Socio-Economic Factors Influencing the Adoption of Conservation Agriculture in Northern Namibia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methodology
3. Results and Discussion
3.1. Method of Soil Preparation
3.2. Crop Diversification Through Intercropping
3.3. Crop Rotation
3.4. Permanent Soil Cover Materials
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kerdiles, H.; Rembold, F.; Pérez-Hoyos, A. Seasonal Monitoring in Namibia: Severe Drought Affecting Cereal Production and Pastoral Areas in Northern and Central Namibia; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- Assefa, T.; Jha, M.; Reyes, M.; Worqlul, A.W. Modeling the Impacts of Conservation Agriculture with a Drip Irrigation System on the Hydrology and Water Management in Sub-Saharan Africa. Sustainability 2018, 10, 4763. [Google Scholar] [CrossRef]
- Gracia-Romero, A.; Vergara-Diaz, O.; Thierfelder, C.; Cairns, J.E.; Kefauver, S.C.; Araus, J.L. Phenotyping conservation agriculture management effects on ground and aerial remote sensing assessments of maize hybrids performance in Zimbabwe. Remote Sens. 2018, 10, 349. [Google Scholar] [CrossRef]
- Krebs, J. A preliminary survey on soil management practices and land units on soil organic carbon of small-scale communal farmers in North Central Namibia. Master’s Thesis, Namibia University of Science and Technology (NUST), Windhoek, Namibia, 2014. [Google Scholar]
- Mazvimavi, K.; Ndlovu, P.V.; Nyathi, P.; Minde, I. Conservation Agriculture Practices and Adoption by Smallholder Farmers corsiin Zimbabwe. In Proceedings of the 2010 AAAE Third Conference/AEASA 48th Conference, Cape Town, South Africa, 19–23 September 2010. [Google Scholar]
- Ngoma, H.; Angelsen, A.; Jayne, T.S.; Chapoto, A. Understanding adoption and impacts of conservation agriculture in eastern and southern Africa: A review. Front. Agron. 2021, 3, 671690. [Google Scholar] [CrossRef]
- Jat, M.L.; Chakraborty, D.; Ladha, J.K.; Rana, D.S.; Gathala, M.K.; McDonald, A.; Gerard, B. Conservation agriculture for sustainable intensification in South Asia. Nat. Sustain. 2020, 3, 336–343. [Google Scholar] [CrossRef]
- Findlater, K.M.; Satterfield, T.; Kandlikar, M.; Donner, S.D. Six languages for a risky climate: How farmers react to weather and climate change. Clim. Change 2018, 148, 451–465. [Google Scholar] [CrossRef]
- Ball, B.C.; Bingham, I.; Rees, R.M.; Watson, C.A.; Litterrick, A. The role of crop rotations in determining soil structure and crop growth conditions. Can. J. Soil Sci. 2005, 85, 557–577. [Google Scholar] [CrossRef]
- Perkins, R.; Nachmany, M. A very human business’—Transnational networking initiatives and domestic climate action. Glob. Environ. Change 2018, 54, 250–259. [Google Scholar] [CrossRef]
- Soares, J.C.; Santos, C.S.; Carvalho, S.M.P.; Pintado, M.M.; Vasconcelos, M.W. Preserving the nutritional quality of crop plants under a changing climate: Importance and strategies. Plant Soil 2019, 443, 1–26. [Google Scholar] [CrossRef]
- FAO. Climate Change: Unpacking the Burden on Food Safety; FAO: Rome, Italy, 2020. [Google Scholar]
- Hepburn, C.; O’Callaghan, B.; Stern, N.; Stiglitz, J.; Zenghelis, D. Will COVID-19 fiscal recovery packages accelerate or retard progress on climate change? Oxf. Rev. Econ. Policy 2020, 36, S359–S381. [Google Scholar] [CrossRef]
- Taapopi, M.; Kamwi, J.M.; Siyambango, N. Perception of Farmers on Conservation Agriculture for Climate Change Adaptation in Namibia. Environ. Nat. Resour. Res. 2018, 8, 33–43. [Google Scholar] [CrossRef]
- Corsi, S. Conservation Agriculture: Training Guide for Extension Agents and Farmers in Eastern Europe and Central Asia; FAO: Rome, Italy, 2019. [Google Scholar]
- Hui, L.; Jin, H.; Qingjie, W.; Hongwen, L.; Sivelli, A.; Caiyun, L.; Zhanyuan, L.; Zhiqi, Z.; Xiangcai, Z. Effects of Permanent Raised Beds on Soil Chemical Properties in a Wheat-Maize Cropping System. Soil Sci. 2013, 178, 46–53. [Google Scholar] [CrossRef]
- Ngwira, A.R.; Kabambe, V.; Simwaka, P.; Makoko, K.; Kamoyo, K. Productivity and profitability of maize-legume cropping systems under conservation agriculture among smallholder farmers in Malawi. Soil Plant Sci. 2020, 70, 241–251. [Google Scholar] [CrossRef]
- Shrestha, J.I.B.A.N.; Subedi, S.U.B.A.S.H.; Timsina, K.P.; Chaudhary, A.; Kandel, M.; Tripathi, S. Conservation agriculture as an approach towards sustainable crop production: A review. Farming Manag. 2020, 5, 7–15. [Google Scholar]
- Wang, H.; Li, X.; Wang, J.; Li, X.; Guo, Q.; Yu, Z.; Yang, T.; Zhang, H. Long-term no-tillage and different residue amounts alter soil microbial community composition and increase the risk of maize root rot in northeast China. Soil Tillage Res. 2020, 196, 104452. [Google Scholar] [CrossRef]
- Makwara, E.C. Sustainable and profitable farming through conservation agriculture in Zimbabwe: Prospects, opportunities and constraints. J. Sustain. Dev. Afr. 2010, 12, 181–190. [Google Scholar]
- Islam, S.; Miah, M.A.H. Conservation agriculture and sustainable cropping systems in Bangladesh. In Compendium of Deliverables of the Conservation Agriculture Course; CIMMYT: Mexico City, Mexico, 2010. [Google Scholar]
- Von Hase, F. Facilitating Conservation Agriculture in Namibia Through Understanding Farmers’ Planned Behaviour and Decision Making. Master’s Thesis, Swedish University of Agricultural Sciences, Alnarp, Sweden, 2013. [Google Scholar]
- Antle, J.M.; Stoorvogel, J.J.; Valdivia, R.O. New parsimonious simulation methods and tools to assess future food and environmental security of farm populations. Philosphical Trans. R. Soc. Biol. Sci. 2013, 369, 20120280. [Google Scholar] [CrossRef] [PubMed]
- Shikuku, K.M.; Valdivia, R.O.; Paul, B.K.; Mwongera, C.; Winowiecki, L.; Läderach, P.; Herrero, M.; Silvestri, S. Prioritizing climate-smart livestock technologies in rural Tanzania: A minimum data approach. Agric. Syst. 2016, 151, 204–216. [Google Scholar] [CrossRef]
- Wagstaff, P.; Harty, M. The impact of conservation agriculture on food security in three low veldt districts of Zimbabwe. Trócaire Dev. Rev. 2010, 67–84. [Google Scholar]
- Palm, C.; Blanco-Canqui, H.; DeClerck, F.; Gatere, L.; Grace, P. Conservation agriculture and ecosystem services: An overview. Agric. Ecosyst. Environ. 2014, 187, 87–105. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Shaxson, F.; Bartz, H.; Mello, I.; Kienzle, J.; Pretty, J. The spread of conservation agriculture: Policy and institutional support for adoption and uptake. Field Actions Sci. Rep. 2014, 7, 1–13. [Google Scholar]
- Rodenburg, J.; Büchi, L.; Haggar, J. Adoption by adaptation: Moving from Conservation Agriculture to conservation practices. Int. J. Agric. Sustain. 2020, 19, 437–455. [Google Scholar] [CrossRef]
- Erkossa, T.; Williams, T.; Laekemarian, F. Integrated soil, water and agronomic management effects on crop productivity and selected soil properties in Western Ethiopia. Int. Soil Water Conserv. Res. 2018, 6, 305–316. [Google Scholar] [CrossRef]
- Baudron, F.; Thierfelder, C.; Nyagumbo, I.; Gerard, B. Where to target conservation agriculture for African smallholders? How to overcome challenges associated with its implementation? Environments 2015, 2, 338–357. [Google Scholar] [CrossRef]
- Ilukor, J.; Bagamba, F.; Bashaasha, B. Application of the TOA-MD model to assess adoption potential of improved sweet potato technologies by rural poor farm households under climate change: The case of Kabala district in Uganda. Springer Sci. 2014, 6, 359–368. [Google Scholar] [CrossRef]
- Slater, C.S. Studies of Photoinduced Molecular Dynamics Using a Fast Imaging Sensor; Spring International Publishing: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Gebru, A. Compendium of deliverables of the conservation agriculture course: Can conservation agriculture improve the land productivity of smallholder farmers in Eastern Tigray, Ethiopia? Conserv. Agric. Course 2010, 21. Available online: https://www.researchgate.net/publication/301586040 (accessed on 8 December 2024).
- Derpsch, R.; Friedrich, T.; Kassam, A.; Hongwen, L. Current status of adoption of no-till farming in the world and some of its main benefits. Int J Agric Biol Eng 2010, 3, 1–25. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Derpsch, R. Global spread of conservation agriculture. Int. J. Agric. Sustain. 2018, 76, 29–51. [Google Scholar] [CrossRef]
- Mkomwa, S.; Kassam, A.H.; Freindrich, T.; Shula, R.K. Conservation Agriculture in Africa: Building Resilient Farming Systems in a Changing Climate; CABI: Wallingford, UK, 2017. [Google Scholar]
- Xavier, J.H.V.; Gomes, M.C.; Anjos, S.F.; Scopel, E.; da Silva, F.A.M.; Corbeels, M. Participatory multicriteria assessment of maize cropping systems in the context of family farmers in the Brazilian Cerrado. Int. J. Agric. Sustain. 2020, 18, 410–426. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; Groenigen, K.J.; Lee, J.; Lundy, M.E.; Gestel, N.; Six, J.; Venterea, R.T.; Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2014, 517, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, J.I.B.A.N.; Subedi, S.U.B.A.S.H.; Timsina, K.P.; Subedi, S.; Pandey, M.; Shrestha, A.; Shrestha, S.; Hossain, M.A. Sustainable Intensification in Agriculture: An Approach for Making Agriculture Greener and Productive. A Review. J. Nepal Agric. Res. Counc. 2021, 17, 133–150. [Google Scholar] [CrossRef]
- FAO. Conservation Agriculture. Understanding the Context; FAO: Rome, Italy, 2017. [Google Scholar]
- Hermans, T.D.G.; Dougill, A.J.; Peacock, C.L.; Eze, S.; Thierfelder, C. Combining local knowledge and soil science for integrated soil health assessments in conservation agriculture systems. J. Environ. Manag. 2021, 286, 112192. [Google Scholar] [CrossRef] [PubMed]
- Fonteyne, S.; Singh, R.G.; Govaerts, B.; Verhulst, N. Rotation, Mulch and Zero Tillage Reduce Weeds in a Long-Term Conservation Agriculture Trial. Agronomy 2020, 10, 962. [Google Scholar] [CrossRef]
- Sims, B.; Corsi, S.; Gbehounou, G.; Kienzle, J.; Taguchi, M.; Friedrich, T. Sustainable Weed Management for Conservation Agriculture: Options for Smallholder Farmers. Agriculture 2018, 8, 118. [Google Scholar] [CrossRef]
- Hermans, T.D.G.; Whitfield, S.; Dougill, A.J.; Thierfelder, C. Bridging the disciplinary gap in conservation agriculture research, in Malawi. A review. Agron. Sustain. Dev. 2020, 40, 3. [Google Scholar] [CrossRef]
- Ngoma, H.; Marenya, P.; Tufa, A.; Alene, A.; Matin, M.A.; Thierfelder, C.; Chikoye, D. Too fast or too slow: The speed and persistence of adoption of conservation agriculture in southern Africa. Technol. Forecast. Soc. Change 2024, 208, 123689. [Google Scholar] [CrossRef]
- Fortunato, A.; Enciso, S. Food for growth: A diagnostics of Namibia’s Agriculture Sector; Working Paper No.154; Center for International Development at Harvard University Research Fellow and Graduate Student: Cambridge, MA, USA, 2023. [Google Scholar]
- Shifiona, T.K.; Dongyang, W.; Zhiguan, H. Analysis of Namibia main crops annual production, consumption and trade: Maize and Pearl millet. J. Agric. Sci. 2016, 8, 70–77. [Google Scholar]
- Amukuhu, B.N. Factors Affecting the Adoption of Sustainable Water Conservation Practices in Smallholder Farming System: A Case Study of Smallholder Farmers in Omusati Region. Ph.D. Thesis, University of Namibia, Windhoek, Namibia, 2020. [Google Scholar]
- Shikangalah, R.N. The 2019 drought in Namibia. J. Namib. Stud. 2020, 27, 37–58. [Google Scholar]
- El-Habil, A. An application on multinomial logistic regression model. Pak. J. Stat. Oper. Res. 2012, 8, 271–291. [Google Scholar] [CrossRef]
- Deb, P.; Trivedi, P.K. Specification and simulated likelihood estimation of a non-normal treatment-outcome model with selection: Application to health care utilization. Econom. J. 2006, 9, 307–331. [Google Scholar] [CrossRef]
- Dixit, S.; Kumar, B.; Singh, A.; Ashoka, R. An Application of Multinomial Logistic Regression to Assess the Factors Affecting the Women to Be Underweight and Overweight: A Practical Approach. Int. J. Health Sci. Res. 2015, 5, 11–17. [Google Scholar]
- Hwang, K. Cost-benefit analysis: Its usage and critiques. J. Public Aff. 2016, 16, 75–80. [Google Scholar] [CrossRef]
- Fox, J.; Anderson, R. Effect displays for multinomial and proportional-odds logit models. Sociol. Methodol. 2006, 36, 225–255. [Google Scholar] [CrossRef]
- Gujarati, D.N. Econometrics by Example; Bloomsbury Publishing: London, UK, 2015. [Google Scholar]
- Hoffman, S.D.; Duncan, G.J. Multinomial and Conditional Logit Discrete-Choice Models in Demography. Demography 1988, 25, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Lawin, K.G.; Tamin, L.D. Land tenure differences and adoption of agri-environmental practices: Evidence from Benin. J. Dev. Stud. 2018, 55, 177–190. [Google Scholar] [CrossRef]
- Llinas, H.; Carreno, C. The Multinomial Logistic Model for the case in which the response variable can assume one of three levels and related models. Rev. Colomb. De Estadística 2012, 35, 131–138. [Google Scholar]
- Sarrias, M.; Daziano, R.A. Multinomial Logit Models with Continuous and Discrete Individual Heterogeneity in R: The gmnl Package. J. Stat. Softw. 2017, 79, 1–46. [Google Scholar] [CrossRef]
- Alvarez, R.M.; Nagler, J. When Politics and Models Collide: Estimating Models of Multiparty Elections. Am. J. Political Sci. 1998, 42, 55–96. [Google Scholar] [CrossRef]
- Doherty, E.; Campbell, D.; Hynes, S.; Rensburg, T. The Effect of Using Labelled Alternatives in Stated Choice Experiments: An Exploration Focusing on Farmland Walking Trails in Ireland. 2011. Available online: https://ageconsearch.umn.edu/record/108792/?v=pdf (accessed on 8 December 2024).
- Long, J.S.; Freese, J. Regression Models for Categorical Dependent Variables Using Stata, 3rd ed.; Stata Press: College Station, TX, USA, 2014. [Google Scholar]
- Steiner, K.G.; Twomlow, S. Weed Management in Conservation Tillage Systems. Afr. Conserv. Tillage Network. Inf. Ser. 2003, 8, 1–6. [Google Scholar]
Variables | Plough | Ripper | Basin | |||
---|---|---|---|---|---|---|
Coeff | z-stat | Coeff | z-stat | Coeff | z-stat | |
Constant | 0.320 | 1.303 | −0.221 | 1.131 | −6.242 | 4.646 |
gendhh | −0.301 | 0.489 | −0.586 | 0.447 | −1.511 | 1.261 |
agehh | −0.0139 | 0.019 | −0.00658 | 0.018 | −0.114 | 0.088 |
eduhh | 0.0387 | 0.293 | 0.366 | 0.243 | −1.733 *** | 0.587 |
hhsize | 0.00401 | 0.026 | −0.0208 | 0.023 | −0.336 * | 0.177 |
monocrop | −1.612 ** | 1.115 | −16.20 *** | 0.561 | −14.73 *** | 2.077 |
annually | −0.118 | 0.499 | 0.164 | 0.484 | 15.47 *** | 0.954 |
biannual | −19.07 *** | 0.877 | −1.177 ** | 1.465 | 19.40 *** | 1.556 |
w5hrs | 0.679 | 0.467 | 0.970 ** | 0.425 | −15.87 ** | 1.571 |
Wald chi2(24) | 416.49 | |||||
Prob > chi2 | 0.0000 | |||||
Pseudo R2 | 0.1037 | |||||
Observations | 169 |
Variables | Mono-Cropping | Cereal/Roundnuts | Cereal/Groundnuts | |||
---|---|---|---|---|---|---|
Coeff | z-Stat | Coeff | z-Stat | Coeff | z-Stat | |
Constant | −15.380 *** | 2.453 | 0.339 | 1.966 | −1.119 | −1.472 |
gendhh | −0.946 | 0.859 | −0.327 | 0.644 | 1.124 *** | 0.461 |
agehh | −0.001 | 0.035 | 0.014 | 0.029 | −0.005 | 0.016 |
eduhh | 0.104 | 0.597 | −0.940 * | 0.480 | −0.348 | 0.248 |
hhsize | −0.056 | 0.072 | 0.019 | 0.028 | −0.012 | 0.025 |
none | −0.116 | 1.405 | −15.490 *** | 1.336 | 1.222 | 1.456 |
annually | 13.64 *** | 0.996 | −1.532 | 1.189 | 0.600 | 1.086 |
aftoneyr | 13.73 *** | 1.320 | −0.533 | 1.172 | 1.467 | 1.144 |
Wald chi2(24) | 1634.4 | |||||
Prob > chi2 | 0.0000 | |||||
Pseudo R2 | 0.077 | |||||
Observations | 169 |
Variables | None | After1year | After2years | |||
---|---|---|---|---|---|---|
Coeff | z-Stat | Coeff | z-Stat | Coeff | z-Stat | |
Constant | 1.878 | 5.048 | 0.870 | 1.396 | −11.680 *** | 2.720 |
gendhh | 0.036 | 0.932 | −0.318 | 0.472 | 15.470 *** | 0.583 |
agehh | −0.019 | 0.053 | −0.057 *** | 0.021 | −0.169 *** | 0.054 |
eduhh | −1.403 | 1.243 | 0.033 | 0.285 | −0.079 | 0.659 |
hhsize | −0.192 * | 0.114 | 0.052 * | 0.028 | 0.107 ** | 0.052 |
Wald chi2(24) | 803.79 | |||||
Prob > chi2 | 0.0000 | |||||
Pseudo R2 | 0.1228 | |||||
Observations | 169 |
Variables | None | Grass | Leaves | |||
---|---|---|---|---|---|---|
Coeff | z-Stat | Coeff | z-Stat | Coeff | z-Stat | |
Constant | −3.936 * | 2.203 | 0.031 | 1.046 | −2.937 | 2.114 |
gendhh | 0.064 | 0.807 | 0.394 | 0.423 | 0.928 | 0.842 |
agehh | −0.014 | 0.036 | −0.003 | 0.015 | 0.008 | 0.031 |
eduhh | 1.022 ** | 0.473 | 0.118 | 0.234 | 0.448 | 0.391 |
hhsize | −0.032 | 0.046 | −0.125 *** | 0.045 | −0.156 | 0.113 |
Wald chi2(24) | 26.45 | |||||
Prob > chi2 | 0.0093 | |||||
Pseudo R2 | 0.0693 | |||||
Observations | 169 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiimi, T.; Uchezuba, D. Socio-Economic Factors Influencing the Adoption of Conservation Agriculture in Northern Namibia. Sustainability 2025, 17, 2298. https://doi.org/10.3390/su17052298
Shiimi T, Uchezuba D. Socio-Economic Factors Influencing the Adoption of Conservation Agriculture in Northern Namibia. Sustainability. 2025; 17(5):2298. https://doi.org/10.3390/su17052298
Chicago/Turabian StyleShiimi, Teofilus, and David Uchezuba. 2025. "Socio-Economic Factors Influencing the Adoption of Conservation Agriculture in Northern Namibia" Sustainability 17, no. 5: 2298. https://doi.org/10.3390/su17052298
APA StyleShiimi, T., & Uchezuba, D. (2025). Socio-Economic Factors Influencing the Adoption of Conservation Agriculture in Northern Namibia. Sustainability, 17(5), 2298. https://doi.org/10.3390/su17052298