Application of Controlled-Source Audio-Frequency Magnetotellurics (CSAMT) for Subsurface Structural Characterization of Wadi Rum, Southwest Jordan
Abstract
:1. Introduction
2. Geological Setting
3. Data and Methods
- (1)
- Electric field magnitude (E) (v/m) measured from the potential differences over grounded dipoles.
- (2)
- Electric field phase (фE) (milliradians). This is defined as the phase lag between the transmitted signal and the measured electric signal. In a homogeneous Earth model, this phase lag is typically zero, with the exception occurring in the transition zone, where a noticeable change in the slope of the electric field is observed [49]. Conversely, in a non-homogeneous Earth model, the phase lag deviates from zero, indicating variations in subsurface properties.
- (3)
- Magnetic field magnitude (H) measured in A/m. This parameter is obtained from the voltage difference in a high-gain antenna.
- (4)
- Magnetic field phase (фH) measured in milliradians. This is defined as the phase between the transmitted signal and the measured magnetic field signal. In a homogeneous Earth model, this phase is typically equal to −π/4 rad in the far-field zone, where in the near-field zone it is equal to zero [50]. In the case of the transition zone, it has intermediate behavior. In a non-homogeneous Earth model, it has a complex behavior which explains the slope changes in the value of H.
- (5)
- The apparent resistivity is calculated from the well-known Cagniard equation [32] where the ratio of the electrical field and magnetic field can be obtained:
- (6)
- Phase difference (ф), measured in milliradians, is defined as the phase of impedance, and is normally calculated from the difference between the magnetic phase (фH) and the electric phase (фE). In a homogeneous Earth model, the phase difference is π/4 rad in the far field, while it is zero in the near field. Phase difference is in proportional relationship with the slope of the resistivity log [49]; recorded values more than π/4 indicate a higher resistive layer overlaying a less resistive one, while values lower than π/4 indicate a lower resistivity layer overlaying a more resistive one.
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UISCO World Heritage Center (Report on June 2011). Available online: https://whc.unesco.org/en/list/1377/#:~:text=The%2074%2C000%2Dhectare%20property%2C%20inscribed,the%20region.&text=a%20varied%20desert%20landscape,the%20region.&text=in%20the%20site%20testify,the%20region.&text=trace%20the%20evolution%20of,the%20region (accessed on 7 December 2024).
- Izzeldin, A.Y. Seismic, gravity and magnetic surveys in the central part of the Red Sea: Their interpretation and implications for the structure and evolution of the Red Sea. Tectonophysics 1987, 143, 269–306. [Google Scholar] [CrossRef]
- El-Waheidi, M.M.; Merlanti, F.; Pavan, M. Geoelectrical Resistivity Survey of the Central Part of Azraq Basin (Jordan) for Identifying Saltwater/Freshwater Interface. J. Appl. Geophys. 1992, 29, 125–133. [Google Scholar] [CrossRef]
- Al-Amri, A.M.S.; Punsalan, B.T.; Uy, E.A. Spatial distribution of the seismicity parameters in the Red Sea regions. J. Asian Earth Sci. 1998, 16, 557–563. [Google Scholar] [CrossRef]
- Al-Zahrani, H.A.; Fnais, M.S.; Al-Amri, A.M.; Abdel-Rahman, K. Tectonic framework of Lunayyir area, northwest Saudi Arabia through aftershock sequence analysis of 19 May 2009 earthquake and aeromagnetic data. Int. J. Phys. Sci. 2012, 7, 5821–5833. [Google Scholar]
- Bender, F. Geology of the Arabian Peninsula, Jordan (No. 560-I); US Department of the Interior, Geological Survey: Reston, VA, USA, 1975. [Google Scholar]
- Barberi, F.; Capaldi, G.; Gasparini, P.; Marinelli, G.; Santacroce, R.; Scandone, R.; Treuil, M.; Varet, J. Recent basaltic volcanism of Jordan and its implications on the geodynamic history of the Dead Sea shear zone. In Geodynamic Evolution of the Afro-Arabian Rift System; Accademia Nazionale dei Lincei: Rome, Italy, 1980; pp. 667–683. Available online: https://hdl.handle.net/11568/208804 (accessed on 7 December 2024).
- Basaloom, A.; Geri, M.B. Contribution of Rifting Activities to Spatial and Temporal Variations of Seismic B-Values Along the Gulf of Aden Area, Case Study. In Proceedings of the ARMA US Rock Mechanics/Geomechanics Symposium, New York, NY, USA, 23–26 June 2019. [Google Scholar]
- Aboud, E.; Alqahtani, F.; Abdulfarraj, M.; Abraham, E.; El-Masry, N.; Osman, H. Geothermal imaging of the Saudi cross-border city of NEOM deduced from magnetic data. Sustainability 2023, 15, 4549. [Google Scholar] [CrossRef]
- Al-Shijbi, Y.; El-Hussain, I.; Deif, A.; Al-Kalbani, A.; Mohamed, A.M.E. Probabilistic Seismic Hazard Assessment for the Arabian Peninsula. Pure Appl. Geophys. 2019, 176, 1503–1530. [Google Scholar] [CrossRef]
- Bosworth, W.; Montagna, P.; Pons-Branchu, E.; Rasul, N.; Taviani, M. Seismic hazards implications of uplifted Pleistocene coral terraces in the Gulf of Aqaba. Sci. Rep. 2017, 7, 38. [Google Scholar] [CrossRef] [PubMed]
- Meqbel, N.M.M.; Ritter, O.; DESIRE Group. A magnetotelluric transect across the Dead Sea Basin: Electrical properties of geological and hydrological units of the upper crust. Geophys. J. Int. 2013, 193, 1415–1431. [Google Scholar] [CrossRef]
- Kahal, A.Y. Geological assessment of the Neom mega-project area, northwestern Saudi Arabia: An integrated approach. Arab. J. Geosci. 2020, 13, 345. [Google Scholar] [CrossRef]
- Freund, R.; Garfunkel, Z.; Zak, I.; Goldberg, M.; Weissbrod, T.; Derin, B.; Bender, F.; Wellings, F.E.; Girdler, R.W. The shear along the Dead Sea rift. Philos. Trans. R. Soc. Lond. Ser. A 1970, 267, 107–130. [Google Scholar]
- Eyal, M.; Bartov, Y.; Shimron, A.; Bentor, Y.K. Si-Nai—Geological Map (1:500,000); Survey of Israel: Tel Aviv, Israel, 1980. [Google Scholar]
- Aboud, E.; Alotaibi, A.M.; Saud, R. Relationship between Curie isotherm surface and Moho discontinuity in the Arabian shield, Saudi Arabia. J. Asian Earth Sci. 2016, 128, 42–53. [Google Scholar] [CrossRef]
- Aboulela, H.A.; Aboud, E.; Bantan, R.A. Seismicity and major geologic structures of Tiran and Sanafir islands and their surroundings in the Red Sea. Environ. Earth Sci. 2017, 76, 793. [Google Scholar] [CrossRef]
- Hamimi, Z.; El-Barkooky, A.; Frías, J.M.; Fritz, H.; Abd El-Rahman, Y. (Eds.) The Geology of Egypt; Springer: Cham, Switzerland, 2020; p. 711. [Google Scholar] [CrossRef]
- Ben-Avraham, Z.; Von Herzen, R.P. Heat flow and continental breakup: The Gulf of Elat (Aqaba). J. Geophys. Res. Solid Earth 1987, 92, 1407–1416. [Google Scholar] [CrossRef]
- Hassouneh, M.H. Interpretation of Potential Fields by Modern Data Processing and 3-Dimensional Gravity Modeling of the Dead Sea Pull-Apart Basin/Jordan Rift Valley (JRV). Doctoral Dissertation, Universität Würzburg, Würzburg, Germany, 2003. [Google Scholar]
- Khalil, S.M.; McClay, K.R. Structural control on syn-rift sedimentation, northwestern Red Sea margin, Egypt. Mar. Pet. Geol. 2009, 26, 1018–1034. [Google Scholar] [CrossRef]
- Folkman, Y. Magnetic and gravity investigations of the Dead Sea rift and adjacent areas in northern Israel. J. Geophys. 1980, 48, 34–39. [Google Scholar]
- Blakely, R.J. Potential Theory in Gravity and Magnetic Applications; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Maus, S.; Barckhausen, U.; Berkenbosch, H.; Bournas, N.; Brozena, J.; Childers, V.; Dostaler, F.; Fairhead, J.D.; Finn, C.; von Frese, R.R.B.; et al. EMAG2: A 2–arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements. Geochem. Geophys. Geosyst. 2009, 10, 1–12. [Google Scholar] [CrossRef]
- Hildebrand, N.; Shirav, M.; Freund, R. Structure of the Western Margin of the Gulf of Elat (Aqaba) in the Wadi EI Quseib-Wadi Haimur Area, Sinai. Isr. J. Earth Sci. 1974, 23, 117–130. [Google Scholar]
- Abdelhamid, G. The Geology of Jabal Um Ishrin Area (Wadi Rum); Map Sheet No. 3049 II. Bulletin 14; National Resources Authority: Amman, Jordan, 1990. [Google Scholar]
- Korhonen, J.V.; Faihead, J.D.; Hamoudi, M.; Lesur, V.; Mandea, M.; Maus, S.; Purucker, M.; Ravat, D.; Sazonova, T.; Thebault, E. Magnetic Anomaly Map of the World = Carte des Anomalies Magnétiques du Monde; Commission de la Carte Géologique du Monde: Paris, France, 2007; Available online: https://wdmam.org/ (accessed on 7 December 2024).
- Smith, J.T.; Booker, J.R. Rapid inversion of two-and three-dimensional magnetotelluric data. J. Geophys. Res. Solid Earth 1991, 96, 3905–3922. [Google Scholar] [CrossRef]
- Vozoff, K. The Magnetotelluric Method. In Electromagnetic Methods in Applied Geophysics; Nabighian, M.N., Corbett, J.D., Eds.; Society of Exploration Geophysicists: Houston, TX, USA, 1991; Volume 22, pp. 1943–1961. [Google Scholar] [CrossRef]
- Heinson, G.; Direen, N.; Gill, R.M. Magnetotelluric evidence for a deep-crustal mineralizing system beneath the Olympic Dam iron oxide copper-gold deposit, southern Australia. Geology 2006, 34, 573–576. [Google Scholar] [CrossRef]
- El-Waheidi, M.M.; Ghrefat, H.A.; Batayneh, A.; Nazzal, Y.H.; Zumlot, T. Integrated application of geoelectrical techniques for structural investigations: Case study of Wadi Marsad Graben, Jordan. Arab. J. Geosci. 2016, 9, 435. [Google Scholar] [CrossRef]
- Cagniard, L. Basic theory of the magneto-telluric method of geophysical prospecting. Geophysics 1953, 18, 605–635. [Google Scholar] [CrossRef]
- Sandberg, S.K.; Hohmann, G.W. Controlled-source audiomagnetotellurics in geothermal exploration. Geophysics 1982, 47, 100–116. [Google Scholar] [CrossRef]
- Adepelumi, A.A.; Yi, M.J.; Kim, J.H.; Ako, B.D.; Son, J.S. Integration of surface geophysical methods for fracture detection in crystalline bedrocks of southwestern Nigeria. Hydrogeol. J. 2006, 14, 1284–1306. [Google Scholar] [CrossRef]
- Mariita, N.O.; Keller, G.R. An integrated geophysical study of the northern Kenya rift. J. Afr. Earth Sci. 2007, 48, 80–94. [Google Scholar] [CrossRef]
- Wu, G.; Hu, X.; Huo, G.; Zhou, X. Geophysical exploration for geothermal resources: An application of MT and CSAMT in Jiangxia, Wuhan, China. J. Earth Sci. 2012, 23, 757–767. [Google Scholar] [CrossRef]
- Basaloom, A. 3D Seismic Interpretation in Salt Basins: Analytic Review of Case Studies. In Proceedings of the ARMA/DGS/SEG International Geomechanics Symposium, Virtual, 3–5 November 2020. [Google Scholar]
- Fu, C.; Di, Q.; An, Z. Application of the CSAMT method to groundwater exploration in a metropolitan environment. Geophysics 2013, 78, B201–B209. [Google Scholar] [CrossRef]
- Sanny, T.A. Identification of Lembang fault, West-Java Indonesia by using controlled source audio-magnetotelluric (CSAMT). AIP Conf. Proc. 2017, 1861, 030002. [Google Scholar] [CrossRef]
- Alzahrani, H.; Basaloom, A.; Mosaad, S. Geochemical-based appraisal of karst groundwater quality, west Nile Valley, central Egypt, for drinking and irrigation. J. Hydrol. Reg. Stud. 2025, 57, 102152. [Google Scholar] [CrossRef]
- Zhang, K.; Lin, N.; Nie, X.; Zhang, C.; Wang, X.; Tian, G.; Yang, J. Application of controlled-source audio-frequency magnetotellurics (CSAMT) for goaf detection: A case study in the Fangzi coal mine China. Arab. J. Geosci. 2022, 15, 1161. [Google Scholar] [CrossRef]
- Jones, C.J.; Robinson, M.J.; Macy, J.P. Characterization of the Sevier/Toroweap Fault Zone in Kane County, Utah, Using Controlled-Source Audio-Frequency Magnetotelluric (CSAMT) Surveys (No. 2022-5071); US Geological Survey: Reston, VA, USA, 2022. [Google Scholar] [CrossRef]
- Zonge, K.L. Introduction to CSAMT. In Practical Geophysics II for the Exploration Geologist; Northwest Mining Association Spokane: Spokane Valley, WA, USA, 1992; pp. 439–523. Available online: http://zonge.com/geophysical-methods/electrical-em/csamt (accessed on 14 November 2024).
- Goldstein, M.A.; Strangway, D.W. Audio-frequency magnetotellurics with a grounded electric dipole source. Geophysics 1975, 40, 669–683. [Google Scholar] [CrossRef]
- Bai, D.; Meju, M.A.; Liao, Z. Magnetotelluric images of deep crustal structure of the Rehai geothermal field near Tengchong, southern China. Geophys. J. Int. 2001, 147, 677–687. [Google Scholar] [CrossRef]
- Routh, P.S.; Oldenburg, D.W. Inversion of controlled source audio-frequency magnetotellurics data for a horizontally layered earth. Geophysics 1999, 64, 1689–1697. [Google Scholar] [CrossRef]
- Streich, R. Controlled-source electromagnetic approaches for hydrocarbon exploration and monitoring on land. Surv. Geophys. 2016, 37, 47–80. [Google Scholar] [CrossRef]
- Zhang, H.; Nie, F. Advancing Sustainable Geothermal Energy: A Case Study of Controlled Source Audio-Frequency Magnetotellurics Applications in Qihe, Shandong. Sustainability 2024, 16, 6567. [Google Scholar] [CrossRef]
- Staelin, D.H. Electromagnetics and Applications; Massachusetts Institute of Technology: Cambridge, MA, USA, 2011; pp. 1–442. [Google Scholar]
- Zonge, K.L.; Hughes, L.J. Controlled source audio-frequency magnetotellurics. In Electromagnetic Methods in Applied Geophysics; Society of Exploration Geophysicists: Houston, TX, USA, 1991. [Google Scholar] [CrossRef]
- Hughes, L.J.; Carlson, N.R. Structure mapping at Trap Spring Oilfield, Nevada, using controlled-source magnetotellurics. First Break 1987, 5, 403–418. [Google Scholar] [CrossRef]
- Lajaunie, M.; Sailhac, P.; Malet, J.P. Controlled-Source Audio-frequency MagnetoTelluric methods from the near-to the far-field: Theory and applications. In Proceedings of the 20th EGU General Assembly, EGU2018, Vienna, Austria, 4–13 April 2018; p. 13744. [Google Scholar]
- Tilley, D. Exploration Using Telluric Currents—MT and CSAMT (2013). Geology for Investors. Available online: https://www.geologyforinvestors.com/exploration-using-telluric-currents-mt-and-csamt/ (accessed on 1 December 2024).
Geological Age | Lithology | Thickness |
---|---|---|
Quaternary deposits (youngest) | Alluvial and wadi sediments, alluvium sand, and mud flats | Few meters (~10 m) |
Rum Formation | Medium-grained bedded sandstone | 60–100 m |
Continental sandstone | Coarse basal conglomerate Coarse-grained sandstone Coarse-grained massive sandstone | 100–300 m 300–650 m |
Precambrian basement rocks | Granites with some granodiorite, and metamorphic rocks with some intrusive dikes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basaloom, A.; Alzahrani, H. Application of Controlled-Source Audio-Frequency Magnetotellurics (CSAMT) for Subsurface Structural Characterization of Wadi Rum, Southwest Jordan. Sustainability 2025, 17, 2107. https://doi.org/10.3390/su17052107
Basaloom A, Alzahrani H. Application of Controlled-Source Audio-Frequency Magnetotellurics (CSAMT) for Subsurface Structural Characterization of Wadi Rum, Southwest Jordan. Sustainability. 2025; 17(5):2107. https://doi.org/10.3390/su17052107
Chicago/Turabian StyleBasaloom, Abdullah, and Hassan Alzahrani. 2025. "Application of Controlled-Source Audio-Frequency Magnetotellurics (CSAMT) for Subsurface Structural Characterization of Wadi Rum, Southwest Jordan" Sustainability 17, no. 5: 2107. https://doi.org/10.3390/su17052107
APA StyleBasaloom, A., & Alzahrani, H. (2025). Application of Controlled-Source Audio-Frequency Magnetotellurics (CSAMT) for Subsurface Structural Characterization of Wadi Rum, Southwest Jordan. Sustainability, 17(5), 2107. https://doi.org/10.3390/su17052107