dentener, F.; Crutzen, P.J. Global agriculture and nitrous oxide emissions. Nat. Clim. Chang. 2012, 2, 410–416. [Google Scholar] [CrossRef]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Winowiecki, L. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Wang, C.; Amon, B.; Schulz, K.; Mehdi, B. Factors that influence nitrous oxide emissions from agricultural soils as well as their representation in simulation models: A review. Agronomy 2021, 11, 70. [Google Scholar] [CrossRef]
- Menegat, S.; Ledo, A.; Tirado, R. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilizers in agriculture. Sci. Rep. 2022, 12, 14490. [Google Scholar]
- Paustian, K.; Andren, O.; Janzen, H.; Lal, R.; Smith, P.; Tian, G.; Tiessen, H.; van Noordwijk, M.; Woomer, P. Agricultural soil as a sink to offset CO2 emissions. Soil Use Manag. 1997, 13, 230–244. [Google Scholar] [CrossRef]
- Rumpel, C.; Asmiraslami, F.; Koutika, L.-S.; Smith, R.; Whitehead, D.; Wollenberg, E. Put more carbon in soils to meet Paris climate pledges. Nature 2018, 564, 32–34. [Google Scholar] [CrossRef] [PubMed]
- Wiesemeier, M.; Mayer, S.; Burmeister, J.; Hübner, K.; Kögl-Knabner, I. Feasibility of the 4 per 1000 initiative in Bavaria. A reality check of agricultural management and carbon sequestration scenarios. Geoderma 2020, 369, 11433. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef] [PubMed]
- FAO. Soil Organic Carbon, The Hidden Potential; FAO: Rome, Italy, 2017. [Google Scholar]
- Piccolo, A. The supramolecular structure of humic substances: A novel understanding of humus chemistry and implications in soil science. Adv. Agron. 2002, 75, 57–134. [Google Scholar]
- Ghabbour, E.A.; Davies, G.; Misiewicz, T.; Alami, R.A.; Askounis, E.M.; Cuozzo, N.P.; Filice, A.J.; Haskell, J.M.; Moy, A.K.; Roach, A.C.; et al. National comparison of the total and sequestered organic matter contents of conventional and organic farm soils. Adv. Agron. 2017, 146, 1–35. [Google Scholar]
- Gerke, J. Concepts and misconceptions of humic substances as the stable part of soil organic matter: A review. Agronomy 2018, 8, 76. [Google Scholar] [CrossRef]
- Hayes MH, B.; Swift, R.S. Vindication of humic substances as a key component of organic matter in soil and water. Adv. Agron. 2020, 163, 1–37. [Google Scholar]
- Könnecke, G. Fruchtfolgen; Deutscher Landwirtschaftsverlag: Ostberlin, Germany, 1967. [Google Scholar]
- Körschens, M.; Albert, E.; Baumecker, M.; Ellmer, F.; Grunert, M.; Hoffmann, S.; Zorn, W. Humus und Klimaveränderung- Ergebnisse aus 15 langjährigen Dauerfeldversuchen. Arch. Agron. Soil Sci. 2014, 60, 1485–1517. [Google Scholar] [CrossRef]
- Stevenson, F.J. Humus Genesis: Genesis, Composition, Reactions; John Wiley: New York, NY, USA, 1994. [Google Scholar]
- Batjes, N.H. Harmonized soil property values for broad-scale modeling with estimates of global carbon stocks. Geoderma 2016, 269, 61–68. [Google Scholar] [CrossRef]
- Weber, J.; Chen, Y.; Janroz, E.; Miano, T. Preface: Humic substances in the environment. J. Soils Sediments 2018, 18, 2665–2667. [Google Scholar] [CrossRef]
- Post, W.M.; Peng, T.-H.; Emanuel, W.R.; King, A.W.; Dale, V.H.; DeAngelis, D.L. The global carbon cycle. Am. Sci. 1990, 78, 310–326. [Google Scholar]
- Houghton, R.A.; Skole, D.L. Carbon. In The Earth as Transformed by Human Action; Turner, B.L., Clark, W.C., Kates, R.W., Richards, J.F., Mathews, J.T., Meyer, W.B., Eds.; Cambridge University Press: Cambridge, UK, 1990; pp. 393–408. [Google Scholar]
- Gerke, J. The central role of soil organic matter in soil fertility and carbon storage. Soil Syst. 2022, 6, 33. [Google Scholar] [CrossRef]
- Klapp, E. Lehrbuch des Acker- und Pflanzenbaus; Paul Parey: Berlin/Hamburg, Germany, 1967. [Google Scholar]
- Klapp, E. Wiesen und Weiden; Paul Parey: Berlin/Hamburg, Germany, 1967. [Google Scholar]
- Hayes, M.H.B.; Clapp, C.E. Humic substances: Considerations of composition, aspects of structure and environmental influences. Soil Sci. 2001, 166, 723–737. [Google Scholar] [CrossRef]
- Schulze, E.D.; Ciais, P.; Luyssaert, S.; Schrumpf, M.; Janssens, I.A.; Thiruchittampalam, B.; Dolman, A.J. The European carbon balance. Part 4: Integration of carbon and trace-gas fluxes. Glob. Chang. Biol. 2010, 16, 1451–1469. [Google Scholar] [CrossRef]
- Alcantara, V.; Don, A.; Well, R.; Nieder, R. Deep ploughing increases agricultural soil organic matter stocks. Glob. Chang. Biol. 2016, 22, 2939–2956. [Google Scholar] [CrossRef] [PubMed]
- Nieder, R.; Richter, J. C and N accumulation in arable soils of West Germany and its influence on the environment-developments 1970 to 1998. J. Plant Nutr. Soil Sci. 2000, 163, 65–72. [Google Scholar] [CrossRef]
- Fowler, D.; Steadman, C.E.; Stevenson, D.; Coyle, M.; Rees, R.M.; Skiba, U.M.; Sutton, M.A.; Cape, J.N.; Dore, A.J.; Vieno, M.; et al. Effects of global change during the 21st century on the nitrogen cycle. Atmos. Chem. Phys. 2015, 15, 13849–13893. [Google Scholar] [CrossRef]
- Davidson, E.A.; Matson, P.A.; Vitousek, P.M.; Riley, R.; Dunkin, K.; Garcia-Mendez, G.; Maass, J.M. Processes regulating soil emissions of NO and N2O in a seasonally dry tropical forest. Ecoloy 1993, 74, 130–139. [Google Scholar] [CrossRef]
- Granli, T.; Bockman, O.C. Nitrous oxide from agriculture. Nor. J. Agric. Sci. 1994. [Google Scholar]
- Thorman, R.E.; Nicholson, F.A. Towards country-specific nitrous oxide emission factors for manures applied to arable and grassland soils in the UK. Front. Sustain. Food Syst. 2020, 4, 62. [Google Scholar] [CrossRef]
- Smith, P.; Reay, D.; Smith, J. Agricultural methane emissions and the potential for mitigation. Phil. Trans. R. Soc. A 2021, 379, 20200451. [Google Scholar] [CrossRef]
- Sirigina, D.S.S.S.; Nazir, S.M. Non-fossil methane emissions mitigation from agricultural sector and its impact on sustainable development goals. Front. Chem. Eng. 2022, 4, 838265. [Google Scholar] [CrossRef]
- Brumme, R.; Borken, W. Site variation in methane oxidation as affected by atmospheric deposition and type of temperate forest ecosystem. Glob. Biogeochem. Cycles 1999, 13, 493–501. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Kiese, R.; Liu, C.Y. Measurement of biosphere-atmosphere exchange of CH4 in terrestrial ecosystems. Meth. Enzymol. 2011, 495, 271–287. [Google Scholar]
- Gao, B.; Ju, X.; Su, F.; Meng, Q.; Oenema, O.; Christie, P.; Chen, X.; Zhang, F. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the north China plain: A two-year field study. Sci. Total Environ. 2014, 472, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.; Hill, A.K.; Torrente-Murciano, L. Current and future role of Haber-Bosch ammonia in a carbon free energy landscape. Energy Environ. Sci. 2020, 13, 331–344. [Google Scholar] [CrossRef]
- Ghavam, S.; Vahdati, M.; Grant Wilson, I.A.; Styring, P. Sustainable ammonia production processes. Front. Energy Res. 2021, 9, 580808. [Google Scholar] [CrossRef]
- Krull, E.; Lehmann, J.; Skjemstad, J.; Baldock, J.; Spouncer, L. The global extend of black C in soils: Is it everywhere? In Grasslands: Ecology, Management and Restoration; Schröder, H.G., Ed.; Nova Science Publishers: New York, NY, USA, 2008; pp. 13–17. [Google Scholar]
- Glaser, B.; Haumeier, L.; Guggenberger, G.; Zech, W. The terra preta phenomen: A model for sustainable agriculture in the humid tropics. Naturwissenschaften 2001, 88, 37–41. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Skjemstad, J.O.; Gehrt, E.; Kögl-Knabner, I. Charred organic carbon in German chernozemic soils. Eur. J. Soil Sci. 1999, 50, 351–365. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Skjemstad, J.O.; Jäger, C. Carbon isotope geochemistry and nano morphology of soil black carbon: Black chernozemic soils in central Europe originate from ancient biomass burning. Glob. Biogeochem. Cyc. 2002, 16, 1123–1131. [Google Scholar] [CrossRef]
- Skjemstad, J.O.; Reikosky, D.C.; Wilts, A.R.; McGowan, J.A. Charcoal carbon in US Agricultural soils. Soil Sci. Soc. Am. J. 2002, 66, 1249–1255. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Skjemstad, J.O.; Czimszik, C.I.; Glaser, B.; Prentice, K.M.; Gelinas, Y.; Kuhlbusch, T.A. Comparative analysis of black carbon in soils. Glob. Biochem. Cyc. 2001, 15, 163–167. [Google Scholar] [CrossRef]
- Brodowski, S.; Rdionow, A.; Haumeier, L.; Glaser, B.; Amelung, W. Revised black carbon assessment using benzene polycarboxylic acids. Org. Geochem. 2005, 36, 1299–1310. [Google Scholar] [CrossRef]
- Kappenberg, A.; Bläsing, M.; Lehndorff, E.; Amelung, W. Black carbon assessment using benzene carboxylic acids: Limitations for organic rich matrices. Org. Geochem. 2016, 94, 47–51. [Google Scholar] [CrossRef]
- Gerke, J. Black (pyrogenic) carbon in soils and waters: A fragile data basis extensively interpreted. Chem. Bio. Technol. Agric. 2019, 6, 13. [Google Scholar] [CrossRef]
- Goranov, A.I.; Chen, H.; Duan, J.; Mynemi, B.; Hatcher, P. Potentially massive and global non-pyrogenic production of condensed “black” carbon through biomass oxidation. Environ. Sci. Technol. 2024, 58, 2750–2761. [Google Scholar] [CrossRef]
- Nelson, P.N.; Baldock, J.A. Estimating the molecular composition of a diverse range of natural organic materials from solid-state 13C NMR and elemental analysis. Biogeochemistry 2005, 72, 1–34. [Google Scholar] [CrossRef]
- Zimmermann, A.R.; Mitra, S. Trial by fire: On the terminology and methods used in pyrogenic organic carbon research. Front. Earth Sci. 2017, 5, 95. [Google Scholar] [CrossRef]
- Chang, Z.; Tian, L.; Li, F.; Zhou, Y.; Wu, M.; Steinberg, C.E.; Xing, B. Benzene carboxylic acid- a useful marker for condensed organic matter, but not only for pyrogenic black carbon. Sci. Tot. Environ. 2018, 626, 660–667. [Google Scholar] [CrossRef]
- Poinisio, L.C.; M’Gonigle, L.K.; Mace, K.C.; Palomino, J.; DeValpierre, P.; Kremen, C. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B 2015, 282, 20141396. [Google Scholar] [CrossRef] [PubMed]
- Anglade, J.; Billen, G.; Garnier, J. Relationships for estimating N2 fixation in legumes: Incidence for N balance of legume-based cropping systems in Europe. Ecosphere 2015, 6, 1–24. [Google Scholar] [CrossRef]
- Reinsch, T.; Malisch, C.; Loges, R.; Taube, F. Nitrous oxide emissions from grass-clover swards as influenced by sward age and biological nitrogen fixation. Grass For. Sci. 2020, 75, 372–384. [Google Scholar] [CrossRef]
- Gattinger, A.; Müller, A.; Haeni, M.; Skinner, C.; Fließbach, A.; Buchmann, N. Enhanced topsoil carbon stocks under organic farming. Proc. Natl. Acad. Sci. USA 2012, 109, 18226–18231. [Google Scholar] [CrossRef] [PubMed]
- Forstreuter, T. Bodenfruchtbarkeitskennwerte und Kulturpflanzenertrag in zwei Bodennutzungssystemen. Ph.D. Thesis, Georg-August Universität, Göttingen, Germany, 1999. [Google Scholar]
- Song, X.; Fang, C.; Yuan, Z.-Q.; Li, F.-M. Long-term growth of alfalfa increased soil organic matter accumulation and nutrient mineralization in a semi-arid environment. Front. Environ. Sci. 2021, 9, 649346. [Google Scholar] [CrossRef]
- Chen, Y.; Inbar, Y. Chemical and spectroscopic analyses of orgainic matter transformation during composting in relation to compost maturity. In Science and Engineering of Composting: Design, Environmental, Microbial and Utilization Aspects; Hoitink, H.A.J., Keener, H.M., Eds.; Ohio State University: Wooster, OH, USA, 1993; pp. 551–600. [Google Scholar]
- Huang, G.F.; Wu, Q.T.; Wang JW, C.; Naggar, B.B. Transformation of organic matter during co-composting pig manure and saw dust. Biores. Technol. 2006, 97, 1834–1842. [Google Scholar] [CrossRef]
- Adani, F.; Spagnol, M. Humic acid formation in artificial soils amended with compost at different stages of organic evolution. J. Environ. Qual. 2008, 37, 1608–1616. [Google Scholar] [CrossRef]
- Fuentes, M.; Baigorri, R.; Garcia-Mina, J. Maturation in composting process, an incipient humification-like step as multivariate statistical analysis of spectroscopic data shows. Environ. Res. 2020, 189, 109981. [Google Scholar] [CrossRef]
- Martin, J.P.; Haider, K. Influence of Mineral Colloids on Turnover Rates of Soil Organic Carbon. In Interactions of Soil Minerals with Natural Organics and Microbes; Huang, P.M., Schnitzer, M., Eds.; Soil Science Society of America: Maison, WI, USA, 1986; pp. 283–304. [Google Scholar]
- Piccolo, A.; Spaccini, R.; Nieder, R.; Richter, J. Sequestration of biologically labile organic carbon in soils by humified organic matter. Clim. Chang. 2004, 67, 329–343. [Google Scholar] [CrossRef]
- Spaccini, R.; Piccolo, A. Amendments with humified compost effectively sequester organic carbon in agricultural soils. Land Degrad. Dev. 2019, 31, 1206–1216. [Google Scholar] [CrossRef]
- Kleber, M.; Eusterhues, K.; Keiluweit, M.; Mikutta, C.; Mikutta, R.; Nico, P.S. Mineral-organic associations: Formation, properties, and relevance in soil environments. Adv. Agron. 2015, 130, 1–140. [Google Scholar]
- Gerke, J. Carbon accumulation in arable soils: Mechanisms and effect of cultivation practices and organic fertilizers. Agronomy 2021, 11, 1079. [Google Scholar] [CrossRef]
- Piccolo, A.; Spaccini, R.; Cozzolini, V.; Nuzzo, A.; Drosos, M.; Zavattaro, L.; Grignani, C.; Puglisi, E.; Trevisan, M. Effective carbon sequestration in Italian agricultural soils by in situ polymerization of soil organic matter under biomimetic catalysis. Land Degrad. Dev. 2018, 29, 485–494. [Google Scholar] [CrossRef]
- Stagnari, F.; Maggio, A.; Galiena, A.; Pisante, M. Multiple benefits of legumes for agriculture sustainability: An overview. Chem. Biol. Technol. Agric. 2017, 4, 2. [Google Scholar] [CrossRef]
- Scholefield, D.; Hawkins JM, B.; Jackson, S.M. Use of a flowing helium atmosphere incubation technique to measure the effects of denitrification controls applied to intact cores of a clay soil. Soil Biol. Biochem. 1997, 29, 1337–1344. [Google Scholar] [CrossRef]
- Stein, L.Y.; Yung, Y.L. Production, isopotic composition and atmospheric fate of biologically produced nitrous oxide. Ann. Rev. Earth Planet Sci. 2003, 31, 329–356. [Google Scholar] [CrossRef]
- Bol, R.; Toyoda, S.; Yamulki, S.; Hawkins JM, B.; Caedenas, L.M.; Yoshida, N. Dual isotope and isotopomer ratios of N2O emitted from a temperate grassland soil after fertilizer application. Rapid Commun. Mass Spectrom. 2003, 17, 2550–2556. [Google Scholar]
- Holka, M.; Kowalska, J.; Jakubowska, M. Reducing carbon footprint of agriculture- Can organic farming help to mitigate climate change? Agriculture 2022, 12, 1383. [Google Scholar] [CrossRef]
- Skinner, C.; Gattinger, A.; Krauss, M.; Krause, H.-M.; Mayer, J.; Van der Heijden, M.G.A.; Mäder, P. The impact of long-term organic farming on soil-derived greenhouse gas emissions. Sci. Rep. 2019, 9, 1702. [Google Scholar] [CrossRef] [PubMed]
Crop Rotation Mixtures | Inclusion of Legumes Inclusion of Semi Perennial Alfalfa/Clover/Grass Inclusion of Cover Crops |
---|---|
Tillage regime | Conventional tillage Reduced tillage Zero tillage |
Mineral fertilizers | Inorganic nitrogen fertilizers phosphate/potassium/sulfur fertilizers Soil pH correction by lime |
Organic fertilizers | Liquid manure Rotted farmyard manure composted farmyard manure Straw as amendment Biochar External organic fertilizers |
Farming systems | Conventional vs. Organic Low input vs. high input agriculture Industrialized vs. non-specialized agriculture |
Year | Crop | Harvest Products | Fertilizers |
---|---|---|---|
First | alfalfa/clover/grass | hay, silage, fresh forage | e.g., dolomite, raw P and K sources, gypsum |
Second | alfalfa/clover/grass | hay, silage, fresh forage | see above |
Third | winter wheat with undersown clover/grass | cereal grain | |
Fourth | oats with undersown clover/grass | cereal grain | e.g., 10 t/ha farmyard manure, compost |
Fifth | potatoes | tuber | e.g., 30 t/ha rotted farmyard manure |
Sixth | barley with undersown alfalfa/clover/grass | cereal grain | e.g., dolomite, 10 t/ha rotted farmyard manure |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerke, J. Reducing Greenhouse Gas Emissions from Arable Land and Grassland: The Case for Organic Farming—A Critical Review. Sustainability 2025, 17, 1886. https://doi.org/10.3390/su17051886
Gerke J. Reducing Greenhouse Gas Emissions from Arable Land and Grassland: The Case for Organic Farming—A Critical Review. Sustainability. 2025; 17(5):1886. https://doi.org/10.3390/su17051886
Chicago/Turabian StyleGerke, Jörg. 2025. "Reducing Greenhouse Gas Emissions from Arable Land and Grassland: The Case for Organic Farming—A Critical Review" Sustainability 17, no. 5: 1886. https://doi.org/10.3390/su17051886
APA StyleGerke, J. (2025). Reducing Greenhouse Gas Emissions from Arable Land and Grassland: The Case for Organic Farming—A Critical Review. Sustainability, 17(5), 1886. https://doi.org/10.3390/su17051886