Spatiotemporal Analysis of Habitat Quality and Connectivity in Response to Land Use/Cover Change: A Case Study of İzmir
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. LULC Change Analysis
2.2.2. Assessing Habitat Quality Using InVEST HQ Model
2.2.3. Importance of Habitats for Connectivity
2.2.4. Evaluation of Changes in Possible Pathways Between Habitats
3. Results
3.1. Results of LULC Change Analysis
3.2. Results of Habitat Quality Assessment
3.3. Results of Habitat Importance for Connectivity
3.4. Results of the Evaluation of Changes in Possible Pathways Between Habitats
4. Discussion
Limitations of Uncertainty and Future Recommended Works
- InVEST HQ assessments heavily depend on accurate LULC data and predefined threat parameters, which, if misclassified, can introduce uncertainty into the model outputs [84].
- Conefor 2.6’s effectiveness in landscape connectivity assessment relies on robust methodological frameworks, validation processes, and sensitivity analyses to refine model assumptions [148]. However, spatial resolution constraints in input data and the selection of dispersal parameters can introduce biases [149].
- Circuitscape 4.0’s resistance surface modeling provides a probabilistic representation of species movement across landscapes [150]. However, the model does not fully incorporate species-specific behavioral ecology, which may limit its capacity to accurately predict movement patterns [121]. Recent advancements, such as higher-resolution data processing capabilities, have improved Circuitscape 4.0’s efficiency and accuracy [151], but further refinements are still required.
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, S.; Wang, X.; Cai, Y.; Li, C.; Yan, R.; Cui, G.; Yang, Z. An integrated investigation of spatiotemporal habitat quality dynamics and driving forces in the upper basin of Miyun reservoir, North China. Sustainability 2018, 10, 4625. [Google Scholar] [CrossRef]
- Zullo, F.; Montaldi, C.; Pietro, G.; Cattani, C. Land use changes and ecosystem services: The case study of the Abruzzo region coastal strip. ISPRS Int. J. Geo-Inf. 2022, 11, 588. [Google Scholar] [CrossRef]
- Meng, R.; Cai, J.; Hui, X.; Meng, Z.; Dang, X.; Han, Y. Spatio-temporal changes in land use and habitat quality of Hobq desert along the yellow river section. Int. J. Environ. Res. Public Health 2023, 20, 3599. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Song, Y.; Xue, D. Multi-scenario simulation of land use and habitat quality in the Guanzhong plain urban agglomeration, China. Int. J. Environ. Res. Public Health 2022, 19, 8703. [Google Scholar] [CrossRef]
- Chun, F.; Liu, Y.; Chen, Y.; Li, F.; Huang, J.; Huang, H. Simulation of land use change and habitat quality in the yellow river basin under multiple scenarios. Water 2022, 14, 3767. [Google Scholar] [CrossRef]
- Chen, G.; Li, X.; Liu, X.; Chen, Y.; Liang, X.; Leng, J.; Xu, X.; Liao, W.; Qiu, Y.A.; Wu, Q.; et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 2020, 11, 537. [Google Scholar] [CrossRef]
- Li, G.; Fang, C.; Li, Y.; Wang, Z.; Sun, S.; He, S.; Qi, W.; Bao, C.; Ma, H.; Fan, Y.; et al. Global impacts of future urban expansion on terrestrial vertebrate diversity. Nat. Commun. 2022, 13, 1628. [Google Scholar] [CrossRef]
- Ding, Q.; Chen, Y.; Bu, L.; Ye, Y. Multi-scenario analysis of habitat quality in the Yellow River delta by coupling FLUS with InVEST model. Int. J. Environ. Res. Public Health 2021, 18, 2389. [Google Scholar] [CrossRef]
- Kija, H.K.; Ogutu, J.O.; Mangewa, L.J.; Bukombe, J.; Verones, F.; Graae, B.J.; Kideghesho, J.R.; Said, M.Y.; Nzunda, E.F. Spatio-temporal changes in wildlife habitat quality in the greater Serengeti ecosystem. Sustainability 2020, 12, 2440. [Google Scholar] [CrossRef]
- Ge, Y.; Li, C.; Zhang, T.; Wang, B. Temporal and spatial change of habitat quality and its driving forces: The case of Tacheng region, China. Front. Environ. Sci. 2023, 11, 1118179. [Google Scholar] [CrossRef]
- Zheng, H.; Li, H. Spatial–temporal evolution characteristics of land use and habitat quality in Shandong province, China. Sci. Rep. 2022, 12, 15422. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Chen, L.; Li, L.; Zhang, T.; Yuan, L.; Cheng, L.; Wang, J.; Wen, M. Simulation of land use change and ecosystem service value dynamics under ecological constraints in Anhui province, China. Int. J. Environ. Res. Public Health 2020, 17, 4228. [Google Scholar] [CrossRef] [PubMed]
- Riva, F.; Nielsen, S. A functional perspective on the analysis of land use and land cover data in ecology. Ambio 2020, 50, 1089–1100. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.M.; Delgado, F.; Roque, N.; Ribeiro, M.; Fernandez, P. Multitemporal land use and cover analysis coupled with climatic change scenarios to protect the endangered taxon Asphodelus bento-rainhae subsp. bento-rainhae. Plants 2023, 12, 2914. [Google Scholar] [CrossRef]
- Chen, C.; Liu, J.; Bi, L. Spatial and temporal changes of habitat quality and its influential factors in China based on the InVEST model. Forests 2023, 14, 374. [Google Scholar] [CrossRef]
- Amininasab, S.; Kingma, S.; Birker, N.; Hildenbrandt, H.; Komdeur, J. The effect of ambient temperature, habitat quality and individual age on incubation behaviour and incubation feeding in a socially monogamous songbird. Behav. Ecol. Sociobiol. 2016, 70, 1591–1600. [Google Scholar] [CrossRef]
- Paraskevopoulou, Z.; Shamon, H.; Songer, M.; Ruxton, G.; McShea, W.J. Field surveys can improve predictions of habitat suitability for reintroductions: A swift fox case study. Oryx 2022, 56, 465–474. [Google Scholar] [CrossRef]
- Stoeckl, K.; Denic, M.; Geist, J. Conservation status of two endangered freshwater mussel species in Bavaria, Germany: Habitat quality, threats, and implications for conservation management. Aquat. Conserv. Mar. Freshw. Ecosyst. 2020, 30, 647–661. [Google Scholar] [CrossRef]
- Narce, M.; Meloni, R.; Beroud, T.; Pléney, A.; Ricci, J.C. Landscape ecology and wild rabbit (Oryctolagus cuniculus) habitat modeling in the Mediterranean region. Anim. Biodivers. Conserv. 2012, 35, 277–283. [Google Scholar] [CrossRef]
- Coates, P.S.; Casazza, M.L.; Ricca, M.A.; Brussee, B.E.; Blomberg, E.J.; Gustafson, K.B.; Overton, C.T.; Davis, D.M.; Niell, L.E.; Espinosa, S.P.; et al. Integrating spatially explicit indices of abundance and habitat quality: An applied example for greater sage-grouse management. J. Appl. Ecol. 2016, 53, 83–95. [Google Scholar] [CrossRef]
- Kahara, S.; Skalos, D.; Madurapperuma, B.; Hernandez, K. Habitat quality and drought effects on breeding mallard and other waterfowl populations in California, USA. J. Wildl. Manag. 2021, 86, e22133. [Google Scholar] [CrossRef]
- Sheehy, J.; Taylor, C.; Norris, D. The importance of stopover habitat for developing effective conservation strategies for migratory animals. J. Ornithol. 2011, 152, 161–168. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Z.; Li, Y.; Yang, Z.; Wang, X.; Li, X. Construction and optimization of an urban ecological security pattern based on habitat quality assessment and the minimum cumulative resistance model in Shenzhen city, China. Forests 2021, 12, 847. [Google Scholar] [CrossRef]
- Xing, X.; Liu, Y.; Jin, R.; Zhang, P.; Tong, S.; Zhu, W. Major role of natural wetland loss in the decline of wetland habitat quality—Spatio-temporal monitoring and predictive analysis. Sustainability 2023, 15, 12415. [Google Scholar] [CrossRef]
- Catry, I.; Franco, A.M.; Rocha, P.; Alcazar, R.; Reis, S.; Cordeiro, A.; Ventim, R.; Teodosio, J.; Moreira, F. Foraging habitat quality constrains effectiveness of artificial nest-site provisioning in reversing population declines in a colonial cavity nester. PLoS ONE 2013, 8, e58320. [Google Scholar] [CrossRef]
- Wu, L.; Sun, C.; Fan, F. Estimating the characteristic spatiotemporal variation in habitat quality using the invest model—A case study from Guangdong–Hong Kong–Macao Greater Bay Area. Remote Sens. 2021, 13, 1008. [Google Scholar] [CrossRef]
- Wang, B.; Cheng, W. Effects of land use/cover on regional habitat quality under different geomorphic types based on InVEST model. Remote Sens. 2022, 14, 1279. [Google Scholar] [CrossRef]
- Biggs, R.; Simons, H.; Bakkenes, M.; Scholes, R.J.; Eickhout, B.; van Vuuren, D.; Alkemade, R. Scenarios of biodiversity loss in southern Africa in the 21st century. Glob. Environ. Chang. 2008, 18, 296–309. [Google Scholar] [CrossRef]
- Leslie, T.; Griffiths, C. The Birds and Bees of Urban Biodiversity: Patterns, Problems, and a Path Forward. In The City is an Ecosystem; Routledge: London, UK, 2022; pp. 59–73. [Google Scholar]
- Jiang, D.; Zhang, Z.; Liu, B.; Zhang, X.; Zhang, W.; Chen, L. Spatiotemporal variations and driving factors of habitat quality in the loess hilly area of the yellow river basin: A case study of Lanzhou city, China. J. Arid Land 2022, 14, 637–652. [Google Scholar] [CrossRef]
- Tang, F.; Fu, M.; Wang, L.; Song, W.; Yu, J.; Wu, Y. Dynamic evolution and scenario simulation of habitat quality under the impact of land-use change in the Huaihe river economic belt, China. PLoS ONE 2021, 16, e0249566. [Google Scholar] [CrossRef]
- Liu, S.; Liao, Q.; Xiao, M.; Zhao, D.; Huang, C. Spatial and temporal variations of habitat quality and its response of landscape dynamic in the three gorges reservoir area, China. Int. J. Environ. Res. Public Health 2022, 19, 3594. [Google Scholar] [CrossRef]
- Imbrenda, V.; Lanfredi, M.; Coluzzi, R.; Simoniello, T. A smart procedure for assessing the health status of terrestrial habitats in protected areas: The case of the natura 2000 ecological network in Basilicata (southern Italy). Remote Sens. 2022, 14, 2699. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, H.; Xue, M.; Yin, Y.; Qian, T.; Yu, F. Spatial and temporal evolution of land use and the response of habitat quality in Wusu, China. Int. J. Environ. Res. Public Health 2022, 20, 361. [Google Scholar] [CrossRef]
- Louis, V. Tiger habitat quality modelling in Malaysia with sentinel-2 and invest. Remote Sens. 2024, 16, 284. [Google Scholar] [CrossRef]
- Huo, A.; Liu, Q.; Zhao, Z.; Elbeltagi, A.; Abuarab, M.; Ganjidoust, H. Habitat quality assessment and driving factor analysis of xiangyu in feng river basin based on invest model. Water 2023, 15, 4046. [Google Scholar] [CrossRef]
- Chu, L.; Sun, T.; Wang, T.; Li, Z.; Cai, C. Evolution and prediction of landscape pattern and habitat quality based on CA-Markov and invest model in Hubei section of three gorges reservoir area (TGRA). Sustainability 2018, 10, 3854. [Google Scholar] [CrossRef]
- Aneseyee, A.; Noszczyk, T.; Soromessa, T.; Elias, E. The invest habitat quality model associated with land use/cover changes: A qualitative case study of the Winike watershed in the Omo-Gibe basin, southwest Ethiopia. Remote Sens. 2020, 12, 1103. [Google Scholar] [CrossRef]
- Luan, Y.; Huang, G.; Zheng, G.; Wang, Y. Correlation between spatio-temporal evolution of habitat quality and human activity intensity in typical mountain cities: A case study of Guiyang city, China. Int. J. Environ. Res. Public Health 2022, 19, 14294. [Google Scholar] [CrossRef]
- Luan, Y.; Huang, G.; Zheng, G. Spatiotemporal evolution and prediction of habitat quality in Hohhot city of China based on the invest and CA-Markov models. J. Arid Land 2023, 15, 20–33. [Google Scholar] [CrossRef]
- Terrado, M.; Sabater, S.; Chaplin-Kramer, B.; Mandle, L.; Ziv, G.; Acuña, V. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 2016, 540, 63–70. [Google Scholar] [CrossRef]
- Biswas, S.; Mallik, A.; Braithwaite, N.; Wagner, H. A conceptual framework for the spatial analysis of functional trait diversity. Oikos 2015, 125, 192–200. [Google Scholar] [CrossRef]
- Rowe, E.; Ford, A.; Smart, S.; Henrys, P.; Ashmore, M. Using qualitative and quantitative methods to choose a habitat quality metric for air pollution policy evaluation. PLoS ONE 2016, 11, e0161085. [Google Scholar] [CrossRef] [PubMed]
- Duarte, G.; Ribeiro, M.; Paglia, A. Ecosystem services modeling as a tool for defining priority areas for conservation. PLoS ONE 2016, 11, e0154573. [Google Scholar] [CrossRef] [PubMed]
- Hillman, J.; Lundquist, C.; Thrush, S. The challenges associated with connectivity in ecosystem processes. Front. Mar. Sci. 2018, 5, 364. [Google Scholar] [CrossRef]
- Fischer, J.; Lindenmayer, D.B. Landscape Modification and Habitat Fragmentation. Ecol. Manag. Restor. 2007, 8, 89–92. [Google Scholar] [CrossRef]
- Naiman, R.J.; Decamps, H.; Pollock, M. The Role of Riparian Corridors in Maintaining Biodiversity. BioScience 1993, 43, 209–218. [Google Scholar] [CrossRef]
- Pulsford, I.; Lindenmayer, D.; Wyborn, C.; Lausche, B.; Vasilijevic, M.; Worboys, G.L.; Lefroy, E. Connectivity Conservation Management; University of Tasmania: Hobart, Australia, 2015. [Google Scholar]
- Rosenberg, D.K.; Noon, B.R.; Meslow, E.C. Biological corridors: Form, function, and efficacy. BioScience 1997, 47, 677–687. [Google Scholar] [CrossRef]
- Magris, R.A.; Treml, E.A.; Pressey, R.L.; Weeks, R. Integrating multiple species connectivity and habitat quality into conservation planning for coral reefs. Ecography 2016, 39, 649–664. [Google Scholar] [CrossRef]
- Li, D.; Sun, W.; Xia, F.; Yang, Y.; Xie, Y. Can habitat quality index measured using the invest model explain variations in bird diversity in an urban area? Sustainability 2021, 13, 5747. [Google Scholar] [CrossRef]
- Baranyi, G.; Saura, S.; Podani, J.; Jordán, F. Contribution of habitat patches to network connectivity: Redundancy and uniqueness of topological indices. Ecol. Indic. 2011, 11, 1301–1310. [Google Scholar] [CrossRef]
- Salata, S.; Arslan, B. Designing with ecosystem modelling: The sponge district application in İzmir, Turkey. Sustainability 2022, 14, 3420. [Google Scholar] [CrossRef]
- Gülçin, D.; Yılmaz, T. Quantification of the Change in Ecological Connectivity Using a GIS-Based Model and Current Complexity Metrics. Int. J. Geogr. Geogr. Educ. 2020, 42, 689–701. [Google Scholar] [CrossRef]
- Bingöl, E. İzmir’de üretilen peyzajlar: JB Jackson’un peyzaj sınıfları üzerinden İzmir peyzajlarına yeniden bakış. Türkiye Peyzaj Araşt. Derg. 2020, 3, 40–56. [Google Scholar]
- Doğa Derneği. Türkiye’nin Önemli Doğa Alanları Cilt III; Eken, G., Bozdoğan, M., İsfendiyaroğlu, S., Kılıç, D.T., ve Lise, Y., Eds.; Doğa Derneği: Ankara, Türkiye, 2006; p. 80. [Google Scholar]
- IBB; EBRD. Izmir Green City Action Plan. Available online: https://ebrdgreencities.com/assets/Uploads/PDF/b5cbbe2fd1/Izmir-GCAP-report_FINAL-ISSUED-ENG-002.pdf (accessed on 30 December 2024).
- IBB; EBRD. Izmir Sustainable Energy and Climate Action Plan. Available online: https://mycovenant.eumayors.eu/storage/web/mc_covenant/documents/31/98KaWT7wBZ-ITIW1A7bpSrgh9rZmmGJ6.pdf (accessed on 30 December 2024).
- Velibeyoğlu, K.; Yazdani, H.; Baba, A. Groundwater in local development strategies: Case of Izmir. Water Sci. Technol. Water Supply 2018, 18, 1339–1349. [Google Scholar] [CrossRef]
- Sonmez, I.O. Re-emergence of suburbia: The case of Izmir Turkey. Eur. Plan. Stud. 2009, 17, 741–763. [Google Scholar] [CrossRef]
- Kandilli, C.; Ulgen, K. Solar illumination and estimating daylight availability of global solar irradiance. Energy Sources Part A 2008, 30, 1127–1140. [Google Scholar] [CrossRef]
- Isinkaralar, O.; Isinkaralar, K.; Yilmaz, D.; Öztürk, S. Multi-dimensional analysis of land use/land cover and urbanization on seasonal variation of land surface temperature in İzmir, Türkiye. Landsc. Ecol. Eng. 2025, 21, 133–150. [Google Scholar] [CrossRef]
- Lemenkova, P. Geospatial technology for land cover analysis. Middle East Afr. Geospat. Dig. 2013, 5. [Google Scholar] [CrossRef]
- Kesgin Atak, B.; Ersoy Tonyaloğlu, E. Monitoring the spatiotemporal changes in regional ecosystem health: A case study in Izmir, Turkey. Environ. Monit. Assess. 2020, 192, 385. [Google Scholar] [CrossRef]
- Coskun Hepcan, C. Quantifying landscape pattern and connectivity in a Mediterranean coastal settlement: The case of the Urla district, Turkey. Environ. Monit. Assess. 2013, 185, 143–155. [Google Scholar] [CrossRef]
- Öncel, H.; Levend, S. The effects of urban growth on natural areas: The three metropolitan areas in Türkiye. Environ. Monit. Assess. 2023, 195, 816. [Google Scholar] [CrossRef] [PubMed]
- Salata, S.; Erdoğan, B.; Ayruş, B. Designing Urban Green Infrastructures Using Open-Source Data—An Example in Çiğli, Izmir (Turkey). Urban Sci. 2022, 6, 42. [Google Scholar] [CrossRef]
- Baba, A.; Yazdani, H. Effect of Urbanization on Groundwater Resources of Izmir City. In Proceedings of the 4th International Water Congress, İzmir, Türkiye, 2–4 November 2017. [Google Scholar]
- Bossard, M.; Feranec, J.; Otahel, J. CORINE Land Cover Technical Guide—Addendum 2000; EEA Technical Report No 40; European Environment Agency: Copenhagen, Denmark, 2000.
- Feranec, J.; Hazeu, G.; Christensen, S.; Jaffrain, G. Corine land cover change detection in Europe (case studies of The Netherlands and Slovakia). Land Use Policy 2007, 24, 234–247. [Google Scholar] [CrossRef]
- Feranec, J.; Jaffrain, G.; Soukup, T.; Hazeu, G. Determining changes and flows in European landscapes 1990–2000 using CORINE land cover data. Appl. Geogr. 2010, 30, 19–35. [Google Scholar] [CrossRef]
- Ursu, A.; Stoleriu, C.C.; Ion, C.; Jitariu, V.; Enea, A. Romanian natura 2000 network: Evaluation of the threats and pressures through the Corine land cover dataset. Remote Sens. 2020, 12, 2075. [Google Scholar] [CrossRef]
- Giallonardo, T.; Landi, M.; Frignani, F.; Geri, F.; Lastrucci, L.; Angiolini, C. CORINE land cover and floristic variation in a Mediterranean wetland. Environ. Monit. Assess. 2011, 182, 141–154. [Google Scholar] [CrossRef]
- Zhu, M. Soil erosion risk assessment with CORINE model: Case study in the Danjiangkou reservoir region, China. Stoch. Environ. Res. Risk Assess. 2011, 26, 813–822. [Google Scholar] [CrossRef]
- Kandziora, M.; Burkhard, B.; Müller, F. Mapping provisioning ecosystem services at the local scale using data of varying spatial and temporal resolution. Ecosyst. Serv. 2013, 4, 47–59. [Google Scholar] [CrossRef]
- Muhacir, E.A.; Özalp, A.Y. Determining potential of coastal areas in producing ecosystem services by using AHP method: A case study in Artvin, Turkey. Asian J. Appl. Sci. 2015, 3, 779–788. [Google Scholar]
- Juknelienė, D.; Česonienė, L.; Jonikavičius, D.; Šileikienė, D.; Tiškutė-Memgaudienė, D.; Valčiukienė, J.; Mozgeris, G. Development of land cover naturalness in Lithuania on the edge of the 21st century: Trends and driving factors. Land 2022, 11, 339. [Google Scholar] [CrossRef]
- Olmedo, M.T.C.; García-Álvarez, D.; Gallardo, M.; Mas, J.F.; Paegelow, M.; Castillo-Santiago, M.Á.; Molinero-Parejo, R. Validation of Land Use Cover Maps: A Guideline. In Land Use Cover Datasets and Validation Tools; Springer: Cham, Switzerland, 2022; p. 35. [Google Scholar]
- Kale, Ö.A.; Baradan, S. Identifying factors that contribute to severity of construction injuries using logistic regression model. Tek. Dergi 2020, 31, 9919–9940. [Google Scholar] [CrossRef]
- Al-Bakri, J.T.; Duqqah, M.; Brewer, T. Application of remote sensing and GIS for modeling and assessment of land use/cover change in Amman/Jordan. J. Geogr. Inf. Syst. 2013, 5, 509–519. [Google Scholar] [CrossRef]
- Jiménez, A.A.; Vilchez, F.F.; González, O.N.; Flores, S.M.M. Analysis of the land use and cover changes in the metropolitan area of Tepic-Xalisco (1973–2015) through landsat images. Sustainability 2018, 10, 1860. [Google Scholar] [CrossRef]
- InVEST Habitat Quality Model User Guide. Available online: https://naturalcapitalproject.stanford.edu/invest/habitat-quality (accessed on 13 November 2024).
- Huang, H.; Xiao, Y.; Ding, G.; Liao, L.; Yan, C.; Liu, Q.; Gao, Y.; Xie, X. Comprehensive evaluation of island habitat quality based on the invest model and terrain diversity: A case study of Haitan island, China. Sustainability 2023, 15, 11293. [Google Scholar] [CrossRef]
- Li, F.; Wang, L.; Chen, Z.; Clarke, K.; Li, M.; Jiang, P. Extending the sleuth model to integrate habitat quality into urban growth simulation. J. Environ. Manag. 2018, 217, 486–498. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST 3.2.0 User’s Guide; The Natural Capital Project: Stanford, CA, USA, 2018. [Google Scholar]
- Chen, Y.; Qiao, F.; Jiang, L. Effects of land use pattern change on regional scale habitat quality based on InVEST model—A case study in Beijing. Acta Sci. Nat. Univ. Pekin. 2016, 52, 553–562. [Google Scholar]
- Tang, F.; Fu, M.; Wang, L.; Zhang, P. Land-use change in Changli County, China: Predicting its spatio-temporal evolution in habitat quality. Ecol. Indic. 2020, 117, 106719. [Google Scholar] [CrossRef]
- He, B.; Chang, J.; Guo, A.; Wang, Y.; Wang, Y.; Li, Z. Assessment of river basin habitat quality and its relationship with disturbance factors: A case study of the Tarim River Basin in Northwest China. J. Arid Land 2022, 14, 167–185. [Google Scholar] [CrossRef]
- Otgonbayar, M.; Tseveengerel, B.; Munkhtur, P.; Tuyagerel, D.; Chambers, J. Assessment of Habitat Quality in the Western Region of Mongolia Using the InVEST-Based Model. In Proceedings of the Environmental Science and Technology International Conference ESTIC 2021, Ulaanbaatar, Mongolia, 23 September 2021; Atlantis Press: Amsterdam, The Netherlands, 2021; pp. 96–101. [Google Scholar]
- Wei, P.; Chen, S.; Wu, M.; Deng, Y.; Xu, H.; Jia, Y.; Liu, F. Using the InVEST model to assess the impacts of climate and land use changes on water yield in the upstream regions of the Shule River Basin. Water 2021, 13, 1250. [Google Scholar] [CrossRef]
- Jeong, A.; Kim, M.; Lee, S. Analysis of Priority Conservation Areas Using Habitat Quality Models and MaxEnt Models. Animals 2024, 14, 1680. [Google Scholar] [CrossRef]
- Sharma, R.; Nehren, U.; Rahman, S.A.; Meyer, M.; Rimal, B.; Aria Seta, G.; Baral, H. Modeling land use and land cover changes and their effects on biodiversity in Central Kalimantan, Indonesia. Land 2018, 7, 57. [Google Scholar] [CrossRef]
- Sallustio, L.; De Toni, A.; Strollo, A.; Di Febbraro, M.; Gissi, E.; Casella, L.; Geneletti, D.; Munafò, M.; Vizzarri, M.; Marchetti, M. Assessing habitat quality in relation to the spatial distribution of protected areas in Italy. J. Environ. Manag. 2017, 201, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, S.; Li, X.; Chen, R.; Huang, X.; Peng, J. Multi-scenario simulation and optimization of habitat quality under karst desertification management. Front. Environ. Sci. 2024, 12, 1495262. [Google Scholar] [CrossRef]
- Yang, J.; Xie, B.; Zhou, J. Research on the coupled evolution of LULCC and habitat quality in the Ganqing section of the Yellow River Basin based on multi-scenario simulations. Front. Ecol. Evol. 2024, 12, 1401291. [Google Scholar] [CrossRef]
- Abdollahi, S.; Zeilabi, E.; Xu, C.C. Habitat quality assessment based on local expert knowledge and landscape patterns for bird of prey species in Hamadan, Iran. Model. Earth Syst. Environ. 2024, 10, 2051–2061. [Google Scholar] [CrossRef]
- Wang, F.; McShea, W.J.; Wang, D.; Li, S.; Zhao, Q.; Wang, H.; Lu, Z. Evaluating landscape options for corridor restoration between giant panda reserves. PLoS ONE 2014, 9, e105086. [Google Scholar] [CrossRef]
- Carroll, C.; Fredrickson, R.; Lacy, R. Developing metapopulation connectivity criteria from genetic and habitat data to recover the endangered Mexican wolf. Conserv. Biol. 2013, 28, 76–86. [Google Scholar] [CrossRef]
- Barr, L.; Watson, J.; Possingham, H.; Iwamura, T.; Fuller, R. Progress in improving the protection of species and habitats in Australia. Biol. Conserv. 2016, 200, 184–191. [Google Scholar] [CrossRef]
- Tischendorf, L.; Fahrig, L. On the usage and measurement of landscape connectivity. Oikos 2000, 90, 7–19. [Google Scholar] [CrossRef]
- Theobald, D.M. Exploring the functional connectivity of landscapes using landscape networks. Ecology 2006, 87, 1873–1885. [Google Scholar]
- Jordán, F.; Baldi, A.; Orci, K.M.; Racz, I.; Varga, Z. Characterizing the importance of habitat patches and corridors in maintaining the landscape connectivity of a Pholidoptera transsylvanica (Orthoptera) metapopulation. Landsc. Ecol. 2003, 18, 83–92. [Google Scholar] [CrossRef]
- Pascual-Hortal, L.; Saura, S. Integrating landscape connectivity in broad-scale forest planning through a new graph-based habitat availability methodology: Application to capercaillie (Tetrao urogallus) in Catalonia (NE Spain). Eur. J. For. Res. 2008, 127, 23–31. [Google Scholar] [CrossRef]
- Urban, D.; Keitt, T. Landscape connectivity: A graph-theoretic perspective. Ecology 2001, 82, 1205–1218. [Google Scholar] [CrossRef]
- Bunn, A.G.; Urban, D.L.; Keitt, T.H. Landscape connectivity: A conservation application of graph theory. J. Environ. Manag. 2000, 59, 265–278. [Google Scholar] [CrossRef]
- Ricotta, C.; Stanisci, A.; Avena, G.C.; Blasi, C. Quantifying the network connectivity of landscape mosaics: A graph-theoretical approach. Community Ecol. 2000, 1, 89–94. [Google Scholar] [CrossRef]
- Pascual-Hortal, L.; Saura, S. Comparison and development of new graph-based landscape connectivity indices: Towards the priorization of habitat patches and corridors for conservation. Landsc. Ecol. 2006, 21, 959–967. [Google Scholar] [CrossRef]
- Saura, S.; Pascual-Hortal, L. A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Landsc. Urban Plan. 2007, 83, 91–103. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.A.; Neel, M.C.; Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps; University of Massachusetts: Amherst, MA, USA, 2002. [Google Scholar]
- Mladenoff, D.J.; DeZonia, B. APACK 2.23 Analysis Software: User’s Guide; Forest Landscape Ecology Lab, Department of Forestry, UW-Madison: Madison, WI, USA, 2004. [Google Scholar]
- Saura, S.; Torné, J. Conefor Sensinode 2.2: A software package for quantifying the importance of habitat patches for landscape connectivity. Environ. Model. Softw. 2009, 24, 135–139. [Google Scholar] [CrossRef]
- García-Feced, C.; Saura, S.; Elena-Rosselló, R. Improving landscape connectivity in forest districts: A two-stage process for prioritizing agricultural patches for reforestation. For. Ecol. Manag. 2011, 261, 154–161. [Google Scholar] [CrossRef]
- Saura, S.; Vogt, P.; Velázquez, J.; Hernando, A.; Tejera, R. Key structural forest connectors can be identified by combining landscape spatial pattern and network analyses. For. Ecol. Manag. 2011, 262, 150–160. [Google Scholar] [CrossRef]
- Gil-Tena, A.; Brotons, L.; Fortin, M.J.; Burel, F.; Saura, S. Assessing the role of landscape connectivity in recent woodpecker range expansion in Mediterranean Europe: Forest management implications. Eur. J. For. Res. 2013, 132, 181–194. [Google Scholar] [CrossRef]
- Roy, A.; Bhattacharya, S.; Ramprakash, M.; Kumar, A.S. Modelling critical patches of connectivity for invasive Maling bamboo (Yushania maling) in Darjeeling Himalayas using graph theoretic approach. Ecol. Model. 2016, 329, 77–85. [Google Scholar] [CrossRef]
- Bodin, Ö.; Saura, S. Ranking individual habitat patches as connectivity providers: Integrating network analysis and patch removal experiments. Ecol. Model. 2010, 221, 2393–2405. [Google Scholar] [CrossRef]
- Saura, S.; Pascual-Hortal, L. Conefor Sensinode 2.2 User’s Manual: Software for Quantifying the Importance of Habitat Patches for Maintaining Landscape Connectivity Through Graphs and Habitat Availability Indices; University of Lleida: Lleida, Spain, 2007; Available online: www.conefor.org (accessed on 13 November 2024).
- Cabarga Varona, A.; Arroyo Hailvoto, N.L.; Nogués Linares, S. The function of plantation forestry in landscape connectivity. Appl. Ecol. Environ. Res. 2016, 14, 527–542. [Google Scholar] [CrossRef]
- Ramirez-Reyes, C.; Bateman, B.L.; Radeloff, V.C. Effects of habitat suitability and minimum patch size thresholds on the assessment of landscape connectivity for jaguars in the Sierra Gorda, Mexico. Biol. Conserv. 2016, 204, 296–305. [Google Scholar] [CrossRef]
- Niculae, M.I.; Nita, M.R.; Vanau, G.O.; Patroescu, M. Evaluating the functional connectivity of Natura 2000 forest patch for mammals in Romania. Procedia Environ. Sci. 2016, 32, 28–37. [Google Scholar] [CrossRef]
- D’Elia, J.; Brandt, J.; Burnett, L.J.; Haig, S.M.; Hollenbeck, J.; Kirkland, S.; Marcot, B.G.; Punzalan, A.; West, C.J.; Williams-Claussen, T.; et al. Applying circuit theory and landscape linkage maps to reintroduction planning for California condors. PLoS ONE 2019, 14, e0226491. [Google Scholar] [CrossRef]
- McRae, B.H. Isolation by resistance. Evolution 2006, 60, 1551–1561. [Google Scholar]
- McRae, B.H.; Dickson, B.G.; Keitt, T.H.; Shah, V.B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 2008, 89, 2712–2724. [Google Scholar] [CrossRef]
- Brodie, J.F.; Giordano, A.J.; Dickson, B.; Hebblewhite, M.; Bernard, H.; Mohd-Azlan, J.; Anderson, J.; Ambu, L. Evaluating multispecies landscape connectivity in a threatened tropical mammal community. Conserv. Biol. 2015, 29, 122–132. [Google Scholar] [CrossRef]
- Dickson, B.G.; Roemer, G.W.; McRae, B.H.; Rundall, J.M. Models of regional habitat quality and connectivity for pumas (Puma concolor) in the southwestern United States. PLoS ONE 2013, 8, e81898. [Google Scholar] [CrossRef] [PubMed]
- Vasudev, D.; Fletcher, R.J. Incorporating movement behavior into conservation prioritization in fragmented landscapes: An example of western hoolock gibbons in Garo Hills, India. Biol. Conserv. 2015, 181, 124–132. [Google Scholar] [CrossRef]
- Bell, R.C.; Parra, J.L.; Tonione, M.; Hoskin, C.J.; Mackenzie, J.B.; Williams, S.E.; Moritz, C. Patterns of persistence and isolation indicate resilience to climate change in montane rainforest lizards. Mol. Ecol. 2010, 19, 2531–2544. [Google Scholar] [CrossRef] [PubMed]
- Yumnam, B.; Jhala, Y.V.; Qureshi, Q.; Maldonado, J.E.; Gopal, R.; Saini, S.; Srinivas, Y.; Fleischer, R.C. Prioritizing tiger conservation through landscape genetics and habitat linkages. PLoS ONE 2014, 9, e111207. [Google Scholar] [CrossRef]
- McClure, M.L.; Hansen, A.J.; Inman, R.M. Connecting models to movements: Testing connectivity model predictions against empirical migration and dispersal data. Landsc. Ecol. 2016, 31, 1419–1432. [Google Scholar] [CrossRef]
- Koen, E.L.; Bowman, J.; Sadowski, C.; Walpole, A.A. Landscape connectivity for wildlife: Development and validation of multispecies linkage maps. Methods Ecol. Evol. 2014, 5, 626–633. [Google Scholar] [CrossRef]
- Hodgson, J.A.; Thomas, C.D.; Dytham, C.; Travis, J.M.; Cornell, S.J. The speed of range shifts in fragmented landscapes. PLoS ONE 2012, 7, e47141. [Google Scholar] [CrossRef]
- Lawler, J.J.; Ruesch, A.S.; Olden, J.D.; McRae, B.H. Projected climate-driven faunal movement routes. Ecol. Lett. 2013, 16, 1014–1022. [Google Scholar] [CrossRef]
- Hall, K.R.; Anantharaman, R.; Landau, V.A.; Clark, M.; Dickson, B.G.; Jones, A.; Platt, J.; Edelman, A.; Shah, V.B. Circuitscape in Julia: Empowering dynamic approaches to connectivity assessment. Land 2021, 10, 301. [Google Scholar] [CrossRef]
- Schlacher, T.A.; Carracher, L.K.; Porch, N.; Connolly, R.M.; Olds, A.D.; Gilby, B.L.; Ekanayake, K.B.; Maslo, B.; Weston, M.A. The early shorebird will catch fewer invertebrates on trampled sandy beaches. PLoS ONE 2016, 11, e0161905. [Google Scholar] [CrossRef]
- Xie, Z.; Zhang, B.; Shi, Y.; Zhang, X.; Sun, Z. Changes and protections of urban habitat quality in Shanghai of China. Sci. Rep. 2023, 13, 10976. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, C.M.; Martinuzzi, S.; Plantinga, A.J.; Radeloff, V.C.; Lewis, D.J.; Thogmartin, W.E.; Heglund, P.J.; Pidgeon, A.M. Current and future land use around a nationwide protected area network. PLoS ONE 2013, 8, e55737. [Google Scholar] [CrossRef] [PubMed]
- Gray, M.; Dickson, B.; Nussear, K.; Esque, T.; Chang, T. A range-wide model of contemporary, omnidirectional connectivity for the threatened Mojave desert tortoise. Ecosphere 2019, 10, e02847. [Google Scholar] [CrossRef]
- Leoncini, F.; Semenzato, P.; Febbraro, M.; Loy, A.; Ferrari, C. Come back to stay: Landscape connectivity analysis for the Eurasian otter (Lutra lutra) in the western Alps. Biodivers. Conserv. 2022, 32, 653–669. [Google Scholar] [CrossRef]
- Theobald, D.M.; Reed, S.E.; Fields, K.; Soule, M. Connecting natural landscapes using a landscape permeability model to prioritize conservation activities in the United States. Conserv. Lett. 2012, 5, 123–133. [Google Scholar] [CrossRef]
- Cushman, S.A.; McKelvey, K.S.; Hayden, J.; Schwartz, M.K. Gene flow in complex landscapes: Testing multiple hypotheses with causal modeling. Am. Nat. 2006, 168, 486–499. [Google Scholar] [CrossRef]
- Partigöç, N.S.; Aydın, C.; Tarhan, Ç. Çok kriterli karar verme yöntemi ve CBS kullanılarak yerleşime uygun alanların belirlenmesi: İzmir kenti örneği. Akad. Disiplinlerarası Bilimsel Araşt. Derg. 2017, 3, 55–70. [Google Scholar]
- İzmir Büyükşehir Belediyesi. 1/25,000 Ölçekli İzmir Büyükşehir Bütünü Çevre Düzeni Olanı Açıklama Raporu, İBŞB İmar ve Şehircilik Dairesi Başkanlığı Nazım Plan Şube Müdürlüğü. 2012, p. 269. Available online: www.izmir.bel.tr/YuklenenDosyalar/NazimImarPlani/3118480_13233.pdf (accessed on 13 November 2024).
- Yalçın, G.E.; Kara, F.Ö. Kırsal göç ve tarımsal üretime etkileri. Harran Tarım Ve Gıda Bilim. Derg. 2016, 20, 154–158. [Google Scholar] [CrossRef]
- Ahsan, M.M.; Duman, D. Kırsal yerleşimlerde gençlerin göç etme eğilimleri ve etkileri: Bitlis ili Adilcevaz ilçesi örneği. J. Acad. Value Stud. 2022, 8, 231–243. [Google Scholar]
- Ayyildiz, M.; Çiçek, A.; Ayyildiz, B. 6360 sayılı büyükşehir yasasının kırsal kesime olası etkileri. Nevşehir Bilim Ve Teknol. Derg. 2016, 5, 280–285. [Google Scholar] [CrossRef]
- Erol, S.Y.; Göy, B. Sosyal sorumluluk amacıyla yapılan ağaçlandırma çalışmaları: Örnek olay incelemesi. Orman. Araştırma Derg. 2022, 9, 86–96. [Google Scholar] [CrossRef]
- Nolè, L.; Pilogallo, A.; Saganeiti, L.; Scorza, F.; Santos, L.; Murgante, B. Habitat degradation: A comparative study between Tomar (PT) and Potenza (IT). In Proceedings of the International Conference on Computational Science and Its Applications, Cagliari, Italy, 1–4 July 2020; Springer International Publishing: Cham, Switzerland, 2020; pp. 645–654. [Google Scholar]
- Torres, R.T.; Carvalho, J.; Serrano, E.; Helmer, W.; Acevedo, P.; Fonseca, C. Favourableness and connectivity of a Western Iberian landscape for the reintroduction of the iconic Iberian ibex Capra pyrenaica. Oryx 2017, 51, 709–717. [Google Scholar] [CrossRef]
- García-Antón, A.; Garza, V.; Traba, J. Connectivity in Spanish metapopulation of Dupont’s lark may be maintained by dispersal over medium-distance range and stepping stones. PeerJ 2021, 9, e11925. [Google Scholar] [CrossRef] [PubMed]
- Grafius, D.R.; Corstanje, R.; Siriwardena, G.M.; Plummer, K.E.; Harris, J.A. A bird’s eye view: Using circuit theory to study urban landscape connectivity for birds. Landsc. Ecol. 2017, 32, 1771–1787. [Google Scholar] [CrossRef] [PubMed]
- Anantharaman, R.; Hall, K.; Shah, V.; Edelman, A. Circuitscape in Julia: High performance connectivity modelling to support conservation decisions. arXiv 2019, arXiv:1906.03542. [Google Scholar]
Class Name | Content at Level 3 in the CORINE LC Nomenclature |
---|---|
Artificial Surfaces | 1.1.1 Continuous urban fabric, 1.1.2 Discontinuous urban fabric, 1.2.1 Industrial or commercial units, 1.2.2 Road and rail networks and associated land, 1.2.3 Port areas, 1.2.4 Airports, 1.3.3 Construction sites |
Artificial, non-agricultural vegetated areas | 1.4.1 Green urban areas, 1.4.2 Sport and leisure facilities |
Agricultural Areas | 2.1.1 Non-irrigated arable land, 2.1.2 Permanently irrigated land, 2.2.1 Vineyards, 2.2.2 Fruit trees and berry plantations, 2.2.3 Olive groves, 2.4.2 Complex cultivation patterns, 2.4.3 Land principally occupied by agriculture, with significant areas of natural vegetation |
Forest | 3.1.1 Broad-leaved forest, 3.1.2 Coniferous forest, 3.1.3 Mixed forest, 3.2.4 Transitional woodland/shrub |
Grassland | 2.3.1 Pastures, 3.2.1 Natural grassland, 3.2.2 Moors and heathland |
Sclerophyllous Vegetation | 3.2.3 Sclerophyllous vegetation |
Open spaces with little or no vegetation | 3.3.1 Beaches, dunes, sands, 3.3.3 Sparsely vegetated areas |
Wetlands | 4.2.1 Salt marshes, 4.2.2 Salines |
Water | 5.1.2 Water bodies, 5.2.1 Coastal lagoons, 5.2.3 Sea and ocean |
Mine | 1.3.1 Mineral extraction sites |
Threat Factors | Weight | Maximum Distance (km) | Decay Type |
---|---|---|---|
Continuous urban fabric | 1 | 6 | Exponential |
Discontinuous urban fabric | 0.8 | 4 | Exponential |
Industrial units | 1 | 7 | Exponential |
Agricultural areas | 0.7 | 4 | Linear |
Airports | 1 | 7 | Linear |
Mine | 0.9 | 6 | Exponential |
Major roads | 0.9 | 3 | Linear |
Secondary roads | 0.6 | 1.5 | Linear |
LULC Classes * | Habitat Suitability | Continuous Urban Fabric | Discontinuous Urban Fabric | Industrial Units | Agricultural Areas | Airports | Mine | Major Roads | Secondary Roads |
---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0.3 | 0.56 | 0.50 | 1 | 0.31 | 0.5 | 0.5 | 0.56 | 0.52 |
3 | 0.5 | 0.51 | 0.45 | 1 | 0 | 0.6 | 0.6 | 0.61 | 0.54 |
4 | 1 | 0.76 | 0.70 | 1 | 0.65 | 0.8 | 0.8 | 0.84 | 0.76 |
5 | 0.8 | 0.72 | 0.67 | 1 | 0.75 | 0.8 | 0.8 | 0.80 | 0.71 |
6 | 1 | 0.69 | 0.64 | 1 | 0.72 | 0.8 | 0.8 | 0.78 | 0.71 |
7 | 0.6 | 0.61 | 0.56 | 1 | 0.56 | 0.7 | 0.8 | 0.61 | 0.57 |
8 | 1 | 1 | 0.8 | 1 | 0.8 | 0.8 | 0.8 | 0.84 | 0.74 |
9 | 1 | 0.72 | 0.67 | 1 | 0.76 | 0.7 | 0.8 | 0.72 | 0.64 |
10 | 0.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
LULC Classes | Resistance Value |
---|---|
Artificial Surfaces | 100 |
Artificial, non-agricultural vegetated areas | 5 |
Agricultural Areas | 30 |
Forest | 1 |
Grassland | 10 |
Sclerophyllous Vegetation | 1 |
Open spaces with little or no vegetation | 35 |
Wetlands | 1 |
Water | 70 |
Mine | 100 |
LULC Classes * | 1990 (ha) | % | 2000 (ha) | % | 2006 (ha) | % | 2012 (ha) | % | 2018 (ha) | % |
---|---|---|---|---|---|---|---|---|---|---|
1 | 19,418 | 5.57 | 29,729.25 | 8.52 | 33,533 | 9.61 | 34,995.25 | 10.03 | 35,443 | 10.16 |
2 | 1876.25 | 0.54 | 2843.25 | 0.82 | 2194.5 | 0.63 | 2209 | 0.63 | 4025.25 | 1.15 |
3 | 128,963.25 | 36.96 | 119,237.25 | 34.18 | 118,091.25 | 33.85 | 116,495.5 | 33.39 | 115,769 | 33.18 |
4 | 117,575.75 | 33.70 | 116,582.25 | 33.41 | 118,877.5 | 34.07 | 120,112.25 | 34.43 | 120,059.5 | 34.41 |
5 | 11,156.8 | 3.20 | 11,284.75 | 3.23 | 10,192.25 | 2.92 | 10,147.75 | 2.91 | 10,035 | 2.88 |
6 | 51,336 | 14.71 | 51,197.75 | 14.67 | 49,083.5 | 14.07 | 48,244.75 | 13.83 | 46,908.5 | 13.44 |
7 | 12,814.8 | 3.67 | 11,407.5 | 3.27 | 10,129 | 2.90 | 9764 | 2.80 | 9606 | 2.75 |
8 | 4795 | 1.37 | 5097.75 | 1.46 | 5142.75 | 1.47 | 4726 | 1.35 | 4730.5 | 1.36 |
9 | 543 | 0.16 | 409 | 0.12 | 391.25 | 0.11 | 737.75 | 0.21 | 724 | 0.21 |
10 | 426.5 | 0.12 | 1116.5 | 0.32 | 1270.25 | 0.36 | 1473 | 0.42 | 1604.5 | 0.46 |
LULC Class * | 2000 | ||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Losses | Total | ||
1990 | 1 | 19,374.75 | 16.25 | 0 | 27 | 0 | 0 | 0 | 0 | 0 | 0 | 43.25 | 19,418 |
2 | 1 | 1875.25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1876.25 | |
3 | 7419.25 | 681 | 119,144 | 451.25 | 1114.75 | 105.75 | 0 | 0 | 0 | 47.25 | 9819.25 | 128,963.25 | |
4 | 1483.5 | 119.25 | 16.75 | 115,123.25 | 17 | 116 | 198.75 | 0 | 0 | 501.25 | 2452.5 | 117,575.75 | |
5 | 954 | 76.75 | 27.75 | 0 | 10,098.25 | 0 | 0 | 0 | 0 | 0 | 1058.5 | 11,156.75 | |
6 | 311.5 | 14.75 | 48.75 | 12 | 0 | 50,783 | 100.5 | 0 | 0 | 65.5 | 553 | 51,336 | |
7 | 49.75 | 0.25 | 0 | 950 | 0 | 193 | 11,108.25 | 437.5 | 0 | 76 | 1706.5 | 12,814.75 | |
8 | 97.5 | 9.5 | 0 | 0 | 27.75 | 0 | 0 | 4660.25 | 0 | 0 | 134.75 | 4795 | |
9 | 38 | 50.25 | 0 | 18.75 | 27 | 0 | 0 | 0 | 409 | 0 | 134 | 543 | |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 426.5 | 0 | 426.5 | |
Gains | 10,354.5 | 968 | 93.25 | 1459 | 1186.5 | 414.75 | 299.25 | 437.5 | 0 | 690 | |||
Total | 29,729.25 | 2843.25 | 119,237.25 | 116,582.25 | 11,284.75 | 51,197.75 | 11,407.5 | 5097.75 | 409 | 1116.5 | |||
LULC Class * | 2006 | ||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Losses | Total | ||
2000 | 1 | 28,752.75 | 140.25 | 442.75 | 36.5 | 82.5 | 87.75 | 20.25 | 39.5 | 0.25 | 126.75 | 976.5 | 29,729.25 |
2 | 939 | 1819 | 4 | 69.25 | 4 | 6.5 | 0 | 0 | 0 | 1.5 | 1024.25 | 2843.25 | |
3 | 2614.5 | 174.75 | 113,696 | 1746.75 | 398 | 453.25 | 148 | 0 | 0.25 | 5.75 | 5541.25 | 119,237.25 | |
4 | 430 | 14.5 | 2286.5 | 110,122.75 | 279.75 | 2647 | 613.25 | 0 | 0 | 188.5 | 6459.5 | 116,582.25 | |
5 | 344 | 13.5 | 1058.25 | 963.25 | 7827 | 1069.25 | 9.5 | 0 | 0 | 0 | 3457.75 | 11,284.75 | |
6 | 164 | 26 | 424.75 | 5023.75 | 26.5 | 44,759.25 | 766 | 0 | 1 | 6.5 | 6438.5 | 51,197.75 | |
7 | 164 | 1.75 | 165.5 | 904.5 | 1570.25 | 56.5 | 8529 | 6.25 | 0.25 | 9.5 | 2878.5 | 11,407.5 | |
8 | 0 | 0 | 0.25 | 0 | 0 | 0 | 6.75 | 5090.5 | 0.25 | 0 | 7.25 | 5097.75 | |
9 | 7.5 | 3.5 | 0 | 1.25 | 0.25 | 0.75 | 0 | 6.5 | 389.25 | 0 | 19.75 | 409 | |
10 | 117.25 | 1.25 | 13.25 | 9.5 | 4 | 3.25 | 36.25 | 0 | 0 | 931.75 | 184.75 | 1116.5 | |
Gains | 4780.25 | 375.5 | 4395.25 | 8754.75 | 2365.25 | 4324.25 | 1600 | 52.25 | 2 | 338.5 | |||
Total | 33,533 | 2194.5 | 118,091.25 | 118,877.5 | 10,192.25 | 49,083.5 | 10,129 | 5142.75 | 391.25 | 1270.25 | |||
LULC Class * | 2012 | ||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Losses | Total | ||
2006 | 1 | 32,730 | 210.5 | 175.5 | 318.5 | 20.75 | 53.5 | 13.5 | 3 | 4.75 | 3 | 803 | 33,533 |
2 | 109 | 1925.75 | 6.25 | 91.25 | 53 | 0.5 | 1.25 | 0 | 6.75 | 0.75 | 268.75 | 2194.5 | |
3 | 1504.5 | 27.25 | 114,604.75 | 1668.25 | 48.5 | 118.75 | 83.75 | 10.25 | 2 | 23.25 | 3486.5 | 118,091.25 | |
4 | 238.25 | 14 | 818 | 116,871.5 | 234.25 | 403.25 | 75.75 | 23 | 4 | 195.5 | 2006 | 118,877.5 | |
5 | 202.5 | 19.75 | 100.5 | 62.5 | 9761.25 | 36.5 | 6 | 0 | 2.75 | 0.5 | 431 | 10,192.25 | |
6 | 17.25 | 1 | 691.5 | 717.5 | 22.75 | 47,596.25 | 13.25 | 0 | 13 | 11 | 1487.25 | 49,083.5 | |
7 | 181.5 | 10.75 | 93.75 | 351 | 2.5 | 20.5 | 9448.75 | 7 | 4.5 | 8.75 | 680.25 | 10,129 | |
8 | 4.25 | 0 | 0.25 | 1 | 0 | 0 | 113.75 | 4671.25 | 352.25 | 0 | 471.5 | 5142.75 | |
9 | 4.25 | 0 | 2.5 | 5.25 | 1.75 | 13.25 | 5 | 11.5 | 347.75 | 0 | 43.5 | 391.25 | |
10 | 3.75 | 0 | 2.5 | 25.5 | 3 | 2.25 | 3 | 0 | 0 | 1230.25 | 40 | 1270.25 | |
Gains | 2265.25 | 283.25 | 1890.75 | 3240.75 | 386.5 | 648.5 | 315.25 | 54.75 | 390 | 242.75 | |||
Total | 34,995.25 | 2209 | 116,495.5 | 120,112.25 | 10,147.75 | 48,244.75 | 9764 | 4726 | 737.75 | 1473 | |||
LULC Class * | 2018 | ||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Losses | Total | ||
2012 | 1 | 34,838.5 | 52.25 | 53.5 | 19.75 | 25 | 1.75 | 0 | 4.5 | 0 | 0 | 156.75 | 34,995.25 |
2 | 0 | 2209 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2209 | |
3 | 415.25 | 417 | 115,663.25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 832.25 | 116,495.5 | |
4 | 33.75 | 1080 | 14.5 | 118,820.75 | 0 | 0 | 0 | 0 | 0 | 163.25 | 1291.5 | 120,112.25 | |
5 | 73.75 | 62.75 | 1.25 | 0 | 10,010 | 0 | 0 | 0 | 0 | 0 | 137.75 | 10,147.75 | |
6 | 0 | 56 | 36.5 | 1219 | 0 | 46,906.75 | 0 | 0 | 0 | 26.5 | 1338 | 48,244.75 | |
7 | 81.75 | 66.5 | 0 | 0 | 0 | 0 | 9606 | 0 | 0 | 9.75 | 158 | 9764 | |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4726 | 0 | 0 | 0 | 4726 | |
9 | 0 | 13.75 | 0 | 0 | 0 | 0 | 0 | 0 | 724 | 0 | 13.75 | 737.75 | |
10 | 0 | 68 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1405 | 68 | 1473 | |
Gains | 604.5 | 1816.25 | 105.75 | 1238.75 | 25 | 3.5 | 0 | 4.5 | 0 | 199.5 | |||
Total | 35,443 | 4025.25 | 115,769 | 120,059.5 | 10,035 | 46,908.5 | 9606 | 4730.5 | 724 | 1604.5 |
Years | LULC Class * | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
1990 | Min | 0 | 0.19 | 0.34 | 0.51 | 0.46 | 0.74 | 0.39 | 0.56 | 0.63 | 0 |
Max | 0 | 0.30 | 0.50 | 1 | 0.80 | 1 | 0.60 | 1 | 1 | 0 | |
Mean | 0 | 0.26 | 0.49 | 0.97 | 0.76 | 0.99 | 0.58 | 0.93 | 0.95 | 0 | |
2000 | Min | 0 | 0.17 | 0.30 | 0.39 | 0.33 | 0.74 | 0.35 | 0.58 | 0.68 | 0 |
Max | 0 | 0.30 | 0.50 | 1 | 0.80 | 1 | 0.60 | 1 | 1 | 0 | |
Mean | 0 | 0.26 | 0.49 | 0.96 | 0.75 | 0.98 | 0.58 | 0.96 | 0.99 | 0 | |
2006 | Min | 0 | 0.17 | 0.31 | 0.39 | 0.32 | 0.56 | 0.35 | 0.60 | 0.70 | 0 |
Max | 0 | 0.30 | 0.50 | 1 | 0.80 | 1 | 0.60 | 1 | 1 | 0 | |
Mean | 0 | 0.25 | 0.49 | 0.95 | 0.74 | 0.98 | 0.57 | 0.95 | 0.99 | 0 | |
2012 | Min | 0 | 0.16 | 0.29 | 0.44 | 0.29 | 0.55 | 0.35 | 0.52 | 0.60 | 0 |
Max | 0 | 0.30 | 0.50 | 1 | 0.80 | 1 | 0.60 | 1 | 1 | 0 | |
Mean | 0 | 0.25 | 0.49 | 0.95 | 0.73 | 0.98 | 0.56 | 0.92 | 0.99 | 0 | |
2018 | Min | 0 | 0.16 | 0.30 | 0.41 | 0.29 | 0.57 | 0.37 | 0.54 | 0.65 | 0 |
Max | 0 | 0.30 | 0.50 | 1 | 0.80 | 1 | 0.60 | 1 | 1 | 0 | |
Mean | 0 | 0.26 | 0.48 | 0.95 | 0.74 | 0.97 | 0.57 | 0.92 | 0.99 | 0 |
HQ Value Classes * | 1990 (ha) | % | 2000 (ha) | % | 2006 (ha) | % | 2012 (ha) | % | 2018 (ha) | % |
---|---|---|---|---|---|---|---|---|---|---|
1 | 19,845.5 | 5.69 | 30,900.75 | 8.86 | 34,871.75 | 9.99 | 34,871.75 | 9.99 | 37,147.25 | 10.65 |
2 | 2874.75 | 0.82 | 4109.25 | 1.18 | 3628.5 | 1.04 | 3628.5 | 1.04 | 5520.25 | 1.58 |
3 | 141,207 | 40.47 | 130,429.75 | 37.38 | 128,341.75 | 36.78 | 128,341.75 | 36.78 | 125,968.75 | 36.10 |
4 | 14,665.5 | 4.20 | 17,493 | 5.01 | 17,346.75 | 4.97 | 17,346.75 | 4.97 | 18,060.75 | 5.18 |
5 | 170,312.5 | 48.81 | 165,972.5 | 47.57 | 164,716.5 | 47.21 | 164,716.5 | 47.21 | 162,208.25 | 46.49 |
Number of Patches | Smallest Patch Size (ha) | Largest Patch Size (ha) | Average Patch Size (ha) | |
---|---|---|---|---|
1990 | 469 | 0.16 | 27,967.31 | 394.31 |
2000 | 457 | 0.16 | 25,074.10 | 401.40 |
2006 | 476 | 0.16 | 25,760.05 | 382.44 |
2012 | 520 | 0.16 | 25,780.49 | 349.07 |
2018 | 606 | 0.16 | 25,775.73 | 297.39 |
Patch No | 1990 | 2000 | 2006 | 2012 | 2018 | |||||
---|---|---|---|---|---|---|---|---|---|---|
dIIC | dPC | dIIC | dPC | dIIC | dPC | dIIC | dPC | dIIC | dPC | |
385 | 33.56 | 51.92 | 31.95 | 47.67 | 31.48 | 45.99 | 31.86 | 47.87 | 31.67 | 46.61 |
455 | 31.14 | 26.79 | 30.00 | 26.03 | 31.30 | 27.62 | 31.20 | 27.87 | 31.20 | 27.87 |
440 | 25.67 | 30.58 | 26.58 | 31.50 | 26.52 | 30.72 | 26.82 | 31.05 | 26.92 | 31.03 |
92 | 17.40 | 32.22 | 18.81 | 32.07 | 17.96 | 30.99 | 17.92 | 30.33 | 18.13 | 30.67 |
387 | 13.96 | 18.24 | 13.63 | 16.36 | 13.28 | 17.62 | 14.60 | 18.74 | 14.60 | 18.74 |
360 | 13.64 | 12.82 | 14.29 | 13.09 | 14.71 | 13.52 | 13.09 | 13.03 | 13.18 | 13.13 |
391 | 12.17 | 15.13 | 12.20 | 14.39 | 12.13 | 15.20 | 12.44 | 15.53 | 12.49 | 15.57 |
16 | 8.96 | 13.86 | 9.95 | 14.56 | 8.90 | 13.73 | 8.98 | 13.81 | 900 | 13.85 |
132 | 5.98 | 9.59 | 6.64 | 9.86 | 6.62 | 9.81 | 6.54 | 9.84 | 6.55 | 9.86 |
Patch No | 1990 (ha) | 2000 (ha) | 2006 (ha) | 2012 (ha) | 2018 (ha) |
---|---|---|---|---|---|
385 | 24,088.23 | 19,502.98 | 19,203.99 | 19,303.16 | 19,022.32 |
455 | 27,967.31 | 25,074.10 | 25,760.05 | 25,780.49 | 25,775.47 |
440 | 24,561.77 | 24,580.00 | 24,434.37 | 24,513.97 | 24,505.18 |
92 | 13,375.20 | 13,064.98 | 13,556.22 | 13,519.90 | 13,483.69 |
387 | 17,041.14 | 15,715.13 | 15,124.84 | 16,618.69 | 16,403.82 |
360 | 15,272.37 | 15,397.10 | 15,423.79 | 12,176.30 | 12,138.74 |
391 | 4188.274 | 3943.57 | 3940.58 | 3665.31 | 3615.75 |
16 | 9891.13 | 10,216.51 | 9949.33 | 10,007.23 | 9985.36 |
132 | 7826.65 | 7834.91 | 7957.64 | 7872.21 | 7851.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erdoğan, N. Spatiotemporal Analysis of Habitat Quality and Connectivity in Response to Land Use/Cover Change: A Case Study of İzmir. Sustainability 2025, 17, 2407. https://doi.org/10.3390/su17062407
Erdoğan N. Spatiotemporal Analysis of Habitat Quality and Connectivity in Response to Land Use/Cover Change: A Case Study of İzmir. Sustainability. 2025; 17(6):2407. https://doi.org/10.3390/su17062407
Chicago/Turabian StyleErdoğan, Nurdan. 2025. "Spatiotemporal Analysis of Habitat Quality and Connectivity in Response to Land Use/Cover Change: A Case Study of İzmir" Sustainability 17, no. 6: 2407. https://doi.org/10.3390/su17062407
APA StyleErdoğan, N. (2025). Spatiotemporal Analysis of Habitat Quality and Connectivity in Response to Land Use/Cover Change: A Case Study of İzmir. Sustainability, 17(6), 2407. https://doi.org/10.3390/su17062407